
A practically constant-time MPI Broadcast Algorithm

for large-scale InfiniBand Clusters with Multicast

Torsten Hoefler,1,2 Christian Siebert,1 and Wolfgang Rehm1

1Dept. of Computer Science 2Open Systems Laboratory
Chemnitz University of Technology Indiana University

Strasse der Nationen 62 501 N. Morton Street
Chemnitz, 09107 GERMANY Bloomington, IN 47404 USA

{htor,chsi,rehm}@cs.tu-chemnitz.de htor@cs.indiana.edu

Abstract

An efficient implementation of the MPI BCAST op-

eration is crucial for many parallel scientific applica-

tions. The hardware multicast operation seems to be ap-

plicable to switch-based InfiniBand cluster systems. Sev-

eral approaches have been implemented so far, however

there has been no production-ready code available yet.

This makes optimal algorithms to a subject of active re-

search. Some problems still need to be solved in order

to bridge the semantic gap between the unreliable mul-

ticast and MPI BCAST. The biggest of those problems

is to ensure the reliable data transmission in a scalable

way. Acknowledgement-based methods that scale logarith-

mically with the number of participating MPI processes ex-

ist, but they do not meet the supernormal demand of high-

performance computing. We propose a new algorithm that

performs the MPI BCAST operation in a practically con-

stant time, independent of the communicator size. This

method is well suited for large communicators and (espe-

cially) small messages due to its good scaling and its ability

to prevent parallel process skew. We implemented our algo-

rithm as a collective component for the Open MPI frame-

work using native InfiniBand multicast and we show its

scalability on a cluster with 116 compute nodes, where it
saves up to 41% MPI BCAST latency in comparison to the

“TUNED” Open MPI collective.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

Cluster systems gain, due to their very good price-

performance ratio, more and more importance for scien-

tific applications. More than 72% of all supercomputers in

the 28th TOP500 list [22] are cluster systems. The Mes-

sage Passing Interface (MPI, [11, 12]) emerged in the last

years as today’s de facto programming model for paral-

lel high-performance applications on such systems. Within

this model, the use of collective operations is crucial for

the performance, performance portability among different

systems, and the parallel scaling of many applications [5].

That means that collective operations deserve special atten-

tion to achieve the highest throughput on those cluster ar-

chitectures. We investigate the widely used collective oper-

ation MPI BCAST in this work (Rabenseifner identified it

as one of the most time-consuming collective operations in

his usage analysis [18]). This operation provides a reliable

data-distribution from one MPI process, called root, to all

other processes of a specific communication context that is

called communicator in MPI terms. Since only the seman-

tics and the syntax of this function are standardized, we are

able to present an alternative implementation. We show a

new scheme for InfiniBandTM with the use of special hard-

ware support to achieve a practically1 constant-time broad-

cast operation.

A key property of many interconnects used in cluster sys-

tems is the ability to perform a hardware-supported multi-

cast operation. Ni [14] discusses the advantages of hard-

ware multicast for cluster systems and concludes that it

is very important for cluster networks. This feature is

very common for Ethernet-based systems and is supported

1practically in the meaning of average case for a wide variety of appli-

cation patterns; more details in Section 2.1

by the TCP/IP protocol suite. Other widely used high-

performance networks like Myrinet or Quadrics use similar

approaches to perform multicast operations [4, 23, 24, 25].

The new emerging InfiniBandTM [21] network technology

offers such a hardware-supported multicast operation too.

Multicast is commonly based on an unreliable datagram

transport that broadcasts data to a predefined group of pro-

cesses in almost constant time, i.e., independent of the num-

ber of physical hosts in this group. Multicast groups are

typically addressed by network-wide unique multicast ad-

dresses in a special address range. The multicast opera-

tion can be utilized to implement the MPI BCAST func-

tion, however, there are four main problems:

1. the transport is usually unreliable

2. there is no guarantee for in-order delivery

3. the datagram size is limited to the maximum transmis-

sion unit (MTU)

4. each multicast group has to be network-wide unique

(i.e., even for different MPI jobs!)

We examine and resolve all those problems in this ar-

ticle and introduce a fast scheme that ensures reliabil-

ity and makes the implementation of MPI BCAST over

InfiniBandTM viable.

The terms (MPI) process and node are used throughout

the paper. We consider a “process” similarly to MPI as an

activity that may join a multicast group and a “node” as a

physical machine. Although multiple processes are allowed

on a single physical machine, we used only one process per

node for our benchmarks in Section 4. Node-locally, the un-

derlying communication library is responsible to deliver the

received hardware multicast datagrams efficiently to all reg-

istered processes. Furthermore, this work addresses mainly

cluster systems with flat unrouted InfiniBandTM networks.

We assume and we show with our benchmarks that the mul-

ticast operation finishes in an almost constant time on such

networks. However, the ideas are also applicable to huge

routed networks, but the hardware multicast might loose its

constant-time property on such systems. Anyhow, it is still

reasonable to assume that the hardware multicast operation

is, even on routed InfiniBandTM networks, faster than equiv-

alent software-initiated point-to-point communication.

The next section describes related work and shows the

most critical problems with those existing approaches. We

propose new ideas to solve the four main problems (de-

scribed above) in Section 2. Our implementation for the

Open MPI framework is described in the following Sec-

tion 3. A performance analysis of the new broadcast is

presented in Section 4 before we give a conclusion and an

outlook to future work in Section 5.

1.1 Related Work

Some of the already mentioned issues have been ad-

dressed by other authors. However, all schemes use some

kind of acknowledgement (positive or negative) to en-

sure reliability. Positive acknowledgements (ACK) lead to

“ACK implosion” [8] on large systems. Liu et al. proposed

a co-root scheme that aims at reducing the ACK traffic at

a single process. This scheme lowers the impact of ACK

implosion but does not solve the problem in general (the

co-roots act as roots for smaller subgroups). The necessary

reliable broadcast to the co-roots introduces a logarithmic

running time. This scheme could be used for large messages

where the ACK latency is not significant. Other schemes,

that use a tree-based ACK, do also introduce a logarith-

mic waiting time at the root process. Negative acknowl-

edgement (NACK) based schemes do usually not have this

problem because they contact the root process only in case

of an error. However, this means that the root has to wait,

or at least store the data, until it is guaranteed that all pro-

cesses have received the data correctly. This waiting time

is not easy to determine and usually introduces unneces-

sary process skew at the root process. Sliding window

schemes can help to mitigate the negative influence of the

acknowledgement-based algorithms, but they do not solve

the related problems.

Multicast group management schemes have been pro-

posed by Mamidala et al. [10] and Yuan et al. [26]. Both

approaches do not consider having multiple MPI jobs run-

ning concurrently in the same subnet. Different jobs that

use the same multicast group receive mismatched packets

from each other. Although errors can be prevented by using

additional header fields, a negative performance impact is

usually inevitable.

Multicast group management should be done with the

standardized MADCAP protocol [6]. However, the lack of

available implementations induced us to search for a more

convenient scheme.

The multicast operation has also been applied to im-

plement other collective operations like MPI BARRIER,

MPI ALLREDUCE or MPI SCATTER [2, 7, 9]. We use

the scheme proposed in [19] for MPI BCAST and adapt it

for the use with the InfiniBandTM multicast technology.

2 The Multicast-Based Broadcast Algorithm

Several multicast-based broadcast algorithms have been

proposed in the past. The most time-critical prob-

lem, especially for smaller broadcast messages, is the

re-establishment of the reliability which is needed by

MPI BCAST but usually not supported by hardware mul-

ticast. We propose a two-stage broadcast algorithm as il-

lustrated in Figure 1. The unreliable multicast feature of

2

the underlying network technology is used in a first phase

to deliver the message to as many MPI processes as possi-

ble. The second phase of the algorithm ensures that all MPI

processes finally receive the broadcast message in a reliable

way, even if the first stage fails partially or completely.

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

stage 1: multicast (unreliable)

stage 2: chain broadcast (reliable)

7 3

5

1
28

6 4

7 3

8

5

1
2

6 4

Figure 1. The two-stage broadcast algorithm

2.1 Stage 1: Unreliable Broadcast

Multicast datagrams usually get lost when the corre-

sponding recipient is not ready to receive them or due to

network congestion. Therefore, a common approach is to

use a synchronizing operation (similar to MPI BARRIER)

that waits until all P processes are prepared to receive the

datagrams. If such an operation is build on top of re-

liable point-to-point communication this synchronization

will need Ω(log P) communication rounds to complete. In-

stead of targeting at a 100% rate of ready-to-receive pro-

cesses, it is more than sufficient if only a subset of all MPI

processes is already prepared, provided that a customized

second stage is used for the broadcast algorithm. A further

disadvantage of such a complete synchronization operation

is the fact that real-world applications are usually subject

to the principle of process skew which can lead to a further

increment of the operation’s time consumption.

It can be shown that a wide variety of applications works

perfectly without any synchronization operation during this

stage. However, when the root process is the first process

that calls MPI BCAST, all non-root processes would not

be ready to receive the multicast message and therefore an

immediately executed multicast operation might become to-

tally useless. This remaining fraction of applications, with

such a worst-case broadcast usage pattern, can be handled

by explicitely delaying the root process. A user-controlled

delay variable (e.g., MCA parameter for Open MPI) is not

only the simplest solution for implementors of this algo-

rithm, but also very effective because an optimal value for a

given application can be determined using a small number

of test runs. Adaptive delay parameter adjustments at run-

time, e.g., based on heuristic functions, might be feasible

too. A randomized single-process synchronization (instead

of a complete MPI BARRIER synchronization) is a third

solution to this problem: a seed value is distributed at com-

municator creation time to all MPI processes. Within each

MPI BCAST operation, a certain non-root process is cho-

sen globally with the help of a pseudorandom number gen-

erator and the current seed. The root process than waits until

this single non-root process joins this collective operation.

On average, such a procedure prevents the worst broadcast

scenarios and is thereby independent of the application type.

However, the first solution (without any delay) offers nat-

urally the highest performance for applications where the

root process rarely arrives too soon.

The first phase of the new broadcast algorithm starts with

this optional root-delay and uses multicast to transmit the

complete message (fragmenting it if necessary) from the

root process to all recipients. A process-local status bitmap

can be utilized to keep track of correctly received data frag-

ments.

2.2 Stage 2: Reliable Broadcast Comple-
tion

Even without any preceding synchronization, it is not un-

usual that a large proportion (typically about 50%) of all

MPI processes have correctly received the broadcast mes-

sage during the unreliable broadcast stage. The third syn-

chronization method ensures this 50% proportion in the av-

erage case even if the application processes always arrive in

the worst-case broadcast pattern. This second stage of our

new algorithm guarantees that those MPI processes which

have not yet received the data (whether partially or com-

pletely) will accomplish this eventually. The common ap-

proach is to use some kind of acknowledgement scheme

to detect which processes have failed and to retransmit the

3

message to these recipients. Unfortunately, existing ACK

schemes (positive or negative ones) are quite expensive be-

cause of the introduced performance bottleneck at the root

process and the necessary time-out values.

Instead of using this kind of “feedback” channel, which

can be efficient for large messages where those overheads

are negligible, it is more efficient for smaller messages to

send the message a second time using a fragmented chain

broadcast algorithm. This means that every MPI process

has a predefined predecessor and successor in a virtual ring

topology. The root process does not need to receive the

message because it is the original source of this broadcast.

Therefore, the connection with its predecessor (e.g., 8 → 1
in Figure 1) is redundant and can be omitted. As soon as a

process owns a correct fragment of the broadcast message,

it sends it in a reliable way to its direct successor. Whether

a fragment has been received via multicast or via reliable

send is not important - the second receive request can be

cancelled or ignored.

Using this technique, each MPI process that gets the

message via multicast serves as a new “root” within the vir-

tual ring topology. After forwarding this message to its sin-

gle successor, a process can immediately finalize its broad-

cast participation. Only those processes that have failed to

receive the multicast datagram(s) need to wait until they get

the message in the second stage. If its predecessor received

the message via multicast then only a single further message

transfer operation, called “penalty round” in the following,

is necessary. But the predecessors might have failed too in

the first stage and the number of “penalty rounds” would

increase further. For a given failure probability ǫ of a sin-

gle message transmission, the chance that P processes fail

in a row is ǫP . Therefore, the average number of “penalty

rounds” is reasonably small (given that ǫ = 50%, the num-

ber of penalty rounds is just 1.0). Nevertheless, the worst-

case (i.e., all processes failed to receive the multicast mes-

sage) leads to a number of “penalty rounds” (and therewith

time) that scales linearly with the communicator size. How-

ever, real-world applications that call MPI BCAST multi-

ple times are mainly affected by the average case time and

only minor by this worst-case time.

A different kind of virtual distribution topology (e.g.,

a tree-based topology) for the second stage could help to

reduce this worst-case running time. However, with the

knowledge about the applications broadcast usage-pattern

or a proper synchronization method, this worst-case sce-

nario will rarely occur. While a process in the virtual ring

topology needs to forward the message only to a single

successor, a process in a virtual tree-based topology would

need to serve several successors (e.g., two in a binary tree)

which usually increases the time for the second stage by

this fan-out factor. In addition, the broadcast duration per

process would not be as balanced as in the proposed chain

broadcast. When a single MPI process enters the collective

operation late, it can not delay more than one other process

in the ring topology but it will delay all its direct successors

in a tree-based topology.

3 Implementation Details

Our prototype is implemented as a collective component

within the Open MPI [3] framework. The component uses

low-level InfiniBandTM functionality to access the hardware

multicast directly for the first stage of our algorithm (cf.

Section 2.1). The reliable message transmission in step

2 uses the send/receive functionality of the Point-to-point

Management Layer (PML) of the Open MPI framework.

3.1 Multicast Group Management

A single cluster system is often used by several inde-

pendent MPI jobs. Thus, a proper multicast group manage-

ment is necessary to prevent multicast group collisions. An

ideal solution to provide a global (i.e., cluster-wide) multi-

cast group management would be the implementation of a

server-based allocation protocol like MADCAP [6], with a

single master server for every cluster system. However, to

the best of the authors knowledge, there is no MADCAP im-

plementation available that is able to handle InfiniBandTM

multicast global identifiers (MCGIDs).

Our approach is to statically assign a network-wide

unique multicast group to every new communicator at

creation time (cf. [26]). As alternative to the MAD-

CAP solution, we choose these groups at random using

a cryptographically secure pseudorandom number genera-

tor (“BBS” [1]). This does not implicate any performance

problems because our unoptimized implementation is able

to produce 52 KiB of random data per second on an or-

dinary 2 GHz computer, which is sufficient considering

that only 14 bytes are necessary for each new InfiniBandTM

MCGID. This generator is seeded at application startup us-

ing a pool of collected data from the following sources:

1. dynamic data from a high-resolution time stamp

(MPI Wtime)

2. inter-node data derived from host-specific identifiers

(MPI Get processor name; this resolves the concur-

rency problem)

3. intra-node altering data using temporary file names

(tmpname; e.g., needed when some MPI processes re-

side on the same node)

4. other sources like the /dev/urandom Linux device

(only if available)

4

This randomized selection of multicast groups with due

diligence makes collisions much more unlikely than, e.g., a

catastrophic hardware failure because of the large MCGID

address space of m = 2112. If there are n multicast groups

in use, the probability that no collisions occur at all is

Prob(n, m) = m!
mn

·(m−n)! according to the “Birthday para-

dox”. This will be almost 1.0 in practical scenarios, e.g.,

99.99999999999999999999999999% for 1000 groups that

are concurrently in use.

3.2 Fragmentation and Packet Format

Number
Sequence

CRC−32BID

Data (Payload)

Figure 2. Structure of a packed multicast

datagram

All multicast datagrams, that are used by our broadcast

implementation, start with a four byte header containing a

sequence number and a broadcast identifier (“BID”, see Fig-

ure 2). Hardware multicast has a limited datagram size and

does not guarantee in-order delivery. This makes a frag-

mentation of large messages necessary and the sequence

number indicates the corresponding position of every frag-

ment within the data buffer. The broadcast identifier corre-

sponds to a communicator-specific counter that keeps track

of the last issued broadcast operation. Individual broadcast

messages can potentially pass each other because our algo-

rithm does not explicitly synchronize; the BID field in the

header prevents any possible mismatches. A final cyclic re-

dundancy check value is used to detect defective datagrams.

Although this was meant to be optional, we observed dur-

ing our benchmarks that CRC errors occured with 0.287%
of all transmitted datagrams on our test systems.

3.3 Implementation in Open MPI

The framework for the modular architecture and the col-

lective components in Open MPI is described in detail in

[20]. A context-wide agreed multicast group is assigned

to each communicator within the module_init function

that is called during the creation of a new communicator.

All involved processes join this new group and build one

unreliable datagram queue pair (UD QP) per communicator

for the transmission of the multicast packets. Because the

protocol for UD is connectionless, a single QP is sufficient

and any scalability problems are avoided.

To further improve the implementation, we pre-post n

receive requests (RRs) in module_init to buffer n in-

coming multicast packets (they are dropped if no pre-posted

RR is found). This adds a constant memory overhead of

n× MTU per MPI process. Useful values for n are highly

system and even application dependent. We chose a default

value of n = 5 to achieve a good balance between memory

overhead and multicast performance. As long as there are

pre-posted receive requests at the non-root processes, they

will very likely get the next broadcast message during the

first stage of the algorithm (at least if it is small enough to

fit in the pre-posted buffers) even if they call MPI BCAST

after the root process had issued the multicast operation.

Therefore pre-posting can also help to diminish the effect

of the mentioned worst-case scenarios in real-world appli-

cations.

The bcast function itself decides at runtime upon the

current scenario (message size, number of processes and

user parameters) if it should execute an existing broadcast

from the “TUNED” component, or our new multicast-based

broadcast (described in Section 2).

During the destruction of every communicator the

module_finalize function is called. All resources that

were previously allocated by the init function are freed here.

Our InfiniBandTM API-independent macro layer was

used to access both the OpenFabrics (formerly known as

OpenIB) and the MVAPI interface with the same source

code. We proved in another study [13] that the introduced

overhead is negligible and the programming effort to sup-

port both interfaces is simplified.

4 Performance Evaluation

We evaluated our implementation with the Intel Mi-

crobenchmark suite version 3.0 (formerly known as Pallas

Microbenchmark [16]) and a second, more realistic, mi-

crobenchmark that uses the principles mentioned in [15].

The following results show a comparison of our collective

component called “IB” with the existing “TUNED” compo-

nent in Open MPI 1.2b3. We focus on small messages be-

cause their performance is extremely important for the par-

allel speedup of strong scaling problems (a constant prob-

lem size with an increasing number of processes causes

small messages) and the new broadcast is especially suited

for this use case.

4.1 Classical Implementation

The classical way to implement MPI BCAST for small

messages uses point-to-point communication with the pro-

cesses arranged in a virtual tree topology. However, for

very small communicators a linear scheme, where the root

process sends its message to all ranks sequentially, might

be faster. Therefore, the used Open MPI “TUNED” com-

ponent leverages such a linear scheme for communicators

5

with at most 4 MPI processes and a binomial tree distribu-

tion scheme for larger communicators. The binomial tree

communication is staged into ⌈log2P ⌉ rounds and (assum-

ing that the root process has rank #0, which can be acom-

plished by a rank rotation) each MPI rank sends every round

to the MPI rank with the rank #round − 1 greater than its

own. The resulting communication pattern for a communi-

cator of size 8 is shown in Figure 3.

1

0

2

4

3

5 67
ro

u
n

d
 1

ro
u

n
d

 2
ro

u
n

d
 3

Figure 3. A classical binomial tree broadcast

scheme for 8 MPI processes, as used by the
“TUNED” implementation in Open MPI

A broadcast along a binomial tree has two main disad-

vantages. First, the communication time is clearly unbal-

anced when the communicator size is not a proper power

of two. And even if it is, the root process might return

immediately from a call to MPI BCAST when the outgo-

ing messages are cached by the underlying communication

system (e.g., in eager buffers), while the last process (e.g.,

rank #7 in Figure 3) needs ⌈log2P ⌉ communication rounds

to complete the operation (cf. [17]). This introduces an ar-

tificial process skew regardless of the initial process skew

(the MPI processes might have been completely synchro-

nized). Second, the overall duration of the broadcast opera-

tion increases logarithmically with the number of participat-

ing MPI processes. Contrary, our new broadcast algorithm

is able to overcome both disadvantages.

4.2 Benchmark Environment

Our measurements have been executed on the “Odin”

cluster that is located at Indiana University. This system

consists of 128 compute nodes, each equipped with dual

2.0 GHz Opterons 246 and 4 GB RAM. The single Mel-

lanox MT23108 HCA on each node connects to a central

switch fabric and is accessed through the MVAPI interface.

We used one MPI process per node for all presented runs.

Our implementation has also been tested successfully on

different smaller systems using the MVAPI and OpenFab-

rics interface.

4.3 Results

The results gathered with the IMB and a 2 byte message

are shown in Figure 4. The small-message latency is, as ex-

pected, independent of the communicator size2. Our imple-

mentation outperforms the “TUNED” Open MPI broadcast

for communicators larger than 20 processes with the IMB

microbenchmark.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Communicator Size

IB

TUNED

Figure 4. (IMB) MPI BCAST latency in relation

to the communicator size

For this reason, our collective module calls the

“TUNED” component if the communicator contains less

than 20 MPI processes (this value is system-dependent and

therefore adjustable by the user with an Open MPI MCA

parameter to tune for the maximum performance).

Our own (more comprehensive) broadcast benchmark

gives a detailed insight into the performance of the new

implementation. We measured the time that every single

process needs to perform the MPI BCAST operation with a

2 byte message. The result for a fixed communicator size of

116 is shown in Figure 5. It can be seen that the “TUNED”

broadcast introduces a significant process skew (rank #1 fin-

ishes 79.4% earlier than rank #98), which can have a dis-

astrous impact on applications that rely on synchronity or

make use different collective operations (that cause differ-

2the IB outlier with two processes exists because the virtual ring topol-

ogy is split up before the root process (this optimization saves a single send

operation at the last process in the chain)

6

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

MPI Rank

IB

TUNED

Figure 5. MPI BCAST latency for each MPI

rank with a communicator size of 116

ent skew patterns). Contrary, our multicast-based imple-

mentation delivers the data to all processes in almost the

same time (only a 14% deviation from the median), mini-

mizing the skew between parallel processes. Several (e.g.,

round-based) applications derive benefit from this charac-

teristic that reduces waiting time in consecutive communi-

cation operations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Communicator Size

IB

TUNED

Figure 6. Broadcast latency of rank #1 of a 2

byte message broadcasted from rank #0 for
varying communicator sizes

Figure 6 shows the MPI BCAST latency of rank 1 for

different communicator sizes (the sudden change at 64

nodes has to be attributed to the fact that we had to take the

measurements for 1− 64 processes and 64− 116 processes

separately due to technical problems). Figure 7 shows the

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Communicator Size

IB

TUNED

Figure 7. Broadcast latency of rank #N-1 of a

2 byte message broadcasted from rank #0 for
varying communicator sizes N

latency of the MPI BCAST operation at the last node in the

communicator. The increasing running time can be easily

seen. With the “TUNED” component, rank #1 leaves the

operation after receiving the message from the root process

- much earlier than it finishes in our implementation. How-

ever, process 1 is the only exception for this component that

achieves a constant behaviour like in our implementation.

Apart from that, the latency to the last rank (like to all other

processes) steadily increases with the size of the commu-

nicator. Whereas our “IB” component reveals a similar la-

tency for each process, without any noticeable influence of

the communicator size.

5 Conclusions and Future Work

We have shown that our new algorithm is able to de-

liver high performance using InfiniBandTM multicast. Con-

trary to all other known approaches, we are able to avoid

all scalability/hot-spot problems that occur with currently

known schemes. The new multicast-based broadcast im-

plementation accomplishes a practically constant-time be-

haviour in a double meaning: it scales independently of the

communicator size and all MPI processes within a given

communicator need the same time to complete the broad-

cast operation. Well-known microbenchmarks substanti-

ate these theoretical conclusions with practical results. We

proved it for up to 116 cluster nodes, but there is no reason

to assume scalability problems with our approach.

Future work includes the detailed modelling and error-

probability analysis of our new algorithm. Furthermore,

7

the influence of the better balance (all processes leave the

broadcast nearly at the same time) in comparison to tradi-

tional algorithms has to be analyzed in the context of real-

world applications. Since different broadcast usage pat-

terns are imaginable (even within a single application), the

three presented synchronization methods need to be anal-

ysed more carefully and might be mixed into an adaptive

function that decides at run-time for an optimal strategy or

root-delay parameter. Small communicators or large mes-

sages should be handled with different algorithms. How-

ever, the exact threshold values depend on several parame-

ters. We will analyze this behavior with a well-known net-

work model and try to find a better way to predict those

cross-over points.

References

[1] M. Blum, L. Blum, and M. Shub. A simple unpredictable

pseudo-random number generator. SIAM Journal on Com-

puting, 15(2):364–383, May 1986.

[2] H. A. Chen, Y. O. Carrasco, and A. W. Apon. MPI Col-

lective Operations over IP Multicast. In Proceedings of the

15 IPDPS 2000 Workshops on Parallel and Distributed Pro-

cessing, pages 51–60, London, UK. Springer-Verlag.

[3] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-

garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,

A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

and T. S. Woodall. Open MPI: Goals, Concept, and Design

of a Next Generation MPI Implementation. In Proceedings,

11th European PVM/MPI Users’ Group Meeting, Budapest,

Hungary, September 2004.

[4] M. Gerla, P. Palnati, and S. Walton. Multicasting proto-

cols for high-speed, wormhole-routing local area networks.

In SIGCOMM ’96: Conference proceedings on Applica-

tions, technologies, architectures, and protocols for com-

puter communications, pages 184–193, New York, 1996.

ACM Press.

[5] S. Gorlatch. Send-receive considered harmful: Myths and

realities of message passing. ACM Trans. Program. Lang.

Syst., 26(1):47–56, 2004.

[6] S. Hanna, B. Patel, and M. Shah. Multicast Address Dy-

namic Client Allocation Protocol (MADCAP). RFC 2730

(Proposed Standard), Dec. 1999.

[7] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda.

Fast and Scalable Barrier Using RDMA and Multicast

Mechanisms for InfiniBand-Based Clusters. In Recent Ad-

vances in Parallel Virtual Machine and Message Passing

Interface,10th European PVM/MPI Users’ Group Meeting,

Venice, Italy, September 29 - October 2, 2003, Proceedings,

pages 369–378, 2003.

[8] J. Liu, A. Mamidala, and D. Panda. Fast and Scalable

MPI-Level Broadcast using InfiniBand’s Hardware Multi-

cast Support, 2003.

[9] A. Mamidala, J. Liu, and D. Panda. Efficient Barrier and

Allreduce on IBA clusters using hardware multicast and

adaptive algorithms, 2004.

[10] A. R. Mamidala, H. Jin, and D. K. Panda. Efficient Hard-

ware Multicast Group Management for Multiple MPI Com-

municators over InfiniBand. In Recent Advances in Parallel

Virtual Machine and Message Passing Interface, 12th Eu-

ropean PVM/MPI Users’ Group Meeting, Sorrento, Italy,

September 18-21, 2005, Proceedings, volume 3666 of Lec-

ture Notes in Computer Science, pages 388–398. Springer.
[11] Message Passing Interface Forum. MPI: A Message Passing

Interface Standard. 1995.
[12] Message Passing Interface Forum. MPI-2: Extensions to the

Message-Passing Interface. Technical Report, University of

Tennessee, Knoxville, 1997.
[13] M. Mosch. Integration einer neuen InfiniBand-Schnittstelle

in die vorhandene InfiniBand MPICH2 Software. Technical

report, Chemnitz University of Technology, 2006.
[14] L. M. Ni. Should Scalable Parallel Computers Support Effi-

cient Hardware Multicasting? In International Conference

on Parallel Processing, Workshops, pages 2–7, 1995.
[15] N. Nupairoj and L. M. Ni. Benchmarking of Multicast Com-

munication Services. Technical Report MSU-CPS-ACS-

103, Department of Computer Science, Michigan State Uni-

versity, 1995.
[16] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1.

Technical report, 2000.
[17] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,

E. Gabriel, and J. J. Dongarra. Performance Analysis of MPI

Collective Operations. In Proceedings of the 19th Interna-

tional Parallel and Distributed Processing Symposium, 4th

International Workshop on Performance Modeling, Evalua-

tion, and Optimization of Parallel and Distributed Systems

(PMEO-PDS 05), Denver, CO, April 2005.
[18] R. Rabenseifner. Automatic MPI Counter Profiling. In 42nd

CUG Conference, 2000.
[19] C. Siebert. Efficient Broadcast for Multicast-Capable Inter-

connection Networks. Master’s thesis, Chemnitz University

of Technology, 2006.
[20] J. M. Squyres and A. Lumsdaine. The Component Archi-

tecture of Open MPI: Enabling Third-Party Collective Al-

gorithms. In Proceedings, 18th ACM International Confer-

ence on Supercomputing, Workshop on Component Models

and Systems for Grid Applications, St. Malo, France, 2004.
[21] The InfiniBand Trade Association. Infiniband Architecture

Specification Volume 1, Release 1.2, 2004.
[22] TOP500 List. http://www.top500.org/, November 2006.
[23] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable

Multicast on Myrinet. In Proceedings of the 1996 Interna-

tional Conference on Parallel Processing, pages 156–165,

Washington, DC, USA.
[24] W. Yu, D. Buntinas, and D. K. Panda. High Performance and

Reliable NIC-Based Multicast over Myrinet/GM-2, 2003.
[25] W. Yu, S. Sur, and D. K. Panda. High Performance

Broadcast Support in La-Mpi Over Quadrics. Interna-

tional Journal of High Performance Computing Applica-

tions, 19(4):453–463, 2005.
[26] X. Yuan, S. Daniels, A. Faraj, and A. Karwande. Group

Management Schemes for Implementing MPI Collective

Communication over IP-Multicast, 2002.

8

