
FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an
Example

Marcin Copik
ETH Zürich

Alexandru Calotoiu
ETH Zürich

Konstantin Taranov
Microsoft

Torsten Hoefler
ETH Zürich

Abstract
FaaS (Function-as-a-Service) brought a fundamental shift
into cloud computing: (persistent) virtual machines have been
replaced with dynamically allocated resources, trading local-
ity and statefulness for a pay-as-you-go model more suit-
able for varying and infrequent workloads. However, adapt-
ing services to functions in the serverless paradigm while
still fulfilling functional requirements is challenging. In this
work, we demonstrate how ZooKeeper, a centralized coor-
dination service that offers a safe and wait-free consensus
mechanism, can be redesigned to benefit from serverless com-
puting. We define synchronization primitives to extend the
capabilities of scalable cloud storage and contribute a set
of requirements for efficient and scalable FaaS computing.
We introduce FaaSKeeper, the first coordination service built
on serverless functions and cloud-native services, and share
serverless design lessons based on our experiences of im-
plementing a ZooKeeper model deployable to clouds today.
FaaSKeeper provides the same consistency guarantees and
interface as ZooKeeper, with a serverless price model that
lowers costs up to 450 times on infrequent workloads.

1 Introduction

FaaS is a new paradigm that combines elastic and on-demand
resource allocation with an abstract programming model. In
FaaS, the cloud provider invokes stateless functions, freeing
the user from managing the software and hardware resources.
Flexible resource management and a pay-as-you-go billing
help with the problem of low server utilization caused by re-
source overprovisioning for the peak workload [1–3]. These
improvements come at the cost of performance and reliabil-
ity: functions are not designed for high-performance applica-
tions and require storage to support state and communication.
However, stateful applications can benefit from serverless ser-
vices [4], and even databases adapt on-demand offerings to
handle infrequent workloads more efficiently [5–7].

Apache ZooKeeper [8] is a prime example of a system
that has been widely adopted by many applications but is

ZooKeeper Cloud Storage FaaSKeeper
� Semi-automatic, ≥ 3 VMs Automatic Automatic
 Not possible. Only storage fees Only storage fees
� Pay upfront Pay-as-you-go Pay-as-you-go
è Depends on cluster size Cloud SLA Cloud SLA
M Linearized writes Strong consistency Linearized writes
Watch events None Watch events

ã
Sequential nodes, Conditional updates. Sequential nodes,
conditional updates conditional updates

q Ephemeral nodes None Ephemeral nodes

Table 1: FaaSKeeper combines the best features of cloud
storage: scale–to–zero scalability (�) and reliability (è),
with ZooKeeper’s consistency (M), push notifications (#),
and support for concurrency and fault tolerance (ãq).

not available as a serverless service. ZooKeeper provides a
coordination service for distributed applications to control the
shared state and guarantee data consistency and availability.
Compared to cloud key-value storage, ZooKeeper provides
additional semantics of total order with linearizable writes,
atomic updates, and ordered push notifications (Table 1).

Services are expected to match the temporal and geograph-
ical variability of production workloads [9–11]. Workloads
are often bursty and experience rapid changes: the maximum
system utilization can be multiple times higher than even the
99th percentile [9, 12]. However, the static ZooKeeper archi-
tecture makes the readjustment to the burst workload difficult.
Even when ZooKeeper is co-located as a part of a larger sys-
tem, it still contributes to the overprovisioning of resources
for the peak workload. Serverless applications built on top of
cloud storage could adapt to diurnal changes in workload and
handle thousands of requests daily at lower cost. A serverless
service with the same consistency guarantees would offer the
opportunity to consolidate variable workloads, helping users
and cloud operators increase efficiency. Unfortunately, the
path to serverless for such distributed applications is unclear
due to the restricted and vendor-specific nature of FaaS.

In this work, we chart the path needed to build a com-
plex serverless service — serverless ZooKeeper. We choose
ZooKeeper because it is a complex, reliable service, and

1

therefore challenges both the capabilities and the limitations
of inherently unreliable FaaS systems. First, we decouple the
system from the application state and compute from storage
tasks [13–15], and derive a design guide for the serverless
system architecture (Sec. 3). We focus on the semantics of
building components and abstract away differences in inter-
faces and services, helping design cloud-agnostic systems
that are easily portable between clouds (Sec. 4).

Finally, we introduce and evaluate FaaSKeeper, the first co-
ordination service with a serverless scaling and billing model.
In FaaSKeeper, we combine the best of two worlds: the or-
dered transactions and active notifications of ZooKeeper with
cloud storage’s elasticity and high reliability (Table 1). Stand-
ing on the shoulders of ZooKeeper, we show how consensus
can be implemented as a FaaS application, and create a proto-
type of the provider-agnostic system on AWS (Sec. 4). FaaS-
Keeper offers a pay-as-you-go cost model while upholding
consistency and ordering properties (Sec. 6).

In summary, we make the following contributions:
• Serverless design lessons on how to compose functions

with cloud services to support synchronization, mes-
sage ordering, and event-based communication.

• The first complex serverless solution that offers the
same level of service as its IaaS counterpart without
provisioned resources.

• A serverless ZooKeeper consistency model with a com-
patible interface that achieves 450 times lower costs
against the smallest ZooKeeper deployment.

2 Function-as-a-Service (FaaS)

While serverless systems differ between cloud providers, they
can be reasoned about with a simple and abstract platform
model. Storage services are necessary for FaaS to maintain
state and implement reliable computing, but they differ in per-
formance, consistency, and costs. We first provide an overview
of FaaS (Figure 1), and then introduce a set of fundamental
building blocks for the design of serverless services.

2.1 Background
Serverless functions replace persistent virtual machines with
elastic and dynamic execution of fine-grained tasks. The man-
agement of the software and hardware stack becomes the sole
responsibility of the cloud provider, and users are charged
only for the time and resources consumed during the function
execution (pay-as-you-go). In place of cloud resource man-
agement and orchestration systems, functions offer various
triggers to process internal cloud events and external REST
requests (1). A function scheduler (2) routes the invocation
to a selected server [16], and the function executes within
an isolated sandbox on a multi-tenant server (3). The cloud
scheduler aims to increase performance by reusing sandboxes,
since warm execution in an existing container is faster than
cold invocations that wait for sandbox allocation.

Function
Manager

Function Server

Instance

Cloud Services

Key-Value Store

2 3

Object Store 4

Trigger

Queue5

G
a
te

w
a
y

1010
1

Figure 1: A high-level overview of a FaaS platform.
Users adopt the FaaS computing model to improve effi-

ciency in irregular workloads. Cloud operators provide server-
less platforms [17–20], as they benefit from increased re-
source utilization when running functions on multi-tenant
and oversubscribed servers. The challenges in serverless com-
puting are high-latency warm and cold invocations, low data
locality, variable performance, and limited I/O bandwidth [21–
24]. Furthermore, stateless functions require a persistent ser-
vice for messaging in distributed applications [25, 26].

Cloud Storage. Cloud operators offer storage solutions
that differ in elasticity, costs, reliability, and performance.

Object. Object storage is designed to store large amounts of
data for a long time while providing high throughput and dura-
bility (4). The cloud operator manages replication across
multiple instances in physically and geographically sepa-
rated data centers, providing high availability and reliabil-
ity. Modern object stores offer strong consistency on read
operations [27], guaranteeing that successful writes are imme-
diately visible to other clients. The billing model is linear in
both the data amount and the number of performed operations.

Key-Value. The second type of cloud storage common in
serverless applications is a nonrelational database (5). In ad-
dition to strong consistency, read operations can be executed
with eventual consistency [28], trading consistency for lower
costs, improved latency, and higher availability. Storage can
offer optimistic concurrency with conditional updates that
apply atomic operations to existing attributes.

Other. FaaS can employ additional storage systems, but
these often introduce resource provisioning. Ephemeral stor-
age [29, 30] is designed to meet serverless requirements for
scalability and flexibility. In-memory caches bring lower la-
tency and are being adapted to serverless scalability [31, 32].

2.2 Serverless Components
We define function models and propose synchronization prim-
itives necessary for serverless services, including FaaSKeeper.
We do not limit ourselves to features currently available on
cloud platforms and propose extensions that providers could
offer, enabling more efficient and robust serverless services.

Functions We specify three distinct classes of functions
that are necessary to implement a serverless application or a
microservice and have divergent interfaces and fault-tolerance
models — their semantics express different programming
language constructs. A free function is not bound to any
cloud resource and is invoked via an API request. Free func-
tions express the semantics of remote procedure calls [33].
The event-driven programming paradigm is implemented by

2

providing event functions to react to specific changes in
cloud storage, databases, or queues. There, API requests are
replaced by sending a message to a queue that triggers the
function. Furthermore, using such a proxy allows coalescing
many invocations into a larger batch and preserving their in-
ternal ordering. We expect the batching and concurrency of
invocations to be configurable for each trigger, as batching im-
proves the throughput of serverless processing, and restricting
concurrency to a single instance is necessary to ensure FIFO
order. Semantically, we interpret these functions as remote
asynchronous callbacks to events in the system.

Functions can be launched to perform regular routines such
as garbage collection and detecting system faults. Scheduled
functions are the serverless counterpart of a cron job in Unix-
based operating systems. In the event of an unexpected failure,
the cloud should provide a retry policy with a finite number
of repetitions. Furthermore, users should be notified after
repeated failed invocations to detect system-wide failures,
even when they do not directly control such functions.

Synchronization Primitives Concurrent operations re-
quire fundamental synchronization operations to ensure safe
state modifications [34]. Serverless requires synchronization
primitives that operate on storage instead of shared memory.

A timed lock extends a regular lock with a limited hold-
ing time, similarly to leases [35]. It is a necessary feature
to prevent a system-wide deadlock caused by a failure of
an ephemeral function. Lock operations are submitted with
a user timestamp. The lock is acquired if no timestamp is
present, and when the difference between the existing and
new timestamps is greater than a predefined maximum time.
To prevent accidental overwriting after losing the lock, each
update to a locked resource compares the stored timestamp
with the user value. The lock release removes the timestamp.
An atomic counter supports single-step updates while atomic
list provides safe expansion and truncation.

3 From ZooKeeper to FaasKeeper

FaaSKeeper implements the distributed coordination of
ZooKeeper (Sec. 3.1). To build such a serverless service, we
introduce a multi-step design guideline (Sec. 3.2): we dis-
aggregate computing from storage and incorporate different
types of cloud storage. We decompose ZooKeeper into sepa-
rate cloud services, tailoring resource requirements to each
component and enabling serverless scalability (Sec. 3.3).

3.1 ZooKeeper

ZooKeeper guarantees data persistence and high read perfor-
mance by allocating replicas of the entire system on multiple
servers [8, 36, 37]. ZooKeeper ensemble consists of servers
with an elected leader whose roles are verification and process-
ing write requests with the help of the ZAB atomic broadcast
protocol [38]. In practice, the rule of 2 f +1 servers is used:
for three servers, two are required to accept change and failure

Compute
Tasks

Elastic
Scaling

Disaggregate FaaSCommunicate

Data
Storage

User Data
System

IaaS Service

Compute &
Storage

Map

𝛌Free? Event?
Scheduled?

Synchronization?
(FIFO) Queues?

𝛌 𝛌 𝛌𝛌

Figure 2: Workflow for designing a serverless service.

of one can be tolerated. While adding more servers increases
reliability, it hurts write performance.

In the static ZooKeeper configuration, changing the de-
ployment size involved rolling restarts, a manual and error-
prone process [39]. While ZooKeeper has been later enhanced
with dynamic reconfiguration [40], it still requires manual ef-
fort [39], and reconfiguration causes significant performance
degradation when deploying across geographical regions [10].

ZooKeeper splits the responsibilities between the client
library, servers, and the elected leader. User data is stored in
nodes, which create a tree structure with parents and children.
Clients send requests to a server through a session mech-
anism that guarantees the first-in-first-out (FIFO) order of
processing requests, achieved over reliable and fast TCP con-
nections. Read requests are resolved using a local data replica,
while write operations are forwarded to the leader. The leader
updates nodes, manages the voting process, and propagates
changes to other servers. ZooKeeper defines the order of
transactions with a monotonically increasing counter zxid.
While requests from a single client cannot be reordered, the
order of operations between different sessions is not specified.
ZooKeeper supports push notifications with watches. Clients
register watches on a node and receive a notification when that
node changes. Finally, clients exchange heartbeat messages
with a server to keep the session alive.

Consistency Model. ZooKeeper implements sequential
consistency guarantees with four main requirements (Z). All
operations of a single client are executed atomically (Z1),
in FIFO order, and writes are linearized (Z2). The order of
transactions is total and global. Thus, all clients have a single
system image (Z3), and they observe the same order of up-
dates. Watches ensure that clients know about a change before
observing subsequent updates since notifications are ordered
with read and write operations (Z4). Formal definitions of
each guarantee can be found in the appendix (Sec. A).

3.2 Challenges in FaaSKeeper

The main advantage of FaasKeeper is that compute tasks can
now be fully serverless, and the system does not require any re-
source provisioning. However, the design and implementation
of ZooKeeper are incompatible with the serverless paradigm
and require us to build a reliable service on top of a fundamen-
tally unreliable foundation. Therefore, we design FaasKeeper
from the ground up to replicate the complex ZooKeeper func-
tionality and overcome the inherent challenges of the server-
less worlds. We follow a general workflow for turning an

3

0.01 0.03 0.12 0.40 1.00 4.00 10.00
Monthly size of data stored [GB]

1

2

3

4

5

Co
st

 [$
]

Object storage: writes 12.5x
more expensive than reads.
Key-value storage: on large
data is 4.37x more expensive
than object storage.

One million storage operations.

101 103 105 107

Number of storage operations.

0

10

20

30

40

50
Object storage: too expensive
for frequent writes
in system storage.

1 GB of data

S3 Read S3 Write DynamoDB Read DynamoDB Write

(a) Cost of storage services for varying data size and 1 kB operations.

0 100 200 300 400 500
Size [kB]

0

100

200

300

400

Ti
m

e
[m

s]

Penalty on cross region access.

Efficient read and write
on large user data.

AWS S3

0 100 200 300 400
Size [kB]

0

100

200

300

400

Penalty on cross
region access.

Slow writes on large
user data.

AWS DynamoDB

Write Read Inter-regional Write Inter-regional Read

(b) Latency of read and write operations in AWS storage services.
Figure 3: Cost and performance of storage in the AWS
cloud. Python benchmarks executed on an EC2 instance.

IaaS system into FaaS (Fig. 2): disaggregate compute and
data map them onto cloud storage and functions, and let these
components communicate.

Disaggregate. Although ZooKeeper servers manage con-
nections and ordering, their primary responsibility is to pro-
vide low-latency data access that can be replaced with cloud
storage. In a coordination system designed for high read-to-
write ratios, data endpoints require larger allocations than
computing tasks. Furthermore, storage should distinguish
between user data and the system data needed to control
ZooKeeper: their locality and cost requirements are different.
User data locality. Cloud applications balance resource allo-
cation across geographical regions to support changing work-
loads [10, 41]. In addition, they aim to minimize the distance
between the service and its users, as the cross-region trans-
mission adds major performance and cost overheads (Fig. 3b).
While ZooKeeper requires the live migration of a virtual ma-
chine across regions [10], FaaSKeeper can serve data from
endpoints local to the user. Clients connect to the closest auto-
scaling storage in their region, minimizing access latency.

Map. Now that storage and computing tasks are decoupled,
we can map them to services that fit best their access patterns
and computational requirements.
Efficient reading of user data. ZooKeeper is optimized for
high read performance, and the size of the user-defined node
hierarchy can easily exceed a few gigabytes as each node
stores up to 1 MB of data. Thus, we must use storage with
strongly consistent, cheap, and fast read operations. The cost-
performance analysis reveals that object storage is more effi-
cient than key-value storage (Fig. 3). Storing large user data
is 4.37x cheaper, and updating nodes scales much better with
their size. Furthermore, read operations are billed per access

and per 4 kB read in object and key-value storage, respectively,
making the latter even more expensive for user nodes.
Efficient modifications of control data. The control data
includes frequently modified watches, client and node status,
and synchronized timestamps. FaaSKeeper must use atomic
operationes and locks to support concurrent updates. We use
the key-value store as object store is limited by expensive
writes (Fig. 3a) and lack of synchronization primitives.

Communicate Finally, we define the FaaSKeeper functions
that connect with both client and storage, using triggers that
scale automatically with an increasing workload.
Vertical scaling. ZooKeeper improves throughput by pipelin-
ing client requests over a single TCP connection to the server.
Requests are sent before previous operations finish, and the
implementation ensures that operations from a single ses-
sion are not reordered in the pipeline. However, serverless
functions are designed for fine–grained invocations. Thus,
FaaSKeeper employs cloud queues to batch invocations and
continuously feeds the processing pipeline.
Horizontal scaling. ZooKeeper achieves high read scalabil-
ity with more servers, but write scalability is limited by de-
sign with a single leader. Prior attempts to increase write
performance focused on partitioning the ZooKeeper data
tree [42, 43]. Instead, FaaSKeeper delegates requests from
different client sessions to concurrently operating functions.
While write requests of a single session are serialized, we
exploit the parallelism of operations from different users. To
determine global ordering and handle concurrent modifica-
tions to the same data node, FaaSKeeper uses synchronization
primitives on the storage (Sec. 2.2). Thus, the scalability of
read and write operations is bounded by storage throughput.

FaaS Service. To finalize the design of a serverless version
of an IaaS service, we need to incorporate an elastic scaling
model and ensure portability between clouds.
Elastic resource allocation. Serverless computing is centered
around the idea of elastic resource allocation, and its primary
advantage is the ability to scale the costs down to zero when
there is no incoming traffic to the system. To accommodate
the temporal and spatial irregularity of workloads [9], FaaS-
Keeper attempts to scale the resource allocation linearly with
the demand. In the case of a shutdown, the user should pay
only for keeping the data in the cloud. Therefore, we aim
to use a pay-as-you-go billing scheme for the storage and
queue services, dependent only on the number of operations
performed and not on the resources provisioned.
Cloud agnosticity. Vendor lock-in [44] is a serious limita-
tion in serverless [45, 46], and dependency on queueing and
storage services is of particular concern [47]. FaaS applica-
tions implemented in a specific cloud often include provider-
specific solutions, requiring a redesign and reevaluation of
the architecture when porting to another cloud. In a cloud-
agnostic design, we define only the requirements for each
service used and introduce new abstractions such as synchro-
nization primitives to encapsulate cloud-specific solutions.

4

We specify expectations on serverless services at the level of
semantics and guarantees. This limits our dependency to the
implementation layer and allows moving between providers
without a major system overhaul [48].

3.3 FaaSKeeper Design

Figures 4 and 5 present the system design of FaaSKeeper. In
this Section, we describe each component of FaaSKeeper by
first following the path of a write request through the system
and then discussing all additional components. Compared to
ZooKeeper, FaaSKeeper must overcome several challenges.
First, we do not have a direct ordered channel to the server,
such as a TCP connection, and we need to rely on queues
for ordering, which imposes a higher latency on the system.
The second challenge is that different storage solutions have
vastly different costs and latencies – especially if multiple
regions are considered, as seen in Fig. 3. This requires us
to investigate and differentiate which components can use
what storage type. Finally, having different types of storage
for system and user data means we have separate data read
and write paths. Therefore, the final challenge is extending
serverless functions with logic to handle watch notifications,
guarantee consistency, and handle fault tolerance.

Client. FaaSKeeper clients use an API similar to
ZooKeeper. FaaSKeeper implements the same standard read
and write operations as ZooKeeper, except for the sync op-
eration. We implement both synchronous and asynchronous
variants and deliver results in the usual FIFO order. Read op-
erations are served through the regional replica of data storage
(C1). Write operations are sent to a cloud queue (C2).

Queues. Each session is assigned a queue to send new
requests and invoke processing functions (C2). The FIFO
order guarantees the ordering of requests within a session.
Queues batch requests to improve throughput and pipelining.

Writer. The single-writer system has been replaced with
parallel event writer functions invoked by the writer queue
with session requests (C2). The writer function obtains exclu-
sive access to the selected node and modifies system storage
(W1). The validated and confirmed changes of a writer are
propagated through a FIFO queue to the event distributor
function (W2), ensuring that the changes are not reordered.

Distributor. When the change caused by a writer triggers a
watch, the notification is distributed (N1) parallel to replicat-

ing the updated node (W3). The extended timestamp system
prevents clients from reading updated data before observing
all consequences of the update. The distributor invokes a free
function watch to deliver notifications to clients (N2) who
registered the given watch (N3). Since hundreds of clients
can register a single watch, using a serverless function allows
us to adjust resource allocation to the workload.

Timestamps. To guarantee the consistency of updates,
we define a total ordering with the "happened before" re-

S
Y
S

TE
M

R
E

G
IO

N

U
S

E
R

R

E
G

IO
N

S

Data Storage

Node Timestamp Data Children
/cfg ({0,0}, {0}) “42” [“f”]
/cfg/f ({1,0}, {0}) “foo” []

C1

C2 W3

Distributor

Distributor
Queue

Writer

λ Nodes

System

System Storage
W1

Watch
λ

λ

N1

W2Writer
Queue

Figure 4: FaaSKeeper read and write operations. Queues
and timestamps provide strong consistency guarantees.

U
S

E
R

R

E
G

IO
N

S

Heartbeat InvokerHeartbeat
λ

Watch

H

WatchesClients

System StorageN2
λ N3

Figure 5: Notifications and heartbeats in FaaSKeeper.
Requirements AWS Azure Google Other

Function
Free ✓ ✓ ✓

—Event ✓ ✓ ✓
Scheduled ✓ ✓ ✓

User S3 Blob Storage Storage Redis
Store Consistency ✓ ✓ ✓ ✓✳

Throughput ✓ ✓ ✓ ✓✳

DynamoDB CosmosDB Datastore Redis
System Reliability ✓ ✓ ✓ ✗
Store Consistency ✓ ✓ ✓ ✓✳

Concurrency
Primitives

Conditional Optimistic Transactions Lua
Updates Locking Scripts

Queue
SQS Service Bus Pub/Sub

—FIFO ✓ ✓ ✓
Serverless ✓ ✓✳ ✓

Table 2: Mapping FaaSKeeper design to cloud and user-
managed services. ✳ indicates additional constraints.

lation [49] using atomic counters.
Storage. The system state is served by key-value storage in

the region of FaaSKeeper deployment. Thanks to the strong
consistency requirement, parallel instances of writer functions
can modify the contents without the risk of reading stale data
later. On the other hand, data storage is optimized to handle
read requests in a scalable and cost-efficient manner.

Heartbeat. Validation of connection status within a session
is necessary to keep ephemeral nodes alive and guarantee noti-
fication delivery. Therefore, we implement a scheduled heart-
beat function to prune inactive sessions and notify clients that
the system is online (H). We replace the ZooKeeper heartbeat
messages with periodically invoked heartbeat functions.

4 Building FaasKeeper

To implement FaaSKeeper, we need to map functions, queue,
storage, and synchronization primitives to cloud services (Ta-
ble 2). We detail the implementation choices made as the
serverless design comes with a set of new challenges that are
not present in ZooKeeper.

We select the AWS cloud and translate design concepts
to cloud systems: system storage with synchronization prim-
itives to DynamoDB tables, user data storage to S3 buck-

5

Algorithm 1 A pseudocode of the new writer function.
function WRITER(updates)

for each client, node, op, args in updates do
lock, oldData = LOCK(node) ➀
if not ISVALID(op, args, oldData) then ➁

NOTIFY(client, FAILURE)
continue

txid = DISTRIBUTORPUSH(client, lock, node, newData) ➂
COMMITUNLOCK(lock, node, op, args, txid) ➃

ets, and FIFO queues to the SQS. We implement the four
FaaSKeeper functions in 1,350 lines of Python code in AWS
Lambda. Furthermore, we provide a client library with 1,400
lines of Python code with the relevant methods of the API
specified by ZooKeeper [8]. Each component has a corre-
sponding alternative in other cloud systems that provides the
same semantics and guarantees, and storage can be improved
with in-memory caches such as Redis.

Using the same ordering for components used in Section 3,
we now discuss each component in detail and start with the
path of a client performing a write operation. For each com-
ponent we provide a description, discuss its implementation
as well as our design goals, and where appropriate we also
consider scalability concerns.

4.1 Client

Eliminating the ZooKeeper server from the data access path
provides lower operating costs, but puts the responsibility of
ordering read and write operations with watch notifications
on the client. We implement a queue-like data structure that
orders notifications and replies from the FaaSKeeper service
with results of read operations. Operations return according
to the semnatics of ZooKeeper: a read following a write can-
not return before its predecessor finishes. The client stores
the timestamp for the most recent data seen (MRD) for all
reads, writes, and notifications. Formal analysis of consistency
guarantees can be found in the appendix (Sec. B).

Implementation. Each client runs three background threads
to send requests to the system, manage incoming responses,
and order results. Read operations are implemented with di-
rect access to user storage.

Design goal. We replace the event coordination on
ZooKeeper servers with a lightweight queueing system on the
client. We enable direct low-latency access and a flexible pric-
ing model for non-provisioned resources. However, extended
timestamps are required to ensure that writes are linearized,
and cloud queues are needed to replace TCP communication.

4.2 Writer

FaaSKeeper replaces the single-leader design of ZooKeeper
with concurrently operating writer functions to enhance the
system’s reliability and performance. The writer function pro-
cesses client requests in a FIFO order (Alg. 1), The function
acquires a lock on the node (➀) to prevent concurrent updates,

Algorithm 2 A pseudocode of the new distributor function.
function DISTRIBUTOR(state, updates)

for each region in parallel do
for each client, lock, node, data, txid, writerID in updates do

nodeStatus = GETNODE(node) ➊
if nodeStatus.transactions[0] != txid then

if not TryCommit(lock, node) then ➋
NOTIFY(client, FAILURE)
continue

DATAUPDATE(region, data, s′, epoch) ➌
w = WATCHES(node)
INVOKEWATCH(region, w, WATCHCALLBACK) ➍
epoch[region] = epoch[region]+w
NOTIFY(client, SUCCESS)
POPTRANSACTION(node) ➎

WAITALL(WATCHCALLBACK)
function WATCHCALLBACK(epoch, region, w)

epoch[region] = epoch[region]−w ➏

verifies the correctness of the operation (➁), e.g., checking
that a newly created node does not exist and the conditional
update can be applied. The results are propagated to the dis-
tributor queue to update user data storage (➂). Finally, the
new node version is secured in the system storage (➃) and
extended with the current transaction’s index. This operation
is combined with a lock release and applied conditionally,
and no changes are made if the lock expires. At that point,
the client request has been committed to the system (Z1),
and pushing to the distributor queue before committing en-
sures that changes will be propagated to the user storage. In
some operations, the ZooKeeper model requires locking more
than one node — for example, creating a node also requires
locking the parent node. There, the commit creates a transac-
tion from multiple atomic operations that will fail or succeed
simultaneously.

Each client sends requests to a single queue instance that
invokes the processing function. A function concurrency limit
of one instance per queue provides an ideal batching oppor-
tunity while upholding ordering guarantees. Consecutive re-
quests cannot be reordered, but the first stages of a request
(➀, ➁) can be executed while its predecessor is committed to
the storage (➂, ➃). Thus, the writer function is a sequence of
operations on the system storage that can be pipelined.

Implementation. We select a cloud queue that fulfills the
following requirements: (a) invokes functions on messages,
(b) upholds FIFO order, (c) allows limiting the concurrency
of functions to a single instance, (d) support batching of data
items, and (e) assigns monotonically increasing values to
consecutive messages (txid). The requirements guarantee that
requests are not reordered (Z3), while (d) ensures efficient
processing of frequent invocations in a busy system. We use
the AWS SQS with batched Lambda invocations [50] as it
performs better than DynamoDB Streams (Sec. 5.2).

Design goal. The concurrent writer functions can scale up
the processing to match the increasing number of clients in
the system while upholding the FIFO order for a single client.

6

4.3 Distributor

A distributor queue is necessary to ensure that changes in user
data stores are not reordered since concurrent updates could
violate consistency (Z3), and notifications must be delivered
in order (Z3). Committing changes to the user-visible storage
must be serialized in ZooKeeper’s consistency model, and
clients cannot observe newer data before receiving watch
notifications (Z4). FaaSKeeper uses the additional region-
wide epoch counter to ensure that the client’s consistent view
of the data is not affected.

Function. The distributor function (Algorithm 2) delivers
updates to each user storage. Updates cannot be reordered
for a single storage unit, but the process is parallelized across
regions. Since the writer cannot push to the distributor queue
and commit the node atomically, distributor verifies that the
node has been committed successfully (➋). In the case of the
writer’s failure or unlikely interleaving between both func-
tions, the distributor tries to commit nodes when possible to
improve the system availability. Otherwise, the update is re-
jected - the request has never been committed, and a failure
of one writer function does not impact the system consis-
tency. Then, the data is replicated to user storage (➌), and the
distributor sends watch notifications (➍). Once all steps are
completed, the current transaction is removed from the node
to ensure that all notifications are always delivered (➎). In
the case of failure, the queue will retry the invocation auto-
matically. A transaction index ensures that the distribution of
updates can be retried.

Implementation. When committing data to user storage, we
attempt to update only changed data to avoid unnecessary
network traffic. While DynamoDB offers this feature, the
update operation of S3 requires the complete replacement of
data. Thus, even if a change involves only the node’s children,
the distributor function needs to download user node data to
conduct the update operation.

Notifications. The clients must not see new data before re-
ceiving a notification preceding it. If we stall updates until all
notifications are delivered, this would put severe performance
limitations. In our implementation, the path of reads and
writes are different, a significant departure from ZooKeeper,
where all reads and writes are processed by the same entity. In-
stead, we use epoch counters to associate updates with active
watches and help clients detect when the reordering of notifi-
cations and read operations occurs. Each watch is assigned
a unique identifier, and multiple clients can be assigned to
a single watch instance. The epoch counter is updated with
identifiers of active watches, an independent function is in-
voked to deliver notifications in parallel (➍), and the counter
is readjusted once all notifications are delivered. As clients are
unaware of pending notifications, they use the epoch counter
to determine if any of the watches registered by the client
were being delivered when an update to the read node was
applied. In such a case, the read operation must be stalled

until the pending notification is delivered.
Design goal. The distributor guarantees that writes and

notifications offer strong consistency when the single writer
is replaced with independent functions and the storage is split
between data and system state. ZooKeeper does not have a
corresponding entity, as the servers resolve the ordering.

4.4 Storage
We use tables in the cloud-native key-value database for the
system storage, containing the current timestamp and all
active sessions, and we store the list of all data nodes to
allow lock operations by writer functions. Data storage is
indexed by node paths, and each object corresponds to a sin-
gle node. The object contains user node data, modification
timestamps, and a list of node children. Eventually consis-
tent reads neither guarantee read–your–write consistency [28],
nor consider a dependency between different writes, breaking
ZooKeeper guarantees (Linearized Writes Z2 , Single Sys-
tem Image Z3). Therefore, we require strong consistency,
although it can be more expensive.

Synchronization Primitives are implemented with update
expressions of DynamoDB system storage [51]. Each opera-
tion requires a single write, and the correctness is guaranteed
by the atomicity of updates to a single item.

Timestamps are used to provide an order over system
transactions. The system state counter txid is an integer that
represents the timestamp of each change in FaaSKeeper, sim-
ilar to the zxid state counter in ZooKeeper and provides total
order over the system. The epoch counter is specific to Faas-
Keeper and contains watch notifications pending while the
transaction represented by the state counter was in progress.
In a system with decentralized processing of write and read
requests, the epoch counter provides an ordering between no-
tifications and changes applied to the system. Counters are
implemented using the atomic counters and lists (Sec. 2.2).

Design goal. ZooKeeper achieves high availability with
multiple replicas of the dataset. We achieve the same goal by
using automatically replicated and scalable cloud storage.

4.5 Heartbeat
In addition to ordering guarantees, sessions play another sig-
nificant role in ZooKeeper: their status defines lifetime of
ephemeral nodes. We replace the heartbeat messages with
the heartbeat function to discover client disappearance and
remove ephemeral nodes.

Implementation. The cloud system periodically invokes
the function which sends in parallel heartbeat messages to
clients that own ephemeral nodes. If a client does not respond
before a timeout, the function begins an eviction process for
the session by placing a deregistration request in the process-
ing queue. The function is parameterized with the heartbeat
frequency parameter H f r.

Design goal. The verification of client status does not need
a persistently allocated server, and FaaSKeeper replaces it

7

with a serverless function that scales accordingly.

4.6 Compatibility with ZooKeeper

Our implementation is standalone and does not reuse the
server-centric ZooKeeper codebase since it would be affected
by large cold startup overheads in FaaS [23, 52]. We offer a
compatible interface for existing applications by modeling our
API after kazoo [53], a Python client for ZooKeeper. While
FaaSKeeper aims to provide a consistency model and inter-
face compatible with ZooKeeper, we make minor adjustments
due to the limitations of cloud services and the serverless
model. The user data storage in S3 supports the ZooKeeper
limit of 1 MB of user data in a node. The size restrictions of
400 and 256 kB in DynamoDB, respectively, can be avoided
by splitting larger nodes and using temporary S3 objects. Fur-
thermore, Zookeeper clients can define node permissions with
access control lists (ACLs). In FaaSKeeper, write permissions
are implemented in functions thanks to the protection bound-
ary between caller and callee, and read permissions can be
enforced with ACL of cloud storage.

5 Evaluation

The major design goal of FaaSKeeper is a flexible cost model
with affordable performance overheads. In this section, we
present a detailed evaluation of cloud-native serverless primi-
tives and FaaSKeeper features, focusing on system latencies
and cost models, answering the following questions:

§ 5.1 Are synchronization primitives efficient?
§ 5.2 Do serverless queues provide cheap and fast invocations?
§ 5.3 How fast are cloud-native read requests in FaaSKeeper?
§ 5.4 How expensive is the processing of write requests?
§ 5.5 What are the cost savings in service monitoring?

§ 6 What is the cost break-even point for FaaSKeeper?
Evaluation Platform We deploy FaaSKeeper in the AWS

region us-east-1. The deployment consists of four functions,
AWS SQS queue, and three DynamoDB tables storing system
state, a users list, and a watch list. Functions are allocated with
2048 MB of memory if not specified otherwise. Additionally,
we use a DynamoDB table or an S3 bucket for user data storage.
Benchmarks use Python 3.8.10, and we run microbenchmarks
and FaaSKeeper clients from a t3.medium virtual machine
with Ubuntu 20.04 in the same cloud region. Furthermore,
we deploy ZooKeeper 3.7.0 on a cluster of three t3.small
EC2 virtual machines running Ubuntu 20.04.

5.1 Synchronization primitives

The serverless synchronization primitives are a fundamental
building block for FaaSKeeper operations that allow concur-
rent, safe updates. Primitives are implemented using condi-
tional update expressions of DynamoDB [51], and we evaluate
the overheads and scalability on this datastore system.

Primitive Size Min p50 p95 p99 Max

Regular
DynamoDB write

1 kB 3.95 4.35 4.79 6.33 60.26
64 kB 6.54 66.31 70.28 77.23 121.64

Timed lock
acquire

1 kB 6.13 6.8 8.13 14.14 65.32
64 kB 7.82 67.16 72.71 90.56 177.02

Timed lock
release

1 kB 6.03 6.62 7.94 12.52 78.44
64 kB 6.38 65.2 70.33 92.15 222.64

Atomic counter 8 4.88 5.59 7.01 11.69 62.4

Atomic list
append

1 5.14 5.89 8.0 10.71 21.12
1024 16.72 76.01 184.02 187.47 249.23

(a) Latency of synchronization primitives for varying item size (lock)
and list append length (atomic list).

0 200 400 600 800 1000 1200
Update requests submitted [op/s]

0

200

400

600

800

1000

1200

Re
qu

es
ts

 p
ro

ce
ss

ed
 [o

p/
s]

Locking with 84% efficiency.

Linear scaling
Standard, p50
Locked, p50

Standard, p99
Locked, p99

(b) Throughput of standard and locked DynamoDB updates.
Figure 6: Synchronization primitives on AWS DynamoDB.

Latency. We evaluate the latency of each operation by per-
forming 1000 repetitions on warmed-up data and present re-
sults in Table 6a. Each timed lock operation requires adding 8
bytes to the timestamp. However, the operation time increases
significantly with the item size, even though large data at-
tributes are neither read nor written in this operation. This
conditional and custom update adds 2.5 ms to the median time
of a regular DynamoDB write, and large outliers further de-
grade the performance. This result further proves the need to
disaggregate the frequently modified system storage from the
user data store, where items can store hundreds of kilobytes of
data. Then, we evaluate the atomic counter, and atomic list
expansion by adding a varying number of items of 1 kB size.
This allows users to efficiently add new watches by extending
the list of watches in storage with a single operation.

Throughput. Timed locks allow FaaSKeeper to conduct
independent updates concurrently. We evaluate a pair of
read and write operations, and compare our locks with a ver-
sion without a safe parallelization. We measure the median
throughput over a range of five seconds and vary the workload,
as well as the number of processes sending requests. We use
the c4.2xlarge VM as a client to support this multiprocess-
ing benchmark (Fig. 6b). Even though locks increase the la-
tency of the update operation, the locked version still achieves
up to 84% efficiency when handling over 100 requests per
second from ten clients concurrently. This result agrees with
previous findings that DynamoDB scales up to thousands of
transactions per second [54], and the throughput of serverless
operations on DynamoDB is limited by Lambda’s parallelism
and not by storage scalability [55].

8

Direct SQS SQS FIFO DynamoDB Stream
64B 64 kB 64B 64 kB 64B 64 kB 64B 64 kB

p50 39.0 42.97 39.83 44.22 24.22 28.15 242.65 240.96
p95 73.92 89.09 78.29 95.71 84.29 54.76 270.63 264.95
p99 124.01 129.16 125.24 180.92 162.42 162.41 417.21 364.16
Max 210.11 215.67 295.01 295.01 172.48 244.56 749.16 749.16

(a) End-to-end latency of function invocation with a TCP response.

25 50 75 100 125 150 175 200
Requests submitted [op/s]

101

102

103

Re
su

lts
 re

ce
iv

ed
 [l

og
, o

p/
s] Long batching on unordered queues.

FIFO queue saturates.

SQS, p50
SQS FIFO, p50
DynamoDB Stream, p50

SQS, p99
SQS FIFO, p99
DynamoDB Stream, p99

(b) Throughput of function invocations with 64B payload.Figure 7: Function invocations with serverless queues.

Our synchronization primitives introduce a few millisec-
onds of overhead per operation and allow for parallel FaaS-
Keeper writes of up to 1200 requests per second.

5.2 Serverless Queues
Queues improve the pipelined writing process by batch-
ing requests and are necessary to provide ordering
(Sec. 4.3) AWS offers two cloud-native queues with
pay-as-you-go billing and function invocation on new
messages: SQS and DynamoDB Streams. For FaaS-
Keeper, we select a queue that adds minimal invoca-
tion overhead and allows to achieve sufficient throughput.
For SQS [56], we enable the FIFO property that comes with
the restriction of a maximum batch size of 10. We compare
against the standard version to estimate the potential over-
heads of of small batch sizes. For AWS DynamoDB streams,
we configure database sharding to guarantee that all new
items in a table are processed in order [57]. We restrict the
function’s concurrency to permit only one instance at a time.

Latency. First, we measure the end-to-end latency by trig-
gering an empty a function that only returns a dummy result
to the user with a TCP connection. We consider the best-case
scenario of warm invocations that use a cached TCP connec-
tion to the same client. The median round-trip latency to the
client was 864 µs. In addition to queues, we measure direct
function invocations to estimate the effects of user-side batch-
ing without cloud proxies, and we present results in Table 7a.
Surprisingly, the FIFO queue achieves the lowest latency and
is significantly faster than a direct Lambda invocation. Thus,
offloading FaaSKeeper requests using SQS-based invocation
comes with approximately 20ms of overhead.

Throughput. Here, we verify how well queues perform
with batching and high throughput loads. The queue triggers
a function that establishes a connection to the client, and the
client measures the median throughput across 10 seconds
(Fig. 7b). FIFO queues saturate at the level of a hundred re-

0 50 100 150 200 250
Size [kB]

0

5

10

15

Ti
m

e
[m

s] FaaSKeeper: cloud-native
storage dominates
read time.

FaaSKeeper with in-memory cache
on par with self-hosted ZooKeeper.

FaaSKeeper, DynamoDB
FaaSKeeper, Redis

FaaSKeeper, S3
ZooKeeper (Self-Hosted)

Figure 8: Read operations in FaaSKeeper and ZooKeeper.

quests per second. Meanwhile, DynamoDB and standard SQS
experience huge variances, leading to message accumulation
and bursts of large message batches. Thus, we cannot expect
to achieve higher utilization in FaaSKeeper with a state-of-
the-art cloud-native queue, even with ideal pipelining and
low-latency storage. However, we can assign one queue per
user, which helps to alleviate scalability concerns partially.

Cost. SQS messages are billed in 64 kB increments, and
1 million of them costs $0.5. DynamoDB write units are
billed in 1 kB increments, and 1 million of them costs $1.25.
Thus, processing requests via SQS is 160x cheaper than with
DynamoDB streams.

SQS provides ordering with cost-efficient invocations. Nev-
ertheless, it could be the bottleneck for individual clients.

5.3 Read Operations

ZooKeeper is a system designed for fast read operations, and
our serverless FaaSKeeper must also offer efficient reads. We
evaluate the get_data operation that retrieves a node from
storage, timing the retrieval on the user side. In addition to the
persistent S3 storage selected as the user data store, we eval-
uate DynamoDB and Redis (t3.small VM), and compare
FaaSKeeper against ZooKeeper. We repeat the measurements
100 times for each node size and present results in Figure 8.

While using DynamoDB can be tempting to provide lower
latency on small nodes, this NoSQL database is not designed
to serve as a persistent and frequently read data store. Even
though it is price efficient up to 4 kB of data, the cost grows
quickly: reading 128 kB data is 20x more expensive than
S3 since the latter costs only $0.4 for one million reads.
ZooKeeper offers much lower latency as it serves data from
memory over a warm TCP connection: FaaSKeeper matches
its performance with an in-memory store.

Sorting results, watches, and deserialization adds between
1.9 and 2.5% overhead in our Python implementation.

FaaSKeeper offers fast reads whose performance is
bounded by the latency and throughput of the underlying
cloud storage, with a stable cost proportional to workload.

9

4B 1kB 64kB 128kB 250kB
Node Size

100

200

Ti
m

e
[m

s]

Function configurations [MB]
512, 1024, 2048

FaaSKeeper Writer function.

4B 1kB 64kB 128kB 250kB
Node Size

50

100

150

200

250

Ti
m

e
[m

s]

FaaSKeeper Distributor Function.
Memory

512
1024
2048

4B 1kB 64kB 128kB 250kB
Node Size

100

101

102

103

Ti
m

e
[m

s]

FaaSKeeper configurations [MB]
 512, 1024, 2048

ZooKeeper

Write time: FaaSKeeper and ZooKeeper.

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

25

50

75

100

Pe
rc

en
ta

ge
 [%

] $1.1 $1.4 $1.2 $2.5 $1.6 $2.1
Cost distribution of 100,000 requests.

Queue
DynamoDB

S3
Writer

Distributor

Figure 9: Write operations in FaaSKeeper and ZooKeeper.

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

0

50

100

150

200

Writer function: time distribution.
Lock Node
Commit and Unlock
Push to Distributor
Other

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

50

100

150

200
Distributor function: time distribution.

Update User Storage
Pop Updates
Query Watches
Notify Client
Other

Figure 10: Time distribution of FaaSKeeper functions.

5.4 Write Operations
We evaluate the performance and cost of writing in FaaS-
Keeper and compare our framework against ZooKeeper. We
measure set_data operation that replaces node contents with
base64-encoded data of different sizes (Figure 9). The write
latency of FaaSKeeper consists of function runtimes and the
overheads of queue-based invocations. ZooKeeper achieves
lower write latency because it benefits from a direct connec-
tion to the client and can perform some operations on the
local memory. In addition to measuring total operation time
as visible by the client, we study the execution times of writer
and distributor functions. In FaaSKeeper, storage operations
are responsible for the 40-80% of writing cost. The cost of
computing with functions is noticeably lower, even though the
CPU time of a serverless function is 8x more expensive than
in a VM. Both functions use no more than 100 MB of memory
but require large allocations to increase I/O performance [22],
leading to increased cost and resource underutilization.

To locate the bottleneck of parallel processing in FaaS-
Keeper, we inspect where functions spend time. The results in
Figure 10 show that the impact of synchronization operations
is limited, and the runtime of distributor and writer functions
are dominated by moving data to queues and storage. This im-
pacts both the latency and cost, as there is no yield operation
in serverless - functions waiting on I/O and external services
keep consuming resources and accruing costs.

Finally, we examine the tail latency of the most important
operations (Table 3). We observe significant performance
degradation at the tail percentiles for pushing to the distributor
queue in writer and updating nodes in S3 in distributor.

Writer Size Min p50 p90 p95 p99

W
ri

te
r

Total
4B 27.29 31.81 38.55 41.88 58.78

250 kB 30.24 102.53 142.35 163.15 183.49

Lock
4B 7.38 8.02 9.47 12.69 26.8

250 kB 6.77 8.36 15.38 17.79 28.48

Push
4B 9.65 13.35 15.55 17.28 38.15

250 kB 62.73 72.18 96.82 118.62 148.61

Commit
4B 7.31 7.93 9.41 11.91 26.83

250 kB 6.61 8.59 14.31 18.81 32.83

D
is

tr
ib

ut
or

Total
4B 42.02 62.16 92.01 103.65 138.28

250 kB 58.94 132.62 213.5 294.01 465.47

Get Node
4 4.67 5.09 5.68 6.92 11.83

250 kB 4.58 4.97 7.31 11.13 19.83

Update Node
4 24.4 42.73 70.7 84.94 118.13

250 kB 32.51 102.07 183.17 265.42 432.92

Watch Query
4 3.88 4.48 5.45 7.0 28.64

250 kB 4.68 5.13 6.76 7.59 18.38

Table 3: Variability of functions performance, 2048 MB.

1 4 8 16 32 64
Number of clients

0

100

200

300

400

500

Ti
m

e
[m

s]

Memory
128 MB
256 MB
512 MB
1024 MB
1536 MB
2048 MB

1 4 8 16 32 64
Number of clients

0.10

0.15

0.20

Co
st

 [¢
]

Figure 11: Heartbeat function performance and cost.

The performance of write operations is bounded by data
transmission to the distributor queue and object storage,
motivating the need for more efficient serverless queues.

5.5 Service Monitoring

An essential part of ZooKeeper is monitoring the status of
clients. Automatic removal of non-responsive clients allows
for reliable removal of ephemeral ZooKeeper resources. We
estimate the time and resources needed by FaaSKeeper to
periodically launch the heartbeat function and verify status
of clients owning ephemeral nodes . We present results aver-
aged from 100 invocations in Figure 11. The execution time
decreases with the memory allocation, corresponding with
previous findings on I/O in serverless [22, 23].

We estimate the cost of monitoring over the entire day,
with the highest available frequency on AWS Lambda of an
execution every minute. The cost of the function is defined by
the computation time and the cost of scanning a DynamoDB
table storing the list of users. With the function taking less
than 100ms for most configurations, the overall allocation
time over 24 hours is less than 0.2% of the entire day. Thus,
even for more frequent invocations and more clients, we offer
status monitoring for a fraction of VM price.
The serverless heartbeat function replaces a persistent VM
allocation and achieves the goal of client monitoring while
reducing the resource allocation time by a huge margin.

10

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
5 x t3.small
7 x t3.small
9 x t3.small

3 x t3.medium
5 x t3.medium
7 x t3.medium
9 x t3.medium

3 x t3.large
5 x t3.large
7 x t3.large
9 x t3.large

Zo
oK

ee
pe

r c
on

fig
ur

at
io

n.

37.44 7.49 3.74 1.87 0.75
62.40 12.48 6.24 3.12 1.25
87.36 17.47 8.74 4.37 1.75

112.32 22.46 11.23 5.62 2.25
74.88 14.98 7.49 3.74 1.50

124.80 24.96 12.48 6.24 2.50
174.72 34.94 17.47 8.74 3.49
224.64 44.93 22.46 11.23 4.49
149.76 29.95 14.98 7.49 3.00
249.60 49.92 24.96 12.48 4.99
349.44 69.89 34.94 17.47 6.99
449.28 89.86 44.93 22.46 8.99

Cost ratio of ZooKeeper and FaaSKeeper, 100% reads.

0.8

1.0

100.0

200.0

440.0

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
5 x t3.small
7 x t3.small
9 x t3.small

3 x t3.medium
5 x t3.medium
7 x t3.medium
9 x t3.medium

3 x t3.large
5 x t3.large
7 x t3.large
9 x t3.large

Zo
oK

ee
pe

r c
on

fig
ur

at
io

n.

10.15 2.03 1.01 0.51 0.20
16.91 3.38 1.69 0.85 0.34
23.67 4.73 2.37 1.18 0.47
30.44 6.09 3.04 1.52 0.61
20.29 4.06 2.03 1.01 0.41
33.82 6.76 3.38 1.69 0.68
47.35 9.47 4.73 2.37 0.95
60.88 12.18 6.09 3.04 1.22
40.58 8.12 4.06 2.03 0.81
67.64 13.53 6.76 3.38 1.35
94.70 18.94 9.47 4.73 1.89

121.75 24.35 12.18 6.09 2.44

Cost ratio of ZooKeeper and FaaSKeeper, 90% reads.

0.2

0.5

1.0

60.0

120.0

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
5 x t3.small
7 x t3.small
9 x t3.small

3 x t3.medium
5 x t3.medium
7 x t3.medium
9 x t3.medium

3 x t3.large
5 x t3.large
7 x t3.large
9 x t3.large

Zo
oK

ee
pe

r c
on

fig
ur

at
io

n.

4.8 0.97 0.48 0.24 0.097
8.1 1.6 0.81 0.4 0.16
11 2.3 1.1 0.57 0.23
15 2.9 1.5 0.73 0.29
9.7 1.9 0.97 0.48 0.19
16 3.2 1.6 0.81 0.32
23 4.5 2.3 1.1 0.45
29 5.8 2.9 1.5 0.58
19 3.9 1.9 0.97 0.39
32 6.5 3.2 1.6 0.65
45 9 4.5 2.3 0.9
58 12 5.8 2.9 1.2

Cost ratio of ZooKeeper and FaaSKeeper, 75% reads.

0.1

0.5

1.0

25.0

50.0

Figure 12: Cost of ZooKeeper and FaaSKeeper, running a workload mix of 1 kB reads and writes with set_data.

Parameter Description Value

WS3(s) Writing data to S3 5 ·10−6

RS3(s) Reading data from S3 4 ·10−7

WDD(s) Writing data to DynamoDB s ·1.25 ·10−6

RDD(s) Reading data from DynamoDB
⌈ s

4

⌉
·0.25∗10−6

Q(s) Push to queue
⌈ s

64

⌉
·0.5 ·10−6

FW/D(s) Execution of writer and distributor function. Linear models.

Table 4: Parameters of FaaSKeeper cost model.

6 FaaSKeeper Cost

The most important evaluation compares the price of running
an elastic FaaSKeeper instance to Zookeeper. We consider
a scenario of 512 MB, with reads and writes of 1 kB writes,
and the optimistic case that we experience no failures and
therefore no retries.

FaaSKeeper cost We focus on read and write operations of
s kilobytes, as the daily monitoring costs are low. Watch and
heartbeat functions add charges only when notifications and
ephemeral nodes are used. We model the cost of modifying
node data (set_data in ZooKeeper), and summarize model
parameters in Table 4.
Reading. The cost of operation is limited to storage access.

COSTR = RS3(s)
A workload of 100,000 read operations costs $0.04.
Writing. The cost of writing is separated into computing and
storing data: two queue operations and function executions,
synchronization in the writer and distributor, and writing
data to the user store. For both functions, we use regression
to estimate linear cost models using data from Sec. 5.4, with
R2 scores of 0.98 (writer) and 0.84 (distributor).
COSTW = 2 ·Q(s)+3 ·WDD(1)+RDD(1)+WS3(s)+FW +FD

A workload of 100,000 write operations costs $1.12.
Storage. The databases and queues do not generate any inac-
tivity charges except for retaining data in the cloud. Storing
user data in S3 with FaaSKeeper is 3.47x cheaper than storing
the same data in the block storage gp3 attached to the EC2
virtual machines hosting ZooKeeper.

ZooKeeper cost The cost of ZooKeeper is constant and
includes the cost of a persistent allocation of virtual machines.
The smallest number of virtual machines is three. However, a
single machine with an attached EBS block storage has an an-

nual durability of 99.9%. To match the annual durability of S3
used as the user store in FaaSKeeper (11 9’s), the ZooKeeper
ensemble requires nine machines.

Depending on the VM selection, the daily cost changes
from $0.5 on t3.small, through $1 on the t3.medium used
for our experiments, up to $2 on t3.large. Additionally, the
machines must be provisioned with block storage to store OS,
ZooKeeper, and user data. 20GB of storage adds a monthly
cost of between $4.8 (three VMs) and $14.4 (nine VMs).

Comparison We compare ZooKeeper’s cost against FaaS-
Keeper with different read–to–write scenarios, using 1kB
writes and functions configured with 512 MB of memory,
and present results in Figure 12. In high–read–to–write sce-
narios for which ZooKeeper has been designed, FaaSKeeper
can process between 1 and 3.75 million requests daily before
the costs are equal to the smallest possible ZooKeeper deploy-
ment. Since many user nodes do not contain large amounts
of data, FaaSKeeper can handle the daily traffic of hundreds
of thousands of requests while providing lower costs than
ZooKeeper. Contrary to the standard ZooKeeper instance, the
serverless design allows us to limit expensive computing time
to processing writes only. Furthermore, we can shut down the
processing components while not losing any data: the heart-
beat function is suspended after the deregistration of the last
client, and the only charges come from the durable storage of
the system and user data.

7 Building Serverless Services
We now discuss the main issues we encountered while build-
ing FaasKeeper and highlight the limitations of serverless in
its current form. We collect several requirements that cloud
providers could easily support and pave the way for future
improvements. They would make complex systems such as
FaaSKeeper more efficient and serverless services in gen-
eral more performant — simplifying their implementation
and increasing adoption. We finally discuss how well these
requirements are supported in current cloud architectures.

7.1 Areas of improvement
Using the lessons learned while creating FaaSKeeper, we
propose a list of requirements for serverless environments that

11

would allow complex services to flourish. However, many
of these requirements are not limited to FaaSKeeper, and
improvements will benefit other serverless applications, such
as microservices [4] and serverless ML [58, 59].
Requirement #1: Fast invocations. Invocation overheads
dominate the execution time of short-running functions [22]
and prohibit FaaS processing with performance comparable
to non-serverless applications. ZooKeeper often requires mul-
tiple round trips to finish an operation, and when each one
takes milliseconds rather than microseconds, the overheads
quickly accrue, as seen in Fig. 8.
Requirement #2: Exception handling. The user cannot con-
trol asynchronous function invocations such as notifications
of completed operations (Sec. 4.3). We envision this should
be solved via exception handlers, allowing for easier and more
efficient error handling.
Requirement #3: Synchronization primitives. To efficiently
implement distributed applications, serverless needs synchro-
nization, such as locks and atomic operations (Sec. 2.2).
Requirement #4: FIFO Queues. Serverless functions require
queues to support the ordering and reliability of invocations
(Sec. 4.3). However, queues that use discrete batches prevent
efficient stream processing with serverless functions. Instead,
functions should continuously poll for new items in the queue
to keep the pipeline saturated.
Requirement #5: Statefulness. Stateful functions are neces-
sary for some use cases, and FaaS systems should support a
reliable function state with low-latency access (Sec. 4.2).
Requirement #6: Partial updates. To increase the efficiency
of write operations, cloud storage could support partial up-
dates where data is written at a user-defined offset to the
specified object (Sec. 4.2).
Requirement #7: Outbound channels. While the trigger
system provides inbound communication, functions lack an
ordered, push-based, and fast outbound communication chan-
nel. Such a channel would significantly simplify the design
of serverless services such as FaaSKeeper (Sec. 4.2).

7.2 Discussion

Can serverless systems support our requirements? We
specify seven requirements to define features currently miss-
ing in commercial FaaS systems that are necessary to support
distributed, stateful, and scalable applications. The require-
ments align with the major serverless challenges [21, 60] and
are supported in research FaaS platforms. Emerging systems
provide microsecond-scale latency [24, 61]. New storage sys-
tems satisfy the latency, consistency, and flexibility require-
ments of functions [29, 30, 62, 63]. Furthermore, stateful
serverless is becoming the new norm in clouds [55, 64–67].
Finally, we note that research systems can support many of
our requirements already: Cloudburst (R1, R5) [63], PraaS
(R1, R5, R7) [67], Boki (R3-R5) [65].

What are the design trade-offs of FaaSKeeper? FaaS-
Keeper achieves elastic scaling and a serverless price model
by accepting the increased latency of FaaS systems. However,
performance overheads are isolated to specific services and
their impact will decrease with the adoption of more efficient
serverless platforms. FaaSKeeper could offer read latency on
par with ZooKeeper by incorporating an in-memory database
as the user endpoint [29]: these are only now becoming avail-
able in a serverless billing model [31, 32]. The increased
processing time of write requests is caused primarily by per-
formance variations of cloud queues and object storage.

8 Related Work

Serverless for Storage Wang et al. [31] use functions for elas-
tic in-memory cache. DynamoDB is used in transactional
workflows with locks in Beldi [55] and in a fault-tolerance
shim AFT [54]. In contrast, FaaSKeeper is designed as a
service and not a backend for serverless functions. We offer
coordination for general-purpose applications while optimiz-
ing resource allocation.

Elastic Storage Cloud-native storage is known for elastic
implementations that scales with changes in workload [68].
Examples include reconfiguration controllers [69, 70], work-
load predictors [71], and latency monitoring [72]. PolarDB is
an example of a disaggregated database that offers a serverless
billing model [15]. However, ZooKeeper requires autoscal-
ing procedures that integrate the state ordering guarantees.
FaaSKeeper achieves that by using the auto-provisioning of
serverless functions and databases.

ZooKeeper Other authors explored different approaches
to improve the performance and availability of ZooKeeper.
Stewart et al. [73] replicated ZooKeeper contents on multiple
nodes to provide predictable access latencies. Shen et al. [10]
proposed live VM migration for geographical reconfiguration
of ZooKeeper. The performance of ZooKeeper has been im-
proved with hardware implementations, using FPGAs [74]
and offloading to network adapters [75] with PsPIN [76].

9 Conclusions

As the tools and mechanisms of cloud computing adapt to
the needs of an ever-growing FaaS landscape, creating a pow-
erful, fast, and efficient serverless application is becoming
possible. In this work, we present FaaSKeeper, a serverless
coordination service offering the same consistency model
and interface as Zookeeper. FaaSKeeper allows for an elastic
deployment that matches system activity, reducing the cost of
some configurations by a factor of up to 450x. We discuss the
lessons learned in creating FaaSKeeper, and identify seven
requirements that clouds should fulfill to ensure functionality
and performance.

12

Acknowledgments

This project received funding from EuroHPC-JU under
grant agreements DEEP-SEA, No 95560 and RED-SEA, No
055776. We thank Amazon Web Services for supporting this
research with credits through the AWS Cloud Credit for Re-
search program.

A ZooKeeper

Below we summarize the provided consistency require-
ments [8, 36, 37] briefly, considering the case of M clients
C1, . . . ,CM using a ZooKeeper instance consisting of N
servers S1, . . . ,SN .

Z1 Atomicity Write requests never lead to partial results.
They are accepted and persistently committed by ZooKeeper
or they fail.

Z2 Linearized Writes If a client Ci sends update request
u before request v, and both are accepted, then it must hold
that u "happens before" v, i.e., u < v. The guarantee holds
for a single session. When clients Ci and C j send requests
u1,u2, . . . and v1,v2, . . . , respectively, the ordering between
any ui and v j is not defined.

Z3 Single and Reliable System Image The order of suc-
cessful updates is visible as identical to every client: for any
updates u and v, if a client C connected to a server S observes
that u < v, it must hold that u < v for any client C′ connected
to any server S′. Furthermore if a client C observes node Z
with version V , it cannot later see the node Z with version V ′

such that V ′ <V , even if session mechanism switched servers
due to failure or network outage. Each view of the system
will become up-to-date after bounded time, or a disconnection
notification will be delivered (timeliness). Accepted updates
are never rolled back.

Z4 Ordered Notifications Watch notifications are deliv-
ered in the order of updates that triggered them. Their or-
dering with respect to other notifications and writes must be
preserved. If an update u triggers a watch notification for a
client C, the client must observe the notification before seeing
any data touched by transaction v such that u < v. In partic-
ular, if a client C has a watch registered on any node Z with
version V , it will receive watch notification before seeing
any data associated with node Z with version V ′ such that
V <V ′. The property outlined above is global, i.e., it affects
all changes preceded by the notification, not only changes
related to watches registered by the client.

B FaaSKeeper Consistency Model

Z1 Atomicity The updates in the system storage are per-
formed in a single operation on the key-value storage that is
guaranteed to be atomic. The operation results are propagated
to the distributor queue before the commit. The queue triggers
the distributor function and retries it upon failure, guarantee-
ing the eventual propagation of changes to all data replicas.
Since the distributor function verifies node status before prop-
agating changes (➊ in Alg. 2), incorrect operations do not
affect the system.

Z2 Linearized Writes Updates are processed in a FIFO
order by the writer function. The queue guarantees that only
a single writer instance can be active at a time, and the func-
tion is not allowed to reorder any two requests unless they
come from a different session. Therefore, any two update
requests u, v in the same session cannot be assigned a times-
tamp value such that u ≥ v. The single distributor instance
guarantees that clients reading from user data never observe
v before u. Different sessions can use different queues and
see their respective requests be reordered, which conforms to
ZooKeeper’s undefined ordering of requests between clients.

Z3 Single and Reliable System Image Nodes are stored
in a cloud storage with automatic replication and a strongly
consistent read must always return the newest data. Thus,
if a client C observes updates u,v such that u < v, all other
clients must read either the same or newer data. Furthermore,
strongly consistent reads prevent clients from observing an
order of updates V,V ′,V .

Z4 Ordered Notifications FaaSKeeper guarantees that
transactions with timestamp v are not visible before receiving
all notifications corresponding to updates v′ such that v′ <
v. When a read returns a node with timestamp v, it is first
compared with the MRD value of the current session. If v <
MRD, then by the transitive property of the total order, any
pending watch notifications must be newer than v, and data is
safe to read. Otherwise, there are two possible situations: (a)
a watch notification relevant to the client was active but not
yet delivered (➍ in Alg. 2) before storing v (➋ there), and (b)
no relevant watch notifications are being processed.

In the former case, if a transaction v′ triggers watch w, it
is added to the epoch counter before committing v, Thus, for
each transaction following v′, watch w must be included in
the epoch unless the notification is delivered to each client
(➏). This prevents the client from seeing transaction v unless
watch w is notified. In the latter case, the client library releases
the data immediately because watch w is not present in the
epoch.

13

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing.
Commun. ACM 53, 4 (April 2010), 50–58. https:
//doi.org/10.1145/1721654.1721672

[2] James M Kaplan, William Forrest, and Noah Kindler.
2008. Revolutionizing data center energy efficiency.
McKinsey & Company (2008), 1–13.

[3] Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2012.
Data Centers in the Cloud: A Large Scale Performance
Study. In 2012 IEEE Fifth International Conference on
Cloud Computing. 336–343. https://doi.org/10.
1109/CLOUD.2012.87

[4] Zewen Jin, Yiming Zhu, Jiaan Zhu, Dongbo Yu, Cheng
Li, Ruichuan Chen, Istemi Ekin Akkus, and Yinlong Xu.
2021. Lessons Learned from Migrating Complex State-
ful Applications onto Serverless Platforms. In Proceed-
ings of the 12th ACM SIGOPS Asia-Pacific Workshop on
Systems (Hong Kong, China) (APSys ’21). Association
for Computing Machinery, New York, NY, USA, 89–96.
https://doi.org/10.1145/3476886.3477510

[5] 2018. Amazon DynamoDB On-Demand – No
Capacity Planning and Pay-Per-Request Pric-
ing. https://aws.amazon.com/blogs/aws/
amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/.
Accessed: 2022-10-15.

[6] 2020. Azure Cosmos DB serverless now in preview.
https://devblogs.microsoft.com/cosmosdb/
serverless-preview/. Accessed: 2022-10-15.

[7] 2021. DataStax Serverless: What We Did
and Why It’s a Game Changer. https:
//www.datastax.com/blog/2021/02/
datastax-serverless-what-we-did-and-why-its-game-changer.
Accessed: 2022-10-15.

[8] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. 2010. ZooKeeper: Wait-Free Coordi-
nation for Internet-Scale Systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical
Conference (Boston, MA) (USENIXATC’10). USENIX
Association, USA, 11.

[9] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and
Alfons Kemper. 2007. Workload Analysis and Demand
Prediction of Enterprise Data Center Applications. In
2007 IEEE 10th International Symposium on Workload
Characterization. 171–180. https://doi.org/10.
1109/IISWC.2007.4362193

[10] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero,
Weijia Song, Robbert van Renesse, and Hakim Weather-
spoon. 2016. Follow the Sun through the Clouds: Ap-
plication Migration for Geographically Shifting Work-
loads. In Proceedings of the Seventh ACM Symposium
on Cloud Computing (Santa Clara, CA, USA) (SoCC

’16). Association for Computing Machinery, New York,
NY, USA, 141–154. https://doi.org/10.1145/
2987550.2987561

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
2017. Resource Central: Understanding and Predict-
ing Workloads for Improved Resource Management
in Large Cloud Platforms. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shang-
hai, China) (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 153–167. https:
//doi.org/10.1145/3132747.3132772

[12] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak,
Pradipta De, and Ravi Kothari. 2009. Server Workload
Analysis for Power Minimization Using Consolidation.
In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference (San Diego, California)
(USENIX’09). USENIX Association, USA, 28.

[13] Sudipto Das, Divyakant Agrawal, and Amr El Ab-
badi. 2013. ElasTraS: An Elastic, Scalable, and Self-
Managing Transactional Database for the Cloud. ACM
Trans. Database Syst. 38, 1, Article 5 (April 2013),
45 pages. https://doi.org/10.1145/2445583.
2445588

[14] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Lar-
son, Shu Lin, Jack Ng, Wenlin Cui, Qiang Liu, Wei
Huang, Yong Xiao, and Yongjun He. 2020. Taurus
Database: How to Be Fast, Available, and Frugal in the
Cloud. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (Port-
land, OR, USA) (SIGMOD ’20). Association for Com-
puting Machinery, New York, NY, USA, 1463–1478.
https://doi.org/10.1145/3318464.3386129

[15] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li,
Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen,
Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing
Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei
Hu, Jianwei Zhao, Yusong Gao, Songlu Cai, Yunyang
Zhang, and Jiawang Tong. 2021. PolarDB Serverless:
A Cloud Native Database for Disaggregated Data Cen-
ters. Association for Computing Machinery, New York,
NY, USA, 2477–2489. https://doi.org/10.1145/
3448016.3457560

[16] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and

14

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/CLOUD.2012.87
https://doi.org/10.1109/CLOUD.2012.87
https://doi.org/10.1145/3476886.3477510
https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/
https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/
https://devblogs.microsoft.com/cosmosdb/serverless-preview/
https://devblogs.microsoft.com/cosmosdb/serverless-preview/
https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-did-and-why-its-game-changer
https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-did-and-why-its-game-changer
https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-did-and-why-its-game-changer
https://doi.org/10.1109/IISWC.2007.4362193
https://doi.org/10.1109/IISWC.2007.4362193
https://doi.org/10.1145/2987550.2987561
https://doi.org/10.1145/2987550.2987561
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/3448016.3457560

Diana-Maria Popa. 2020. Firecracker: Lightweight Vir-
tualization for Serverless Applications. In 17th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 20). USENIX Association, Santa
Clara, CA, 419–434. https://www.usenix.org/
conference/nsdi20/presentation/agache

[17] 2014. AWS Lambda. https://aws.amazon.com/
lambda/. Accessed: 2022-10-15.

[18] 2016. Azure Functions. https://azure.microsoft.
com/en-us/services/functions/. Accessed: 2022-
10-15.

[19] 2017. Google Cloud Functions. https://cloud.
google.com/functions/. Accessed: 2022-10-15.

[20] 2016. IBM Cloud Functions. https://cloud.ibm.
com/functions/. Accessed: 2022-10-15.

[21] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Sto-
ica, and David A. Patterson. 2019. Cloud Programming
Simplified: A Berkeley View on Serverless Comput-
ing. CoRR abs/1902.03383 (2019). arXiv:1902.03383
http://arxiv.org/abs/1902.03383

[22] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta,
Michal Podstawski, and Torsten Hoefler. 2021. SeBS: A
Serverless Benchmark Suite for Function-as-a-Service
Computing. https://doi.org/10.1145/3464298.
3476133

[23] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. 2018. Peeking behind the
Curtains of Serverless Platforms. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18).
USENIX Association, USA, 133–145.

[24] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu,
and Torsten Hoefler. 2021. RFaaS: RDMA-Enabled
FaaS Platform for Serverless High-Performance Com-
puting. arXiv:2106.13859 [cs.DC]

[25] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and
Benjamin Recht. 2017. Occupy the Cloud: Dis-
tributed Computing for the 99%. CoRR abs/1702.04024
(2017). arXiv:1702.04024 http://arxiv.org/abs/
1702.04024

[26] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In Proceedings of

the 2018 USENIX Conference on Usenix Annual Techni-
cal Conference (Boston, MA, USA) (USENIX ATC ’18).
USENIX Association, USA, 923–935.

[27] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. 2011. Win-
dows Azure Storage: A Highly Available Cloud Stor-
age Service with Strong Consistency. In Proceed-
ings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles (Cascais, Portugal) (SOSP

’11). Association for Computing Machinery, New York,
NY, USA, 143–157. https://doi.org/10.1145/
2043556.2043571

[28] Werner Vogels. 2009. Eventually consistent. Commun.
ACM 52, 1 (2009), 40–44.

[29] Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, and Animesh
Trivedi. 2018. Understanding Ephemeral Stor-
age for Serverless Analytics. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 789–794.
https://www.usenix.org/conference/atc18/
presentation/klimovic-serverless

[30] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018.
Pocket: Elastic Ephemeral Storage for Serverless An-
alytics. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI’18). USENIX Association,
USA, 427–444.

[31] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali An-
war, Lukas Rupprecht, Dimitrios Skourtis, Vasily
Tarasov, Feng Yan, and Yue Cheng. 2020. Infini-
Cache: Exploiting Ephemeral Serverless Functions
to Build a Cost-Effective Memory Cache. In 18th
USENIX Conference on File and Storage Technolo-
gies (FAST 20). USENIX Association, Santa Clara, CA,
267–281. https://www.usenix.org/conference/
fast20/presentation/wang-ao

[32] 2021. Upstash: Serverless Database for Redis. https:
//upstash.com/redis. Accessed: 2022-01-30.

[33] Bruce Jay Nelson. 1981. Remote procedure call.
Carnegie Mellon University.

15

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.ibm.com/functions/
https://cloud.ibm.com/functions/
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3464298.3476133
http://arxiv.org/abs/1702.04024
http://arxiv.org/abs/1702.04024
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/2043556.2043571
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://upstash.com/redis
https://upstash.com/redis

[34] Maurice Herlihy and Nir Shavit. 2012. The Art of
Multiprocessor Programming, Revised Reprint (1st ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[35] Cary Gray and David Cheriton. 1989. Leases: An effi-
cient fault-tolerant mechanism for distributed file cache
consistency. ACM SIGOPS Operating Systems Review
23, 5 (1989), 202–210.

[36] Flavio Junqueira and Benjamin Reed. 2013. ZooKeeper:
Distributed Process Coordination (1st ed.). O’Reilly
Media, Inc.

[37] 2020. ZooKeeper Programmer’s Guide.
https://zookeeper.apache.org/doc/current/
zookeeperProgrammers.html. Accessed: 2022-10-
15.

[38] F. P. Junqueira, B. C. Reed, and M. Serafini. 2011. Zab:
High-performance broadcast for primary-backup sys-
tems. In 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems Networks (DSN). 245–256.
https://doi.org/10.1109/DSN.2011.5958223

[39] 2020. ZooKeeper Dynamic Reconfiguration.
https://zookeeper.apache.org/doc/current/
zookeeperReconfig.html. Accessed: 2022-10-15.

[40] Alexander Shraer, Benjamin Reed, Dahlia Malkhi,
and Flavio P. Junqueira. 2012. Dynamic Recon-
figuration of Primary/Backup Clusters. In 2012
USENIX Annual Technical Conference (USENIX ATC
12). USENIX Association, Boston, MA, 425–437.
https://www.usenix.org/conference/atc12/
technical-sessions/presentation/shraer

[41] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Cal-
heiros. 2010. InterCloud: Utility-Oriented Federation of
Cloud Computing Environments for Scaling of Applica-
tion Services. In Algorithms and Architectures for Par-
allel Processing, Ching-Hsien Hsu, Laurence T. Yang,
Jong Hyuk Park, and Sang-Soo Yeo (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 13–31.

[42] Rainer Schiekofer, Johannes Behl, and Tobias Distler.
2017. Agora: A Dependable High-Performance Co-
ordination Service for Multi-cores. In 2017 47th An-
nual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). 333–344. https:
//doi.org/10.1109/DSN.2017.23

[43] Raluca Halalai, Pierre Sutra, Étienne Rivière, and Pascal
Felber. 2014. ZooFence: Principled Service Partitioning
and Application to the ZooKeeper Coordination Service.
In 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems. 67–78. https://doi.org/10.
1109/SRDS.2014.41

[44] Benjamin Satzger, Waldemar Hummer, Christian
Inzinger, Philipp Leitner, and Schahram Dustdar. 2013.
Winds of Change: From Vendor Lock-In to the Meta
Cloud. IEEE Internet Computing 17, 1 (2013), 69–73.
https://doi.org/10.1109/MIC.2013.19

[45] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-
Artigas, Gil Vernik, Pol Roca-Llaberia, and Aitor Ar-
jona. 2021. Toward Multicloud Access Transparency in
Serverless Computing. IEEE Software 38, 1 (2021), 68–
74. https://doi.org/10.1109/MS.2020.3029994

[46] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-
Wong, and Mohammad Shahrad. 2021. On Merits and
Viability of Multi-Cloud Serverless. Association for
Computing Machinery, New York, NY, USA, 600–608.
https://doi.org/10.1145/3472883.3487002

[47] Gojko Adzic and Robert Chatley. 2017. Serverless Com-
puting: Economic and Architectural Impact. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (Paderborn, Germany) (ES-
EC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 884–889. https://doi.org/
10.1145/3106237.3117767

[48] Dana Petcu. 2011. Portability and Interoperability be-
tween Clouds: Challenges and Case Study. In Towards a
Service-Based Internet, Witold Abramowicz, Ignacio M.
Llorente, Mike Surridge, Andrea Zisman, and Julien
Vayssière (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 62–74.

[49] Leslie Lamport. 1978. Time, Clocks, and the Ordering
of Events in a Distributed System. Commun. ACM 21, 7
(July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[50] 2021. Using AWS Lambda with Amazon SQS.
https://docs.aws.amazon.com/lambda/latest/
dg/with-sqs.html. Accessed: 2022-10-15.

[51] 2021. Using Expressions in DynamoDB.
https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Expressions.html.
Accessed: 2022-10-15.

[52] David Jackson and Gary Clynch. 2018. An Investigation
of the Impact of Language Runtime on the Performance
and Cost of Serverless Functions. In 2018 IEEE/ACM
International Conference on Utility and Cloud Comput-
ing Companion (UCC Companion). 154–160. https:
//doi.org/10.1109/UCC-Companion.2018.00050

[53] 2021. Kazoo: high-level Python library for ZooKeeper.
https://github.com/python-zk/kazoo. Accessed:
2022-10-15.

16

https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html
https://doi.org/10.1109/DSN.2011.5958223
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://doi.org/10.1109/DSN.2017.23
https://doi.org/10.1109/DSN.2017.23
https://doi.org/10.1109/SRDS.2014.41
https://doi.org/10.1109/SRDS.2014.41
https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1109/UCC-Companion.2018.00050
https://github.com/python-zk/kazoo

[54] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Jose M.
Faleiro. 2020. A Fault-Tolerance Shim for Serverless
Computing. In Proceedings of the Fifteenth European
Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for Computing Machinery,
New York, NY, USA, Article 15, 15 pages. https:
//doi.org/10.1145/3342195.3387535

[55] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. 2020. Fault-tolerant
and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 1187–
1204. https://www.usenix.org/conference/
osdi20/presentation/zhang-haoran

[56] 2021. AWS SQS High Throughput
Mode for SQS. https://aws.amazon.
com/about-aws/whats-new/2021/05/
amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/.
Accessed: 2022-10-15.

[57] 2020. Using AWS Lambda with Amazon Dy-
namoDB. https://docs.amazonaws.cn/en_us/
lambda/latest/dg/with-ddb.html. Accessed:
2022-10-15.

[58] Joao Carreira, Pedro Fonseca, Alexey Tumanov, An-
drew Zhang, and Randy Katz. 2019. Cirrus: A Server-
less Framework for End-to-End ML Workflows. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’19). Association for
Computing Machinery, New York, NY, USA, 13–24.
https://doi.org/10.1145/3357223.3362711

[59] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gus-
tavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu,
and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. Association for Comput-
ing Machinery, New York, NY, USA, 857–871. https:
//doi.org/10.1145/3448016.3459240

[60] Pedro Garcia Lopez, Aleksander Slominski, Michael
Behrendt, and Bernard Metzler. 2021. Serverless Pre-
dictions: 2021-2030. arXiv:2104.03075 [cs.DC]

[61] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Effi-
cient and Scalable Serverless Computing forLatency-
Sensitive, Interactive Microservices. In Proceedings
ofthe 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’21). Association for Computing
Machinery, New York, NY, USA. https://doi.org/
10.1145/3445814.3446701

[62] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
2019. Narrowing the Gap Between Serverless and Its
State with Storage Functions. In Proceedings of the
ACM Symposium on Cloud Computing (Santa Cruz, CA,
USA) (SoCC ’19). Association for Computing Machin-
ery, New York, NY, USA, 1–12. https://doi.org/
10.1145/3357223.3362723

[63] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.
Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow.
13, 12 (July 2020), 2438–2452. https://doi.org/
10.14778/3407790.3407836

[64] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard
París, Pierre Sutra, and Pedro García-López. 2019. On
the FaaS Track: Building Stateful Distributed Applica-
tions with Serverless Architectures. In Proceedings of
the 20th International Middleware Conference (Davis,
CA, USA) (Middleware ’19). Association for Comput-
ing Machinery, New York, NY, USA, 41–54. https:
//doi.org/10.1145/3361525.3361535

[65] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful
Serverless Computing with Shared Logs. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operat-
ing Systems Principles (Virtual Event, Germany) (SOSP

’21). Association for Computing Machinery, New York,
NY, USA, 691–707. https://doi.org/10.1145/
3477132.3483541

[66] Simon Shillaker and Peter Pietzuch. 2020. Faasm:
Lightweight Isolation for Efficient Stateful Serverless
Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association,
419–433. https://www.usenix.org/conference/
atc20/presentation/shillaker

[67] Marcin Copik, Alexandru Calotoiu, Rodrigo Bruno, Ro-
man Böhringer, and Torsten Hoefler. [n.d.]. Process-as-
a-Service: FaaSt Stateful Computing with Optimized
Data Planes. ([n. d.]). https://spcl.inf.ethz.ch/
Publications/index.php?pub=458 Accessed: 2022-
10-15.

[68] Ioannis Konstantinou, Evangelos Angelou, Christina
Boumpouka, Dimitrios Tsoumakos, and Nectarios
Koziris. 2011. On the Elasticity of NoSQL Databases
over Cloud Management Platforms. In Proceedings
of the 20th ACM International Conference on Infor-
mation and Knowledge Management (Glasgow, Scot-
land, UK) (CIKM ’11). Association for Computing Ma-
chinery, New York, NY, USA, 2385–2388. https:
//doi.org/10.1145/2063576.2063973

17

https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://docs.amazonaws.cn/en_us/lambda/latest/dg/with-ddb.html
https://docs.amazonaws.cn/en_us/lambda/latest/dg/with-ddb.html
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://spcl.inf.ethz.ch/Publications/index.php?pub=458
https://spcl.inf.ethz.ch/Publications/index.php?pub=458
https://doi.org/10.1145/2063576.2063973
https://doi.org/10.1145/2063576.2063973

[69] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase.
2010. Automated Control for Elastic Storage. In Pro-
ceedings of the 7th International Conference on Auto-
nomic Computing (Washington, DC, USA) (ICAC ’10).
Association for Computing Machinery, New York, NY,
USA, 1–10. https://doi.org/10.1145/1809049.
1809051

[70] Francisco Cruz, Francisco Maia, Miguel Matos, Rui
Oliveira, João Paulo, José Pereira, and Ricardo Vilaça.
2013. MeT: Workload Aware Elasticity for NoSQL. In
Proceedings of the 8th ACM European Conference on
Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York,
NY, USA, 183–196. https://doi.org/10.1145/
2465351.2465370

[71] Ashraf Mahgoub, Paul Wood, Alexander Medoff, Sub-
rata Mitra, Folker Meyer, Somali Chaterji, and Saurabh
Bagchi. 2019. SOPHIA: Online Reconfiguration of
Clustered NoSQL Databases for Time-Varying Work-
loads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA,
223–240. https://www.usenix.org/conference/
atc19/presentation/mahgoub

[72] Sean Barker, Yun Chi, Hakan Hacigümüs, Prashant
Shenoy, and Emmanuel Cecchet. 2014. ShuttleDB:
Database-Aware Elasticity in the Cloud. In 11th Inter-
national Conference on Autonomic Computing (ICAC
14). USENIX Association, Philadelphia, PA, 33–43.
https://www.usenix.org/conference/icac14/
technical-sessions/presentation/barker

[73] Christopher Stewart, Aniket Chakrabarti, and Rean
Griffith. 2013. Zoolander: Efficiently Meeting
Very Strict, Low-Latency SLOs. In 10th Interna-
tional Conference on Autonomic Computing (ICAC
13). USENIX Association, San Jose, CA, 265–277.
https://www.usenix.org/conference/icac13/
technical-sessions/presentation/stewart

[74] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. 2016. Consensus in a Box: Inexpensive Coor-
dination in Hardware. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 425–438.
https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/istvan

[75] Elias Stalder. 2020. Zoo-Spinner: A Network-
Accelerated Consensus Protocol. Master’s thesis. ETH
Zurich.

[76] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calo-
toiu, Thomas Benz, Timo Schneider, Jakub Beránek,
Luca Benini, and Torsten Hoefler. 2020. PsPIN: A

high-performance low-power architecture for flexible
in-network compute. arXiv preprint arXiv:2010.03536
(2020).

18

https://doi.org/10.1145/1809049.1809051
https://doi.org/10.1145/1809049.1809051
https://doi.org/10.1145/2465351.2465370
https://doi.org/10.1145/2465351.2465370
https://www.usenix.org/conference/atc19/presentation/mahgoub
https://www.usenix.org/conference/atc19/presentation/mahgoub
https://www.usenix.org/conference/icac14/technical-sessions/presentation/barker
https://www.usenix.org/conference/icac14/technical-sessions/presentation/barker
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan

	Introduction
	Function-as-a-Service (FaaS)
	Background
	Serverless Components

	From ZooKeeper to FaasKeeper
	ZooKeeper
	Challenges in FaaSKeeper
	FaaSKeeper Design

	Building FaasKeeper
	Client
	Writer
	Distributor
	Storage
	Heartbeat
	Compatibility with ZooKeeper

	Evaluation
	Synchronization primitives
	Serverless Queues
	Read Operations
	Write Operations
	Service Monitoring

	FaaSKeeper Cost
	Building Serverless Services
	Areas of improvement
	Discussion

	Related Work
	Conclusions
	ZooKeeper
	FaaSKeeper Consistency Model

