
Accelerating Data Serialization/Deserialization
Protocols with In-Network Compute

Shiyi Cao
Department of Computer Science

ETH Zurich
Switzerland

shicao@student.ethz.ch

Salvatore Di Girolamo
Department of Computer Science

ETH Zurich
Switzerland

salvatore.digirolamo@inf.ethz.ch

Torsten Hoefler
Department of Computer Science

ETH Zurich
Switzerland

htor@inf.ethz.ch

Abstract—Efficient data communication is a major goal for
scalable and cost-effective use of datacenter and HPC system
resources. To let applications communicate efficiently, exchanged
data must be serialized at the source and deserialized at the
destination. The serialization/deserialization process enables ex-
changing data in a language- and machine-independent format.
However, serialization/deserialization overheads can negatively
impact application performance. For example, a server within a
microservice framework must deserialize all incoming requests
before invoking the respective microservices. We show how data
deserialization can be offloaded to fully programmable Smart-
NICs and performed on the data path, on a per-packet basis. This
solution avoids intermediate memory copies, enabling on-the-fly
deserialization. We showcase our approach by offloading Google
Protocol Buffers, a widely used framework to serialize/deserialize
data. Our evaluation demonstrates that, by offloading data
deserialization to the NIC, we can achieve up to 4.8x higher
throughput than a single AMD Ryzen 7 CPU. We then show
through microservice throughput modeling how we can improve
the overall throughput by pipelining the deserialization and
actual application activities with PsPIN.

Index Terms—SmartNICs, sPIN, deserialization, offload, RPC,
microservices

I. INTRODUCTION

Data exchange between different applications or between
different processes of the same application is a fundamental
activity in any data center and HPC system. Different applica-
tions or processes can store data into different layouts that
depend on the application itself (e.g., class definition), the
language (e.g., row-major vs column-major), and the archi-
tecture (e.g., little vs big endianness). Data serialization/dese-
rialization (SerDes) protocols abstract these details, allowing
applications to easily exchange data in an architecture- and
language-independent manner.

These protocols are becoming a central part of the software
stack in data center and HPC systems. For example, the emerg-
ing microservice paradigm, where services are decomposed
into multiple fine-grain tasks (i.e., microservices), heavily
relies on remote procedure calls (RPC). RPC requests are
sent by heterogeneous clients over the Internet or from other
actors within the microservice framework. These requests are
encoded at the source and decoded at the target microservice,
to which they are dispatched, by using SerDes protocols.

Persistent data storage is another SerDes use case. Space-
efficient schemes for long-term data storage, e.g., Apache
Parquet [1], require serializing the data in a specific format
before storing it. Data is then deserialized whenever it is
retrieved from the storage.

However, SerDes activities come at a cost, the time over-
head required to serialize and deserialize data. The continued
advancement of interconnects (e.g., 400 Gbit/s networks are
available on the market [2]) exacerbates these overheads,
which exposes software bottlenecks that were before hidden
behind network overheads. It has been shown that the SerDes
overheads can be up to 50% of microservice runtime [3] and
up to 5% of the total datacenter tax [4].

To accelerate SerDes activities, different hardware accel-
erators have been proposed [5]–[7]. They can be either co-
processor of the main host CPU [5] or deployed directly
on the data path [3] and encode specific SerDes protocols,
such as Google Protocol Buffer (protobuf) [8] and Apache
Thrift [9], in hardware. However, these approaches are not
flexible and require additional hardware deployment iterations
for extending protocols or implementing new ones.

In this work, we investigate how in-network compute can
accelerate SerDes activities by processing data on a per-packet
basis. Our approach targets fully-programmable SmartNICs,
where applications can express processing tasks to be executed
on the data-path. In particular, we focus on data deserializa-
tion as this activity can easily become a bottleneck on the
server side (e.g., deserializing RPC requests in a microservice
framework) and hinder non-overlappable read operations (e.g.,
deserializing data read from the storage). Our solution, not
only frees CPU resources by delegating data deserialization
to the NIC, but also accelerates it by exploiting the multiple
processing elements on the NIC and avoiding intermediate
memory copies.

Overall, our contributions are the following:
• We demonstrate how data deserialization can be offloaded

to fully-programmable SmartNICs, addressing the chal-
lenge of transferring and manipulating complex pointer-
based data structures between different memory spaces.

• We show how this approach can free up CPU cycles by
pipelining the deserialization and the execution of the
main application activities (e.g., microservices).

1

2
Memory

CPUs Accel

NIC
2

3

(a)

1

2
Memory

CPUs Accel

NIC
3

2

4

(b)

1

2
Memory

CPUs Accel

SmarNIC
3

2

(c)

Fig. 1. Data deserialization strategies. (a) NIC writes serialized data into main memory and the host CPU performs the deserialization; (b) NIC writes
serialized data into main memory and the host CPU instructs an hardware accelerator to perform the deserialization; (c) data deserialization is performed
on-the-fly, as data flows in from the network and written directly to the right memory locations.

• We identify and discuss SmartNIC specialties that are
needed to optimize SerDes activities.

As our approach is fully expressed in software, it can be
easily extended to support new protocol versions or variations.
While we focus our analysis on protobuf, we envision how the
outlined approach can be used as a blueprint to offload and
accelerate other SerDes protocols.

II. SERDES AND IN-NETWORK COMPUTE

By abstracting language- and machine-dependent details
away, SerDes protocols ease data exchange between different
environments and architectures. While there exist a large
number of SerDes protocols [8]–[12], in this work we focus on
Google Protocol Buffers because of their widespread usage in
datacenters [4] and HPC systems. Moreover, we focus on the
deserialization task as this can easily become a communication
bottleneck in, e.g., incast-like scenarios, where a server node
needs to deserialize requests issued by its clients.

Fig 1 sketches an overview of possible data deserialization
strategies: classical CPU-based ones, strategies deploying spe-
cialized hardware accelerators, and the one presented in this
work, where data is deserialized on the NIC.

Fig 1(a) shows the case of CPU-based deserialization. Seri-
alized requests are received by the NIC 1 , and written to host
memory 2 , either passing packets to the operating system
network stack or using remote direct memory access (RDMA).
The host CPU will read the serialized data, deserialize it, and
write the result to the main memory 3 .

Fig 1(b) shows the case where deserialization is offloaded to
specialized co-processor of the host CPU. Incoming data 1
is written to the host memory 2 . After that, the host CPU
instructs a specialized hardware accelerator to perform the
deserialization 3 . In this case, the hardware accelerator reads
data from the host memory, deserializes it, and writes the result
back 4 .

Finally, Fig. 1(c) shows our approach. Incoming data 1 is
processed directly on the NIC, where the data deserialization
process is executed 2 . The deserialized data is written
directly to host memory 3 , without intermediate copies or
host CPU intervention.

A. Google Protocol Buffers

In Protocol Buffers, messages are described by message de-
scriptors. These descriptors, which define the message layout,

identify the fields composing a message, together with their
type and cardinality. A message is an instance of a message
descriptor. A message descriptor can mark a field as repeated
and embed other message descriptors.

A message descriptor does not fully define a message but
allows one to deserialize it. For example, while a field can
be marked as repeated, the actual number of repetitions is
not specified and is directly encoded in the data stream.
This makes Protocol Buffers different from MPI Derived
Datatypes [13], where a datatype fully specifies a message.

Listing 1 shows an example of message descriptors. The
message descriptor Student defines a message carrying
student information, such as the name, the id, and one or more
advisors (embedded message). Each field is identified by an
optional field rule (i.e., repeated, required, or optional), a type
(i.e., wire_type), a name, and a field number.

message Student {
uint64_t id = 1;
string name = 2;
repeated Advisor advisors = 3;

}

message Advisor {
uint64_t id = 1;
string name = 2;

}

Listing 1. Protobuf Message Definition

During serialization, messages are encoded into a byte
stream, with each field consisting of a key/value pair. The key
encodes field number and type (i.e., key = field_number
≪ 3 | wire_type). Fig. 2 shows an example of a variable-
length integer type (varint) and a length-delimited one (e.g., a
string). The field type determines the format of the following
bytes. For example, length-delimited fields encode the length
immediately after the key.

08 93 8D 84 AD 05

00001 000

id: 1, wire_type: 0 (varint)

value

0000 0101

key

1001 0011

12 64 61 62 6C

00100 010

id: 2, wire_type: 2 (length-delimited)

valuekey

05
len

61 ...

Fig. 2. An Example Encoded Data Stream.

1) Varint encoding: Variable-length integers are not only
used for encoding integer values but also the field metadata
(e.g., field numbers, length of length-delimited fields). Varints
cannot be directly used as integers but need to be deserialized.
The most significant bit of each field of a varint indicates
whether it is the last byte of the integer or not. The remaining
bits are part of the actual value of the integer. Therefore, to
decode an varint, we need to check for every byte whether
this is the last byte and do bit-wise operations to calculate the
original integer value. Listing 2 shows the pseudo-code for
decoding a uint32_t. Such chain-style encoding/decoding
results in data-dependent branch per byte that can limit the
transformation throughput [7].

unsigned max_rv = len > 5 ? 5 : len;
for (rv = 1; rv < max_rv; rv++) {

if (data[rv] & 0x80) {
tag |= (data[rv] & 0x7f) << shift;
shift += 7;

} else {
tag |= data[rv] << shift;
*tag_out = tag;
return rv + 1;

}
}

Listing 2. Pseudo-code for Varint Decoding

2) Sequential processing: Decoding protobuf data is a
sequential process. In fact, as fields metadata and data are
encoded together, it is not possible to know the starting
position of the next field without processing the current one
(e.g., scanning all bytes of a varint or decoding the length of
a length-delimited one), making parallelization challenging.

B. Network acceleration

Our goal is to investigate the benefits of offloading data de-
serialization to the NIC. By offloading this task, we expect to
alleviate CPU load, which can be re-invested in running, e.g.,
microservices functional code, and to eliminate intermediate
memory copies, which can improve system performance due
to reduced congestion.

To make deserialization-offloading effective, our solution
should: be available to user-level applications; and be flexible
in terms of expressing the offloaded tasks.
User-level. User-level applications should be able to offload
tasks without requiring elevated privileges. For example, a
user-level application should be able to define tasks to be
offloaded to the network without violating isolation principles
(e.g., getting access to network data targeting other applica-
tions or users). This requirement also enables applications to
express different SerDes protocols, without the need to stick
to a limited set of them for which, e.g., system administrators
made offloading-support available. This requirement is not
satisfied by in-network compute solutions like DPDK [14] and
Portals 4 [15]), where tasks are defined at the system-level and
not at an application-level.
Flexibility and High Programmability. Algorithms for dese-
rializing data can be complex and they are dependent on the

specific SerDes protocol. In-network compute solutions like
eBPF/XDP [16] and Portals 4 [15] impose constraints on the
code describing the offloaded task (e.g., bounded loops) or
allow the offloading of specific operations, making them not
flexible.

An in-network compute solution that satisfies these require-
ments is sPIN (streaming Processing in the network) [17].
With sPIN, user-level applications can express per-packet tasks
to be offloaded to the NIC. These tasks can be expressed
in C/C++ or any other languages that the specific sPIN
implementation has compiler support for. We now provide a
brief overview of sPIN.

1) sPIN: streaming Processing In the Network: In sPIN,
applications define packet handlers to be executed on the
NIC. These handlers are associated with classes messages
and are triggered and executed as packets arrive from the
network. An application defines an execution context that
includes information such as: pointers to the packet handler
functions in NIC memory; NIC memory previously allocated
by the application and used by the handler to share state). This
execution context is then associated with a message (e.g., an
MPI message or a Portals 4 [15] match list entry) or packet
flow (e.g., socket). The NIC is in charge of matching packets
to execution contexts, and then triggering the respective packet
handlers.

In this paper, we use PsPIN [18], an implementation of
sPIN based on the PULP framework [19]. PsPIN provides 32
RISC-V cores (32 bit, in-order) where sPIN packet handlers
are scheduled and executed. The PsPIN architecture is modular
and composed by four computing clusters (each with 8 cores).
Each cluster is equipped with a 1 MiB fast scratchpad memory
(L1). An off-cluster memory, which is slower (i.e., 20 ns
average access latency) but bigger (4 MiB), is available.

III. NETWORK ACCELERATED SERDES

A. Overview

sc
he

du
le

r

In
te

rc
on

ne
ct

Data Deserialization

...

L2 Handler Mem

L2 Program Mem

L2 Packets Buffer

DMA Engine

RPC
Request

Host CPUs
HPUs Msg

Descriptors

Decoded RPC
Request

desc offsets flattened descmem info ...

Host
Memory

Fig. 3. Overview of Offloading Data Deserialization to sPIN.

To enable efficient distributed communication frameworks,
we want to offload data deserialization to sPIN. Data
(de)serialization frameworks such as Protobuf are not self-
describing, which means to decode a message we will also
need the corresponding message and field descriptors. The
NIC driver will first flatten the needed Protobuf Message

Descriptors for supported RPC methods and write them to the
NIC’s L2 Handler Memory with an array indicating the offset
of each descriptor. Packets are then received and deserialized
by the HPUs in the NIC using the descriptor indicated by the
RPC method type. The decoded contents of the message will
then be written directly to the host memory through the DMA
engine. Fig. 3 illustrates an overview of the workflow.

B. Offloading Message Descriptors

The first thing for the handler to deserialize the coming
messages is that it should have the corresponding Protobuf
Message Descriptors for the messages it wants to decode.
Typically the Protobuf Message Descriptors contains pointers
to the Protobuf Field Descriptors which may point to other
Protobuf Message Descriptors for embedded messages, result-
ing in hierarchical referencing structures, as shown in Listing 3
and Listing. 4. Therefore, to use these descriptors correctly in
the NIC, we need to flatten these descriptors recursively and
change all the pointers to point to the NIC’s memory address.

struct ProtobufCMessageDescriptor {
uint32_t magic;
const char *name;
const char *short_name;
const char *c_name;
const char *package_name;
uint32_t sizeof_message;
unsigned n_fields;
/* Field descriptors sorted by tag number.
*/

const ProtobufCFieldDescriptor *fields;
/* Used for looking up fields by name. */
const unsigned *fields_sorted_by_name;
/* Number of elements in ‘field_ranges‘. */
unsigned n_field_ranges;
/* Used for looking up fields by id. */
const ProtobufCIntRange *field_ranges;
...

}__attribute__((packed));

Listing 3. Protobuf Message Descriptors

struct ProtobufCFieldDescriptor {
const char *name;
uint32_t id;
ProtobufCLabel label;
ProtobufCType type;
unsigned quantifier_offset;
unsigned offset;
/* for MESSAGE and ENUM types */
const void *descriptor;
...

}__attribute__((packed));

Listing 4. Protobuf Field Descriptors

Fig. 4 demonstrates the simplified buffer layout after depth-
first recursive flattening of the hierarchical referencing descrip-
tor structures in the driver. Note that after flattening, all the
pointers are now referencing the NIC’s memory space. Then
the driver can write the flattened descriptors to the NIC’s L2
handler memory with the corresponding message type offset.

mdesc1 fdesc1 fdesc2 mdesc2Host Mem

Driver Buffer mdesc1 fdesc1 fdesc2

mdesc3

mdesc3 mdesc2

NIC Mem mdesc1 fdesc1 fdesc2mdesc3 mdesc2

Fig. 4. Descriptors Flattening.

C. Message Handling Workflow

Profiling results from previous paper [5], [20], [21] show
that most of the RPC messages are 512 bytes or less, which
makes the per-packet processing nature of sPIN even more
beneficial as now we can always process many messages
in parallel on the NIC. Below we use RPC requests for
all the examples as they are representative workloads. Here
we assume the RPC message packet format as shown in
Fig. 5. Now when an RPC message arrives, the handler will
start deserializing the encoded payload using the message
descriptors indicated by the RPC type of the message.

To decode, we follow the original protobuf decoding logic
while replacing the memory allocation part for storing some
of the decoded data (e.g., strings) by allocating some memory
on the pinned host memory and writing the decoded data
directly to the host. On the NIC, we only store the pointers
referencing these data on the host memory (i.e., the top-level
ProtobufCMessage structures). These top-level ProtobufCMes-
sage structures will be written to the host memory after all its
fields’ data have been decoded. The high-level idea is shown in
Listing 5. The detailed decoding process and related memory
management on the NIC and host are illustrated in Sec. IV.

Network
Headers RPC Type Payload Size Encoded Payload

Fig. 5. RPC message packet format.

__handler__ void protobuf_ph(handler_args_t *
args){
/* Get the packet and descriptor info

...
*/
ProtobufCMessage* msg = (ProtobufCMessage*)
(task->scratchpad[args->cluster_id] +

MEM_RESERVED + args->hpu_id*MEM_PER_HPU);
ScannedMember sm;
protobuf_c_message_unpack_all(gdesc, msg,
len, pkt_pld_ptr, &sm);

uint32_t host_low_addr = do_alloc_host_amo(
gdesc->sizeof_message);
uint64_t host_address = HOST_HIGH;
host_address = (host_address << 32) | (
host_low_addr);

spin_cmd_t dma;
spin_dma_to_host(host_address, (uint32_t)
msg, gdesc->sizeof_message, 1, &dma);

spin_dma_wait(dma);
}

Listing 5. Pseudo-code for the payload handler.

D. Large Size Request

As profiled in many previous works, most of the messages
for microservices are within 2KB [5], [20], [21], thus can
be fit into one single packet. At the same time, these small
messages always come in large numbers, polluting the cache
and distracting the host CPUs from handling the core appli-
cation logic, which will significantly impair microservices’
overall serving ability. These large numbers of single packets,
however, can be efficiently processed with sPIN in parallel
without the involvement of the host CPU. Therefore, we
mostly focus on processing small messages on the NIC. For
large size requests that cannot be fit into one single packet, we
dispatch them directly to the host, since these large requests
are quite rare, as profiled in previous works.

E. Functional Offloading

Since the entire offloading workload is just about writing a
handler in sPIN, for certain stateless services that have simple
processing logic, they can be directly processed in the NIC
with easy implementation (e.g., authentication), without the
need to write the packets to the host, which further eases the
CPU for more performance-critical tasks.

IV. DECODING STRATEGIES ON THE NIC

A. Host Memory Management

The host allocates a buffer in host memory and transfers its
ownership to the NIC. This pinned memory region is further
split into disjoint regions that are assigned to each cluster. We
have at the very beginning of each cluster’s L1 scratchpad
memory some bookkeeping information for managing its own
partition of the pinned memory. Whenever an RPC request is
decoded in the NIC and written to the host memory, the NIC
will generate an event to notify the host by writing the address
of the request to a waiting queue.

B. NIC Memory Management

On the NIC, each cluster has its own L1 scratchpad memory.
We reserve some regions at the beginning of each cluster’s
scratchpad memory to cache the message descriptors. Then
we further assign each HPU in the cluster a disjoint partition
of the remaining scratchpad memory. Each HPU utilizes its
own part of the L1 scratchpad memory as a stack.

C. Deserialization Methodology

The overall deserialization logic is similar to the original
Protobuf. Typically, the most challenging thing for offloading
deserialization to accelerators that do not share the same
memory space with the host is rewriting the pointers to
reference host memory space [3]. For this reason, most of
the current works try to avoid this challenge either by using
on-chip NICs [3] or putting accelerators near core [5], [22].
Instead, our approach directly addresses it, thanks to the

fully-programmability of sPIN. In general, we replace the
typical malloc and memcpy logic with alloc_host and
dma_to_host in the deserialization logic. We will show
with some examples how we decode messages on the NIC.

1) String Field: For example, to decode a field of string
type as shown in Fig. 6, we first decode the field length
varint, and allocate some memory on the pinned host memory
according to the decoded length. Then we can use the DMA
engine to write the string data directly from the L1 Packet
Memory to the host memory 1 , and the pointer f_ptr is
then naturally referencing the host memory without the need
for rewriting. Finally, we write the top-level message M to the
host 2 .

message M {
 string f = 1;
}

NIC
memory

f_ptr
(char*)

Packet
payload

H

H f
(string)L

Host
memory

f
(string)

1
f_ptr

(char*)H

2

.proto

H

L

H

Field Header

Field Length (varint)

Message Header

DMA to Host

Fig. 6. Deserialization for Length-delimited field on one HPU.

2) Embedded Fields: There are also complex nested mes-
sages (e.g., messages with embedded and repeated fields) that
need to store some intermediate data structures on the NIC
before all of its child messages are decoded and sent to the
host. Below, we give some examples of decoding these nested
messages to show how we can properly deal with them. For the
following examples, we use the message definitions as shown
in Fig. 7(b).

As shown in Fig. 7(a), to decode an embedded message we
just need to call the decoding function recursively. We regard
our L1 scratchpad memory as a kind of “stack”. To decode
M3, we first decode field m1’s header and length (remember
that they are varint), and then we can know that m1 is an
embedded field of type M2. The decoding of the inner M2
(1 , 2) is similar to what we did in the previous example,
and the host address to which the sub-message M2 is written
is stored in m_ptr of M3. After all the fields of M3 are
decoded, we write M3 to the host 3 .

3) Repeated Fields: In Fig. 7(c), we have a much more
complex message which has repeated fields of type M2. To
start, we first decode the uint64_t field and keep the value
in the corresponding field 1 . We go on scanning the packet
payload and record how many times M2 is repeated (i.e.,
the quantifier for repeated fields). Knowing the quantifier of
the repeated field is 2 2 . In 3 we allocate an array of
2 M2* accordingly, and record start address of the array in
m2_vec_ptr. For the decoding of the first M2, we follow
similar procedure described in the embedded message case:
decode M2 4 , allocate host memory (hostaddr1), write
M2 to the host’s hostaddr1 5 , and set m2_ptr[0] to

NIC
memory

m2_ptr
(M2*)

Packet
payload

M3

M2

H

H H f2
(string)L L

Host
memory

H f2_ptr
(char*)

f2
(string)

1
H f2_ptr

(char*)

2
m2_ptr

(M2*)H

3

M3 M2

(a) Embedded Field

message M1 {
 uint64_t f1 = 1;
 repeated M2 m2 = 2;
}

message M2 {
 string f2 = 1;
}

message M3 {
 M2 m2 = 1;
}

.proto

(b) Proto Definition

Host
memory

NIC
memory

H f1
(varint) H H f2

(string)

f1
(uint64_t)

Packet
payload L

M1

M2

L H f2
(string)L

M2

H 2 m2_ptr[0]
 (M2*)

m2_vec_ptr
(M2**) H f2_ptr

(char*)

6

H f2_ptr
(char*)

f2
(string)

m2_ptr[1]
 (M2*)

5

Host
memory

NIC
memory

H f1
(varint) H H f2

(string)

f1
(uint64_t)

Packet
payload L

M2

L H f2
(string)L

M2

H 2 m2_ptr[0]
 (M2*)

m2_vec_ptr
(M2**)

hostaddr2

m2_ptr[1]
 (M2*)

m2_ptr[0]
 (M2*)

m2_ptr[1]
 (M2*)

78
f1

(uint64_t)H 2 m2_vec_ptr
(M2**)

9

M1

H L

H L

4

hostaddr1

1

3

2

H H

M1

(c) Repeated Field

Fig. 7. Deserialization for complex messages on one HPU.

be hostaddr1 6 . We then just repeat these procedures
for other M2s. At last, after all the fields are decoded, we
first allocate host memory (hostaddr2) for the array of
M2*, write them to the host 7 , and reset m2_vec_ptr
with hostaddr2 8 . In the final step, we write the Pro-
tobufCMessage structure for M1 to the host 9 .

For general message decoding, we only need to repeat or
recursively perform the fore-mentioned procedures.

V. EVALUATION

We evaluated our approach using two sets of experiments:
1) Per-field deserialization throughput test. 2) Microservices
benchmarks. For our approach, all the tests are performed
on sPIN through cycle-accurate simulations with the PsPIN
toolchain. PsPIN handlers are compiled with a PULP-custom
version of GCC 7.1.1 (riscv32, -O3 -flto). For the per-
field deserialization throughput test, we compare against a
state-of-the-art near-core specialized hardware accelerator for
protobufs, implemented in RTL and integrated into a RISC-

V SoC. In the microservices benchmarking test, we compare
our approach with decoding directly on AMD Ryzen 7 5700G
CPUs (256KiB L1d and L1i cache, 4MiB L2 cache, and
16MiB L3 cache).

A. Per-field Deserialization Throughput

1) Workload: For each field-bytes pair, we inject into the
network 256 messages of size “bytes” containing only the
tested type of field.

2) Results: Fig. 8 shows the overall processing throughput
of the per-field packet where each packet also includes 36B
header information. Therefore, to get the real deserialization
throughput related to the protobuf data, we do a recalculation:
Throughputreal = Throughput × ProtoDataSize

PacketSize . Fig. 9
shows the recalculated per-field deserialization throughput of
PsPIN compared with ProtoACC [5]. Note that for ProtoACC,
the data to be processed are already in the host memory,
therefore the cost of moving data from the network stack
to the host memory is not included. Still, PsPIN shows a
higher per-field deserialization throughput thanks to the highly
parallelized processing.

Fig. 8. Packet Processing Throughput Per Field.

Fig. 9. Message Deserialization Throughput Per Field.

We can see from the simple type per-field results that
the increase field size can result in higher deserialization
throughput, which may due to better amortization on some
fixed overhead per field (e.g., the overhead of processing the
key).

B. Microservices Benchmarks

1) Evaluated Microservices: Similar as done in previous
works [3], [7], we extract 5 most representative RPC requests
from the DeathStartBench [23], composing three typical ser-
vices in today’s various kinds of microservices:

• User Service. This service contains 2 RPC methods:
RegisterUser and Login. Methods in this class
of service are composed of basic-type fields: integers
and strings, and do not contain embedded and repeated

TABLE I
STATISTICS FOR REQUESTS

Type Instructions Loads Stores Branches L2 Accesses L1 Accesses Avg. Msg. Size (B)

StorePost 3962 788 671 671 11 1279 427
ComposePost 1409 272 220 264 4 421 252

ComposeMedia 1615 315 248 295 5 497 76
RegisterUser 1008 182 167 196 1 281 103

Login 712 128 103 146 1 189 74

fields. However, as these requests normally do not carry
long strings, they have relatively higher deserialization
overhead per byte.

• Media Service. This service contains 1 RPC method:
ComposeMedia. Method in this class of service has
a deeper nested structure (i.e. depth ≥ 2) and some
repeated fields, which will further increase the deseri-
alization overhead per byte.

• Post Service. This service also contains 2 RPC methods:
ComposePost and StorePost. Methods in this class
of service have the deepest nested structures (i.e. depth ≥
3) and many repeated fields used to represent the “Post”
contents. However, on the other hand, these messages
normally contain many long strings as “Post Text” that
can better amortize the deserialization cost, resulting in
lower per-byte overhead and higher throughput.

These five RPC requests vary in several aspects that can
significantly influence the deserialization throughput:

• Number and composition of fields.
• Depth of the nested message.
• Whether containing long strings/bytes.

RPC requests in other microservices provided by DeathStart-
Bench are similar to the requests we have extracted.

2) Workload Generation: For experiments, we have three
modes: 1) single request, 2) single services, and 3) mixed
services. In single services mode, for each service, the requests
it contains will occur with the same probability. In mixed
service mode, all the requests will occur with the same
probability. Tab. I demonstrates the average instruction-related
statistics for each request in the single request mode generated
on the NIC.

Fig. 10. Throughput for single/mixed services.

3) Deserialization throughput: Fig. 10 shows the through-
put achieved by PsPIN and the CPU for deserializing requests
belonging to different services. Fig. 11 shows the throughput
for each request type involved in the considered services.

Fig. 11. Throughput for single request.

The CPU case models an ideal CPU-based deserialization
scenario, where all requests are available in host memory and
no contention or other overheads are experienced. Each service
can generate different types of requests. For each service,
we report: the PsPIN throughput (PsPIN); the throughput
of PsPIN without considering packet header overheads (i.e.,
goodput), labeled as PsPIN-G; the single-core CPU throughput
(CPU); and an extrapolation of the CPU performance when
8 cores are used for deserialization, labeled as CPU-8Core.
PsPIN-based deserialization is consistently faster than the
single-core CPU-based one (i.e., representing the case where
requests are deserialized on one core before being dispatched
to other worker threads): on average, PsPIN can achieve 4.3x
and 4.8x higher throughput than a single CPU in request
mode and service mode respectively. If we consider multi-
core deserialization, then we see how the CPU outperforms
PsPIN. While this is expected due to the compute-intensive
nature of deserialization, it is worth noting that the CPU-based
results represent a speed-of-light scenario, where all cores are
dedicated to data deserialization and none to the execution of
the actual microservices.

4) Microservice throughput estimation: To gain a better
understanding of the impact of deserialization offloading to
the NIC, we show in Fig. 12 an analysis of the overall
throughput (y-axis) as a function of the microservice time
(x-axis). As in Sec. V-B3, dedicating an 8-core CPU to the
deserialization process results in better overall throughput than
PsPIN. However, as the microservice running time increases,
the deserialization overhead impacts the microservice through-
put: i.e., deserialization and microservice are serially executed.
Instead, with PsPIN these two activities are pipelined, resulting
in better performance (i.e., the CPU can dedicate more cycles
to the microservice execution). Finally, as the microservice
time increases, the microservice execution itself becomes a
bottleneck, causing the performance convergence of the two
approaches.

Fig. 12. Throughput modeling regarding microservice time.

VI. RELATED WORK

Most of the existing works co-design the software and
hardware to accelerate the SerDes, either near-core or attached
to the NIC. Cereal [22] is a specialized hardware accelerator
for SerDes fo Java objects, which co-designs the serialization
format with hardware architecture. Optimus Prime [7] presents
an SerDes accelerator that can exploit the field-level paral-
lelism for deserialization, which requires the application to
construct and pass to the accelerator a per-message schema,
holding the type and address of each field. Such method
not only introduces additional memory/compute overhead for
the applications but also needs to change all Protobuf setters
and clear methods. ProtoACC [5] proposed a novel near-core
specialized hardware accelerator for Protobuf. Zerializer [24]
proposes (but does not implement) a hardware design for
accelerating SerDes. Cerebros [3] and Dagger [20], offload
the entire RPC stack to NIC-attached specialized hardware and
near-core NIC respectively. However, Dagger cannot support
deserializing complex messages that contain references to
other objects. In general, accelerators such as Cerebros and
Dagger are even more specialized and require laborious hard-
ware/software co-design. Other works such as [25] build new
SerDes libraries leveraging NIC’s scatter-gather capabilities
instead of offloading existing popular SerDes protocols.

Notably, our proposed method is purely on the software
level and is thus with much higher flexibility. Moreover,
the methodology adopted in our deserialization process well
addresses the challenge of transferring and manipulating com-
plex pointer-based data structures between different memory
spaces and can be applied to other similar tasks.

VII. CONCLUSION

We propose in this work a purely software-level data SerDes
acceleration approach with in-network compute. Targeting
general-purpose fully-programmable SmartNICs, our approach
in general deals with the problem of transferring and manipu-
lating complex pointer-based data structures between different
memory spaces, which has been a major challenge of offload-
ing SerDes to the NIC [3]. We discuss and identify SmartNIC

specialties that are needed to offload SerDes operations. We
then show through microservices benchmark experiments that
our approach can achieve on average 4.3x and 4.8x higher
throughput than a single AMD Ryzen 7 CPU in request and
service mode respectively. We finally perform microservice
throughput modeling to demonstrate how we can improve
the overall throughput by pipelining the deserialization and
actual application activities with PsPIN. We believe it is both
beneficial and flexible to offload data SerDes to SmartNICs.

ACKNOWLEDGMENT

This work has been partially funded by the European
Projects RED-SEA (grant no. 955776).

REFERENCES

[1] D. Vohra, “Apache parquet,” in Practical Hadoop Ecosystem. Springer,
2016, pp. 325–335.

[2] I. Burstein, “Nvidia data center processing unit (dpu) architecture,” in
2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–20.

[3] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros:
Evading the rpc tax in datacenters,” in IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2021, p. 407–420.

[4] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley,
G. Wei, and D. M. Brooks, “Profiling a warehouse-scale computer,” in
International Symposium on Computer Architecture (ISCA), 2015, pp.
158–169.

[5] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,
K. Asanovic, and P. Ranganathan, “A hardware accelerator for protocol
buffers,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021, pp. 462–478.

[6] J. Jang, S. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee, “A
specialized architecture for object serialization with applications to big
data analytics,” in International Symposium on Computer Architecture
(ISCA), 2020, pp. 322–334.

[7] A. P. Zarandi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.
Drumond, B. Falsafi, and C. Koch, “Optimus prime: Accelerating data
transformation in servers,” in ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020, pp. 1203–1216.

[8] K. Varda, “Google protocol buffers: Google’s data interchange format,”
Technical report, Tech. Rep., 2008.

[9] W. Abernethy, Programmer’s Guide to Apache Thrift. Simon and
Schuster, 2019.

[10] Apache Software Foundation, “Apache avro,” https://avro.apache.org/,
2012.

[11] W. van Oortmerssen, “Flatbuffers: a memory efficient serialization li-
brary,” https://opensource.googleblog.com/2014/06/flatbuffers-memory-
efficient.html, 2014.

[12] K. Varda, “Cap’nproto,” https://capnproto.org/, 2020.
[13] S. D. Girolamo, K. Taranov, A. Kurth, M. Schaffner, T. Schneider,

J. Beránek, M. Besta, L. Benini, D. Roweth, and T. Hoefler, “Network-
accelerated non-contiguous memory transfers,” in International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC). ACM, 2019, pp. 56:1–56:14.

[14] R. Rajesh, K. B. Ramia, and M. Kulkarni, “Integration of lwip stack over
intel(r) DPDK for high throughput packet delivery to applications,” in
International Symposium on Electronic System Design. IEEE Computer
Society, 2014, pp. 130–134.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[16] J. Kicinski and N. Viljoen, “Hardware offload to smartnics : cls bpf and
xdp,” 2016.

[17] T. Hoefler, S. D. Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“spin: high-performance streaming processing in the network,” in In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2017, pp. 59:1–59:16.

[18] S. D. Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider, J. Beránek,
L. Benini, and T. Hoefler, “A RISC-V in-network accelerator for flex-
ible high-performance low-power packet processing,” in International
Symposium on Computer Architecture (ISCA), 2021, pp. 958–971.

[19] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “PULP: A
parallel ultra low power platform for next generation iot applications,”
in IEEE Hot Chips 27 Symposium (HCS), 2015, pp. 1–39.

[20] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
efficient and fast rpcs in cloud microservices with near-memory reconfig-
urable nics,” in ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2021,
pp. 36–51.

[21] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding acceler-
ation opportunities for data center overheads at hyperscale,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020, pp. 733–750.

[22] J. Jang, S. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee, “A
specialized architecture for object serialization with applications to big
data analytics,” in International Symposium on Computer Architecture
(ISCA). IEEE, 2020, pp. 322–334.

[23] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2019, pp. 3–18.

[24] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé,
“Zerializer: towards zero-copy serialization,” in Workshop on Hot Topics
in Operating Systems (HotOS). ACM, 2021, pp. 206–212.

[25] D. Raghavan, P. A. Levis, M. Zaharia, and I. Zhang, “Breakfast of
champions: towards zero-copy serialization with NIC scatter-gather,” in
Workshop on Hot Topics in Operating Systems (HotOS), 2021, pp. 199–
205.

