
FaaSKeeper: Learning from Building Serverless Services with
ZooKeeper as an Example

Marcin Copik

ETH Zurich

Switzerland

marcin.copik@inf.ethz.ch

Alexandru Calotoiu

ETH Zurich

Switzerland

alexandru.calotoiu@.inf.ethz.ch

Pengyu Zhou

University of Toronto

Canada

ericpengyu.zhou@mail.utoronto.ca

Konstantin Taranov

Microsoft

Switzerland

kotaranov@microsoft.com

Torsten Hoefler

ETH Zurich

Switzerland

htor@inf.ethz.ch

ABSTRACT
FaaS (Function-as-a-Service) revolutionized cloud computing by

replacing persistent virtual machines with dynamically allocated

resources. This shift trades locality and statefulness for a pay-as-

you-go model more suited to variable and infrequent workloads.

However, the main challenge is to adapt services to the serverless

paradigm while meeting functional, performance, and consistency

requirements. In this work, we push the boundaries of FaaS com-

puting by designing a serverless variant of ZooKeeper, a centralized

coordination service with a safe and wait-free consensus mecha-

nism. We define synchronization primitives to extend the capabil-

ities of scalable cloud storage and outline a set of requirements

for efficient computing with serverless. In FaaSKeeper, the first

coordination service built on serverless functions and cloud-native

services, we explore the limitations of serverless offerings and pro-

pose improvements essential for complex and latency-sensitive

applications. We share serverless design lessons based on our expe-

riences of implementing a ZooKeeper model deployable to clouds

today. FaaSKeeper maintains the same consistency guarantees and

interface as ZooKeeper, with a serverless price model that lowers

costs up to 110-719x on infrequent workloads.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering → Software architectures; Cloud com-
puting.

KEYWORDS
serverless, function-as-a-service, faas, cloud computing, zookeeper

ACM Reference Format:
Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov,

and Torsten Hoefler. 2024. FaaSKeeper: Learning from Building Serverless

Services with ZooKeeper as an Example. In International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’24), June 3–7,
2024, Pisa, Italy. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3625549.3658661

HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’24), June
3–7, 2024, Pisa, Italy, https://doi.org/10.1145/3625549.3658661.

ZooKeeper Cloud Storage FaaSKeeper
� Semi-automatic, ≥ 3 VMs Automatic Automatic

 Not possible. Only storage fees Only storage fees
� Pay upfront Pay-as-you-go Pay-as-you-go
è Depends on cluster size Cloud SLA Cloud SLA
M Linearized writes Strong consistency Linearized writes
Watch events None Watch events

ã
Sequential nodes,

Conditional updates.
Sequential nodes,

conditional updates conditional updates

q Ephemeral nodes None Ephemeral nodes

Table 1: FaaSKeeper combines the best features of cloud stor-
age: scale–to–zero (�
) and reliability (è), with ZooKeeper’s
consistency (M), push notifications (#), and support for con-
currency and fault tolerance (ãq).

FaaSKeeper implementation: https://github.com/spcl/faaskeeper

FaaSKeeper Artifact: https://github.com/spcl/faaskeeper-paper-artifact

Paper version published at ACM HPDC 2024: https://doi.org/10.1145/
3625549.3658661

1 INTRODUCTION
FaaS is a new paradigm that combines elastic and on-demand re-

source allocation with an abstract programming model. In FaaS, the

cloud provider invokes stateless functions, freeing the user from

managing the software and hardware resources. Flexible resource

management and a pay-as-you-go billing help with the problem

of low server utilization caused by resource overprovisioning for

the peak workload [16, 21, 53]. These improvements come at the

cost of performance and reliability: functions are not designed for

high-performance applications and require storage to support state

and communication. However, stateful applications can benefit

from serverless services [49], and even databases adapt on-demand

offerings to handle infrequent workloads more efficiently [1, 2, 7].

Apache ZooKeeper [43] is a prime example of a system that has

been widely adopted by many applications but is not available as a

serverless service. ZooKeeper provides a coordination service for

distributed applications to control the shared state and guarantee

data consistency and availability. Compared to key-value storage,

ZooKeeper adds semantics of total order with linearizable writes,

atomic updates, and ordered push notifications (Table 1).

Cloud services are expected to match the temporal and geograph-

ical variability of production workloads [32, 39, 67]. Workloads

are often bursty and experience rapid changes: maximum system

https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3625549.3658661
https://github.com/spcl/faaskeeper
https://github.com/spcl/faaskeeper-paper-artifact
https://doi.org/10.1145/3625549.3658661
https://doi.org/10.1145/3625549.3658661

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

utilization can be multiple times higher than even the 99th per-

centile [39, 75]. However, the static ZooKeeper architecture make

the readjustment to the workload difficult, and ZooKeeper is often

underutilized in practical deployments (Section 5.1). Even when

ZooKeeper is co-located as a part of a larger system, it still con-

tributes to the overprovisioning of resources for the peak workload.

Serverless applications built on cloud storage could adapt to diurnal

changes in workload and handle thousands of requests at a lower

cost. A serverless service with the same consistency as ZooKeeper

would offer the opportunity to consolidate variable workloads, help-

ing users and cloud operators increase efficiency. Unfortunately,

the path to serverless for such distributed applications is unclear

due to the restricted and vendor-specific nature of FaaS.

In this work, we chart the path needed to build a complex
serverless service — serverless ZooKeeper. We choose ZooKeeper

because it is a complex, reliable service, and therefore challenges

both the capabilities and the limitations of inherently unreliable

FaaS systems, which lack fast communication channels, ordering,

and statefulness. First, we decouple the system from the application

state and compute from storage tasks [25, 34, 35], Similar to past

results in building a database on cloud storage [22], we build a

serverless architecture on top of auto-scalable storage, focusing

on a cloud-native design that requires no user-managed and cus-

tom solutions, but is instead deployable to clouds available today

(Section 3). We focus on the semantics of building components and

abstract away differences in interfaces and services, helping design

cloud-agnostic systems that are portable between clouds (Section 4).

Finally, we introduce and evaluate FaaSKeeper, the first co-

ordination service with a serverless scaling and billing model. In

FaaSKeeper, we combine the best of two worlds: the ordered trans-

actions and active notifications of ZooKeeper with cloud storage’s

elasticity and high reliability (Table 1). We implement ZooKeeper’s

model and API in FaaS, with a prototype of the provider-agnostic

system on AWS and GCP (Section 4), demonstrating consensus in a

serverless application on top of consistent and replicated cloud stor-

age. FaaSKeeper offers a pay-as-you-go cost model while upholding

consistency and ordering properties (Section 5.3.4). Another goal of

this paper is to demonstrate the fundamental trade-offs of moving

data-intensive services to new cloud paradigms such as serverless.

We explore design choices in storing and updating cloud data, prov-

ing the cost and resource efficiency of serverless while enumerating

limitations of current serverless offerings (Section 6).

In summary, we make the following contributions:

• Exploration of challenges and limitations in serverless and

lessons for designing cloud-native services with synchroniza-

tion, message ordering, and event-based communication.

• The first complex serverless solution that offers the same

level of service as its IaaS counterpart without provisioning.

• An API-compatible implementation of the ZooKeeper consis-

tency model that achieves up to 60 times lower costs against

the smallest ZooKeeper deployment.

2 BACKGROUND AND MOTIVATION
While serverless systems differ between cloud providers, they can

represented as fundamental building blocks needed to design server-

less services (Section 2.1). These are necessary to implement in

Function
Manager

Function Server

Instance

Cloud Services

Key-Value Store

2 3

Object Store 4

Trigger

Queue5

G
a
te

w
a
y

1010
1

Figure 1: A high-level overview of a FaaS platform.

serverless the distributed coordination model of ZooKeeper (Sec-

tion 2.2).

2.1 Serverless Components
Serverless functions replace persistent virtual machines with elas-

tic and dynamic execution of fine-grained tasks (Figure 1). The

management of the software and hardware stack becomes the sole

responsibility of the cloud provider, and users are charged only

for the time and resources consumed during the function execu-

tion (pay-as-you-go). In place of cloud resource management and

orchestration systems, functions offer various triggers to process
internal cloud events and external REST requests (1). A function

scheduler (2) routes the invocation to a selected server [14], and

the function executes within an isolated sandbox on a multi-tenant

server (3). The cloud scheduler aims to increase performance by

reusing sandboxes, since warm execution in an existing container

is faster than cold invocations that wait for sandbox allocation.

Cloud Storage. Cloud operators offer storage solutions that

differ in elasticity, costs, reliability, and performance.

Object. Object storage is designed to store large amounts of data for

a long time while providing high throughput and durability (4).

The cloud operator manages replication across multiple instances

in physically and geographically separated data centers, providing

high availability and reliability. Modern object stores offer strong

consistency on read operations [24], guaranteeing that successful

writes are immediately visible to other clients. The billing model is

linear in the data amount and the number of performed operations.

Key-Value. Nonrelational databases are common in serverless appli-

cations (5), and they also offe serverless billing where the costs

depend only on the stored data and operations performed. In addi-

tion to strong consistency, read operations can be executed with

eventual consistency [76], trading consistency for lower costs, im-

proved latency, and higher availability. They can offer optimistic

concurrency with conditional updates that apply atomic operations

to existing attributes.

Other. FaaS can employ additional storage systems, but these often

introduce resource provisioning. Ephemeral storage [54, 55] is de-
signed to meet serverless requirements for scalability and flexibility.

In-memory caches bring lower latency and are being adapted to

serverless scalability [10, 77].

FunctionsWe specify three distinct classes of functions that are

necessary to implement a serverless application or a microservice

and have divergent interfaces and fault-tolerance models — their se-

mantics express different programming language constructs. A free
function is not bound to any cloud resource and is invoked via an

API request. It can be invoked synchronously anytime, by anyone,

from any location, as long as the authorization succeeds and the

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

Send Write
Requests

Send Change
Transaction

Atomic
Broadcast

Distribute
Changes

Handle Reads,
Watches, Heartbeat

Followers

Leader

FollowersZK Client ZK Client

(a) ZooKeeper processes requests by a set of servers following a leader.

Send Write
Requests

Handle Read
Requests

Followers
Leader

𝛌

𝛌
Process

Transaction
Distribute
Changes

𝛌 𝛌𝛌
Watch Heartbeat

(b) FaaSKeeper maps ZooKeeper to stateless functions and storage.

Figure 2: FromZooKeeper servers to functions in FaaSKeeper.

constraints on concurrent invocations are satisfied. Free functions

express the semantics of remote procedure calls [62]. The event-

driven programming paradigm is implemented by providing event
functions to react to specific changes in cloud storage, databases,

or queues. There, API requests are replaced by sending a message to

a queue that triggers the function. Furthermore, using such a proxy

allows coalescing many invocations into a larger batch and preserv-

ing their internal ordering. From the client’s point of view, sending

a message to a queue-triggered function replaces passing requests

over a TCP connection to a server of a non-serverless service. We

expect each trigger to have configurable batching and concurrency

of invocations, as the former improves throughput and the latter

is essential to ensure FIFO order. Semantically, we interpret these

functions as remote asynchronous callbacks to events.

Functions can be launched to perform regular routines such as

garbage collection and detecting system faults. Scheduled func-
tions are the serverless counterpart of a cron job in Unix-based

operating systems. In the event of an unexpected failure, the cloud

should provide a retry policy with a finite number of repetitions.

Users should be notified of repeated errors to detect system-wide

failures, even when they do not directly control such functions.

Synchronization Primitives Functions operating in parallel

require fundamental synchronization primitives to safely modify a

global state [42], as it is the case in FaaSKeeper. In serverless, such

primitives operate on storage instead of shared memory.

A timed lock extends a regular lock with a limited holding time,

similarly to leases [40]. It is a necessary feature to prevent a system-

wide deadlock caused by a failure of an ephemeral function. Lock

operations are submittedwith a user timestamp. The lock is acquired
if no timestamp is present or when the difference between the

existing and new timestamp is greater than a predefined maximum

time. To prevent accidental overwriting after losing the lock, each

update to a locked resource compares the stored timestamp with

the user value. The lock release removes the timestamp. An atomic
counter supports single-step updates while atomic list provides
safe expansion and truncation.

Elastic
Scaling

FaaS

𝛌𝛌
Compute

Tasks

Disaggregate Communicate

Data
Storage

Object
Key-Value

IaaS Service

Compute &
Storage

Map

𝛌Free? Event?
Scheduled?

Synchronization?
(FIFO) Queues?

𝛌 𝛌

Optimize

Data sizes?
Cost?
Latency?

Figure 3: Workflow for designing a serverless service. The de-
coupled compute and storage are connected to cloud services,
and later optimized for cost and performance (Section 4).

2.2 ZooKeeper
ZooKeeper guarantees data persistence and high read performance

by allocating replicas of the entire system on multiple servers [5,

43, 51]. ZooKeeper ensemble consists of followers and an elected

leader (Figure 2a), whose roles are processing write requests with

the help of the ZAB atomic broadcast protocol [52]. The smallest

ZooKeeper deployment uses three servers, where two are required

to accept a change and failure of one can be tolerated. While adding

more servers increases reliability, it hurts write performance.

In ZooKeeper, changing the deployment size involved rolling
restarts, a manual and error-prone process [4]. While it has been

later enhanced with dynamic reconfiguration [70], it still requires

manual effort [4], and reconfiguration causes significant perfor-

mance degradationwhen deploying across geographical regions [67].

ZooKeeper splits the responsibilities between the client library,

follower servers, and the elected leader. User data is stored in nodes,
which create a tree structure with parents and children. Clients send

requests to a server through a session mechanism that guarantees

the FIFO order of processing requests, achieved over reliable and

fast TCP connections. Read requests are resolved using a local data

replica, while write operations are forwarded to the leader. The

leader updates nodes, manages the voting process, and propagates

changes to other servers. ZooKeeper defines the order of transac-

tions with a monotonically increasing counter zxid. While requests

from a single client cannot be reordered, the order of operations

between different sessions is not specified. Clients register watches
on a node to receive a push notification when that node changes.

Finally, clients exchange heartbeat messages with a server to keep

the session alive.

Consistency. ZooKeeper implements sequential consistency

guarantees with four main requirements (Z). All operations of a
single client are executed atomically (Z1), in FIFO order, and

writes are linearized (Z2). The order of transactions is total and
global. Thus, all clients have a single system image (Z3) and
observe the same order of updates. Watches ensure that clients

know about a change before observing subsequent updates since

notifications are ordered with read and write operations (Z4).
Formal definitions can be found in the Appendix A.

3 FROM ZOOKEEPER TO FAASKEEPER
The design and implementation of ZooKeeper are incompatible with

the serverless paradigm and require us to build a reliable service on

top of a fundamentally unreliable FaaS foundation. Therefore, we

designed FaaSKeeper from the ground up to replicate the complex

ZooKeeper functionality and overcome the inherent challenges of

the serverless world. We follow a general workflow for turning

an IaaS system into FaaS (Figure 3): disaggregate compute and

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

data, replace servers with cloud storage and stateless functions,

and let the new components communicate. By decomposing the

system into separate cloud services - functions, storage, and queues

(Figure 2b) - we adjust the resource consumption to throughput and

shut down processing instances when they are no longer needed.

While the transition of many applications and microservices to

serverless might be straightforward, ZooKeeper has non-trivial

ordering and data visibility requirements. Thus, we design custom

synchronization, queue communication, and new algorithms to

implement ZooKeeper’s data model in the serverless world.

We describe each component of FaaSKeeper by following the

path of a client performing a write operation, then discuss all ad-

ditional components. We map the computational logic of follower
and leader servers to separate functions (Section 3.1, 3.2). Since

functions are stateless, the entire state of a system must be stored

in a replicated cloud storage (Section 3.3). Serverless has new chal-

lenges: it does not have direct and ordered communication channels

such as TCP connection, and we need to use ordered cloud queues

and extend functions with logic to handle watch notifications and

guarantee consistency. Different types of storage for system and

user data means we have separate data read and write paths, requir-

ing extended system counters (Section 3.4) and additional ordering

in FaaSKeeper client library (Section 3.5). Finally, the periodic heart-

beat verification is mapped to a scheduled function (Section 3.6). A

detailed discussion on how FaaSKeeper provides the same consis-

tency guarantees as Zookeeper can be found in Appendix B.

3.1 Follower
FaaSKeeper replaces ZooKeeper servers preparing update transac-

tions with concurrently operating follower functions. A cloud

queue invokes functions, and the function processes requests of

each client in a FIFO order (Algorithm 1). The follower acquires a

lock on the node (➀) to prevent concurrent updates, verifies the

correctness of the operation (➁), e.g., checking that a newly created

node does not exist and the conditional update can be applied. The

validated and confirmed changes are propagated through a FIFO

queue to the event leader function (➂), ensuring that the changes

are not reordered. Finally, the new node version is secured in the

system storage (➃) and extended with the current transaction’s

index. This operation is combined with a lock release and applied

conditionally, and no changes are made if the lock expires. At that

point, the client request has been committed to the system (Z1),
and pushing to the queue before committing ensures that the leader

will propagate the changes to the storage visible by users. In some

operations, the ZooKeeper model requires locking more than one

node — for example, creating a node also requires locking the par-

ent node. There, the commit creates a transaction from multiple

atomic operations that will fail or succeed simultaneously.

Consecutive requests cannot be reordered, but the first stages of

a request (➀, ➁) can be executed while its predecessor is committed

to the storage (➂, ➃). Thus, the follower function is a sequence of

operations on the system storage that can be pipelined.
Implementation. Each client session is assigned a queue to send

new requests and invoke processing functions. We select a cloud

queue that fulfills the following requirements: (a) invokes functions

Algorithm 1 A pseudocode of the new follower function.

function Follower(updates)

for each client, node, op, args in updates do
lock, oldData = Lock(node) ➀
if not IsValid(op, args, oldData) then ➁

Notify(client, FAILURE)

continue
𝑡𝑥𝑖𝑑 = LeaderPush(client, lock, node, newData) ➂
CommitUnlock(lock, node, op, args, 𝑡𝑥𝑖𝑑) ➃

Algorithm 2 A pseudocode of the new leader function.

function Leader(state, updates)

for each region in parallel do
for each client, lock, node, data, 𝑡𝑥𝑖𝑑 , followerID in updates do

nodeStatus = GetNode(node) ➊
if nodeStatus.transactions[0] != 𝑡𝑥𝑖𝑑 then

if not TryCommit(lock, node) then ➋
Notify(client, FAILURE)

continue
DataUpdate(region, data, 𝑠′ , 𝑒𝑝𝑜𝑐ℎ) ➌
w = Watches(node)

InvokeWatch(region, w, WatchCallback) ➍
𝑒𝑝𝑜𝑐ℎ[𝑟𝑒𝑔𝑖𝑜𝑛] = 𝑒𝑝𝑜𝑐ℎ[𝑟𝑒𝑔𝑖𝑜𝑛] + 𝑤

Notify(client, SUCCESS)

PopTransaction(node) ➎
WaitAll(WatchCallback)

functionWatchCallback(epoch, region, w)

𝑒𝑝𝑜𝑐ℎ[𝑟𝑒𝑔𝑖𝑜𝑛] = 𝑒𝑝𝑜𝑐ℎ[𝑟𝑒𝑔𝑖𝑜𝑛] − 𝑤 ➏

on messages, (b) upholds FIFO order, (c) allows limiting the concur-

rency of functions to a single instance, (d) support batching of data

items, and (e) assigns monotonically increasing values to consec-

utive messages (txid). The requirements guarantee that requests

are not reordered (Z3), while (d) ensures efficient processing of

frequent invocations in a busy system.

3.2 Leader
The leader function (Algorithm 2) delivers updates to the cloud

storage visible by users, similar to ZooKeeper’s leader that dis-

tributes confirmed changes to servers handling read requests. A

FIFO queue between followers and leader is necessary to ensure

that changes in user data stores are not reordered since concur-

rent updates could violate consistency (Z3), and notifications must

be delivered in order (Z4). Since a follower cannot push to the

queue and commit the node atomically, leader verifies that the node

has been committed successfully (➋). In the case of the follower’s

failure or unlikely interleaving between both functions, the leader

tries to commit nodes when possible to improve the system avail-

ability. Otherwise, the update is rejected - the request has never

been committed, and a failure of one follower function does not

impact the system consistency. Then, the data is replicated to user

storage (➌), and the leader sends watch notifications (➍). Com-

mitting changes to the user-visible storage must be serialized in

ZooKeeper’s consistency model, and clients cannot observe newer

data before receiving watch notifications (Z4). However, this pro-
cess can be parallelized across cloud regions. Once all steps are

completed, the current transaction is removed from the node (➎).

The per-node transaction index allows the cloud queue to retry the

function invocation automatically after a failure.

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

Implementation. When committing data to cloud storage, we

attempt to update only changed data to avoid unnecessary costs and

network traffic. While early visions of object storage assumed that

write operations can access arbitrary offsets in an object [17, 38],

these are not widely available in modern clouds. Thus, even if a

change involves only part of node’s metadata, the leader function

needs to download entire node first to conduct the update operation.

3.3 Storage
ZooKeeper achieves high availability with multiple replicas of the

dataset. We achieve the same goal by using automatically repli-

cated and scalable cloud storage, which helps us to simplify the

control plane of our system. We distinguish two types of storage

in FaaSKeeper: system storage used by followers and leader to

coordinate and modify the system state, and user storage opti-

mized to handle read requests from FaaSKeeper clients in a scalable

and cost-efficient manner. System storage contains the current

timestamp, all active sessions, and the list of all data nodes to allow

locking by follower functions. Data storage is indexed by node

paths, and each item corresponds to a single ZooKeeper node, with

user data, modification timestamps, and a list of node children.

When selecting an instance of cloud storage for FaaSKeeper, we

consider not only the cost and performance but also the techni-

cal capabilities of the services. Eventually consistent reads neither

guarantee read–your–write consistency [76], nor consider a depen-

dency between different writes, breaking ZooKeeper guarantees

(Linearized Writes Z2 , Single System Image Z3). Therefore, we
must use cloud storage that supports strongly consistent reads.

Synchronization Primitives are implemented in system storage

and require that each update to a single item is atomic. Atomic

counters are implemented as a single number, and an update adds

a numerical constant to the current value. Atomic lists are repre-

sented as a list of numbers with an update that adds and removes

elements from the list. Finally, the timed lock uses conditional up-

dates to verify that each locking and unlocking operation does

not invalidate any existing locks. A lock is stored in the node as a

timestamp, allowing other functions to override an expired lock and

prevent deadlocks caused by a failure in a function. Each operation

requires a single write to a single item.

Timestamps provide an order over system transactions. To guaran-

tee the consistency of updates, we need to define a total ordering of

modifications in the system. on the "happened before" relation [58].

The system state counter 𝑡𝑥𝑖𝑑 is an integer that represents the

timestamp of each change in FaaSKeeper, similar to the zxid state

counter in ZooKeeper and provides total order over the system.

Each transaction modifies the state counter atomically, providing

a total ordering of all processed modification requests. The epoch
counter is specific to FaaSKeeper and contains watch notifications

pending while the transaction represented by the state counter was

in progress. Counters are implemented using the atomic counters

and lists (Section 2.1).

3.4 Watch Notifications
When a ZooKeeper client changes a node that has watches attached

to it, the system sends a notification to watch owners, who must

not see new data before receiving a notification. In serverless, the

path of reads and writes are different, a significant departure from

ZooKeeper, where all reads and writes are processed by the same en-

tity, and the underlying TCP connection guarantees order. Instead,

we use the additional region-wide epoch counters to provide an

ordering between notifications and changes applied to the system.

Each watch is assigned a unique identifier, and multiple clients can

be assigned to a single watch instance. When a node is updated, the

leader attaches to it the epoch counter containing the identifiers of

all watch notifications still being delivered while the update was

taking place. Once the client library finds the counter in a read node,

it checks the epoch counter for any of the watches registered by

this client. In such a case, the read operation must be stalled until

the pending notification is delivered, preventing the client from

seeing updated data before observing all preceding notifications.

3.5 Client
FaaSKeeper implements the same standard read and write opera-

tions as ZooKeeper and offers clients an API similar to ZooKeeper.

Read operations are served with a direct access to the cloud stor-

age.Write operations are sent to follower functions through a cloud

queue. Eliminating the server from the data access path provides

lower operating costs, but puts on the client the responsibility of or-

dering results with watch notifications. Thus, we replace the event

coordination on ZooKeeper servers with a lightweight queue on the

client: a read following a write cannot return before its predecessor.

Implementation. Each client runs three background threads to

send requests, manage incoming responses, and order results. Epoch

counters ensure the ordering of writes and notifications, and queues

replace the ordered TCP communication of ZooKeeper.

3.6 Heartbeat
In addition to ordering guarantees, sessions play another significant

role in ZooKeeper: their status defines the lifetime of ephemeral

nodes, which are automatically deleted upon the closure of their

owner’s session.We replace the heartbeatmessageswith a scheduled
heartbeat function to prune inactive sessions and notify clients

that the system is online.

Implementation. The cloud system periodically invokes the

function which sends in parallel heartbeat messages to clients that

own ephemeral nodes. If a client does not respond before a timeout,

the function begins an eviction process for the session by placing

a deregistration request in the processing queue. The function is

parameterized with the heartbeat frequency parameter 𝐻𝑓 𝑟 .

3.7 Summary
To finalize the serverless redesign of an IaaS service, we need to

incorporate an elastic scaling model and ensure cloud portability.

Elastic resource allocation. To accommodate the temporal and

spatial irregularity of workloads [39], FaaSKeeper attempts to scale

the resource allocation linearly with the demand. In the case of a

shutdown, the user should pay only for keeping the data in the cloud.
Therefore, we use the pay-as-you-go billing scheme of the storage

and queue services, dependent only on the number of operations

performed and not on the resources provisioned.

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

Requirements AWS Azure Google Other

Function
Free ✓ ✓ ✓

—Event ✓ ✓ ✓
Scheduled ✓ ✓ ✓

User S3 Blob Storage Storage Redis

Store Consistency ✓ ✓ ✓ ✓✳
Throughput ✓ ✓ ✓ ✓✳

DynamoDB CosmosDB Datastore Redis

System Reliability ✓ ✓ ✓ ✗
Store Consistency ✓ ✓ ✓ ✓✳

Concurrency

Primitives

Conditional Optimistic Transactions Lua

Updates Locking Scripts

Queue
SQS Service Bus Pub/Sub

—FIFO ✓ ✓ ✓
Serverless ✓ ✓✳ ✓

Table 2: Mapping FaaSKeeper design to cloud and user-
managed services. ✳ indicates additional constraints.

Cloud agnosticity. Vendor lock-in [65] is a serious limitation in

serverless [18, 64], and dependency on queueing and storage ser-

vices is of particular concern [13]. FaaS applications implemented

in a specific cloud often include provider-specific solutions, requir-

ing a redesign and reevaluation of the architecture when porting

to another cloud. In the cloud-agnostic design of FaaSKeeper, we

define only the requirements for each service used and introduce

new abstractions such as synchronization primitives to encapsu-

late cloud-specific solutions. We specify expectations on serverless

services at the level of semantics and guarantees. This limits our de-

pendency to the implementation layer and allows moving between

providers without a major system overhaul [63].

4 FROM FAASKEEPER DESIGN TO CLOUD
In the previous section, we mapped the ZooKeeper components to

a cloud-agnostic design with separate services. Now, we map FaaS-

Keeper functions, queue, storage, and synchronization primitives

to actual cloud services (Table 2), tailoring resource requirements

to each component and enabling serverless scalability. Following

the multi-step design guideline, we disaggregate computing (Sec-

tion 4.1), incorporate different types of cloud storage (Section 4.2),

and find the most optimal ways of exchanging data in the system

(Section 4.3). Compute tasks can now be fully serverless, and the sys-

tem requires no resource provisioning while providing compatible

interface to ZooKeeper clients (Section 4.4). We scale FaaSKeeper up

by adding more concurrent follower functions and placing data in

different storage keys to benefit from sharding and cloud scalability.

Implementation. We select the AWS cloud and translate design

concepts to cloud systems: system storage with DynamoDB tables,

synchronization primitives to DynamoDB update expressions [12],
user data storage to S3 buckets, and FIFO queues to the SQS. We use

the AWS SQS with batched Lambda invocations [11] as it performs

better than DynamoDB Streams (Section 5.2.2). We implement the

four FaaSKeeper functions in 1,350 lines of Python code in AWS

Lambda. Furthermore, we provide a client library with 1,400 lines

of Python code with the relevant methods of the API specified

by ZooKeeper [43]. Each component has a corresponding alterna-

tive in other cloud systems that provides the same semantics and

guarantees, and storage can be improved with in-memory caches.

0.01 0.03 0.12 0.40 1.00 4.00 10.00
Monthly size of data stored [GB]

1

2

3

4

5

Co
st

 [$
]

Object storage: writes 12.5x
more expensive than reads.
Key-value storage: on large
data is 4.37x more expensive
than object storage.

One million storage operations.

101 103 105 107

Number of storage operations.

0

10

20

30

40

50

Object storage: too expensive
for frequent writes
in system storage.

1 GB of data

S3 Read S3 Write DynamoDB Read DynamoDB Write

(a) Cost of storage services for varying data size and 1 kB operations.

0 100 200 300 400 500
Size [kB]

0

100

200

300

400

Ti
m

e
[m

s]

Penalty on cross region access.

Efficient read and write
on large user data.

AWS S3

0 100 200 300 400
Size [kB]

0

100

200

300

400

Penalty on cross
region access.

Slow writes on large
user data.

AWS DynamoDB

Write Read Inter-regional Write Inter-regional Read

(b) Latency of read and write operations in AWS storage services.

Figure 4: Cost and performance of storage in the AWS cloud.
Python benchmarks executed on an EC2 instance.

4.1 Disaggregating
Although ZooKeeper servers manage connections and ordering,

their primary responsibility is to provide low-latency data access

that can be replaced with cloud storage. In a coordination system

designed for high read-to-write ratios, more resources should be

allocated for data endpoints rather than servers handling computing

tasks. In FaaSKeeper, we removed the need for separate reader
function - clients access cloud storage directly, saving time and

money. Both key-value and object storage implement replication,

with DynamoDB using three-way replication of each partition and

S3 guaranteeing 11 9’s of durability for each object. For that reason,

we do not have to implement any additional replication.

User data locality. Cloud applications balance resource allocation

across geographical regions to support changing workloads [23, 67].

In addition, they aim to minimize the distance between the service

and its users, as the cross-region transmission adds major perfor-

mance and cost overheads (Figure 4b). While ZooKeeper requires

migrating a virtual machine across regions [67], FaaSKeeper can

serve data from endpoints local to the user. Clients connect to the

closest storage in their region, minimizing access latency.

Decoupling Watch Delivery In FaaSKeeper, we moved the deliv-

ery of watch notifications into a separate free function watch. Since
hundreds of clients can register a single watch, using a serverless

function allows us to adjust resource allocation to the workload. A

standard writing pipeline includes only querying watch informa-

tion in the system storage, adding insignificant cost and overhead.

4.2 Mapping Storage
With storage and computing decoupled, we can map them to ser-

vices that fit best their access patterns and computational require-

ments. Storage should distinguish between user data and the system

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

data needed to control ZooKeeper: locality and cost requirements

are different, and storage solutions have varied costs and latencies

– especially when different sizes are considered (Figure 4).

Efficient reading of user data. ZooKeeper is optimized for high

read performance. Thus, we must use storage with strongly consis-

tent, cheap, and fast read operations. The cost-performance analysis

reveals that object storage is more efficient than key-value storage

(Figure 4a). Storing large user data is 4.37x cheaper, and updating

nodes scales much better with their size. Furthermore, read opera-

tions are billed per access and per 4 kB read in object and key-value

storage, respectively, making the latter more expensive for large

data in user nodes by even an order of magnitude.

Furthermore, we optimize ZooKeeper’s get_children operation
by storing the children list in themetadata of each node. This update

does not add costs, as adding and removing nodes requires locking

and updating the parent, and we avoid the expensive scan.

Efficient modifications of control data. The system state in-

cludes frequently modified watches, client and node status, and

synchronized timestamps. FaaSKeeper must use atomic operations

and locks to support concurrent updates. We use the key-value

store as the object store is limited by expensive writes to small

items (Figure 4a) and lack of synchronization primitives.

Hybrid storage While DynamoDB is cheaper for small nodes

and faster (Section 5.3.1), the costs explode for large user data,

restricting us to object storage. However, even though nodes store

up to 1 MB of data, the dominant use case of ZooKeeper is to store

small configuration objects. Thus, we optimize for the common

case and place in DynamoDB all nodes up to 4 kB, and split node

metadata and user data between DynamoDB and S3 for larger nodes.

The client library begins by reading data from key-value storage,

and only the infrequent large nodes incur the performance and cost

penalty of a second storage request. This allows us to improve read

latency by over 50% (Section 5.3.1) and decrease costs by 37.5%.

4.3 Communicating Functions
FaaSKeeper functions scale automatically with workload and emu-

late the TCP connection between the client and ZooKeeper servers.

Vertical scaling. ZooKeeper improves throughput by pipelining
client requests over a single TCP connection to the server. Requests

are sent before previous operations finish, and the implementation

ensures that operations from a single session are not reordered in

the pipeline. However, serverless functions are designed for fine–

grained invocations. Thus, FaaSKeeper employs cloud queues to

batch invocations and continuously feeds the processing pipeline.

However, cloud queues invoke functions in batches, preventing

continuous streaming of new requests to the pipeline.

Horizontal scaling. ZooKeeper achieves high read scalability with
more servers, but write scalability is limited by design with a single

leader. Prior attempts to increase write performance focused on

partitioning the ZooKeeper data tree [41, 66]. Instead, FaaSKeeper

delegates requests from different client sessions to concurrently

operating functions. While write requests of a single session are

serialized, we exploit the parallelism of operations from different

users. To determine global ordering and handle concurrent modifi-

cations to the same data node, FaaSKeeper uses synchronization

primitives on the storage (Section 2.1). Thus, the scalability of read

and write operations is bounded by storage throughput.

4.4 Compatibility with ZooKeeper
Our implementation is standalone and does not reuse the server-

centric ZooKeeper codebase since Java functions are by large cold

startup overheads [45, 78]. We offer a compatible interface for ex-

isting applications by modeling our API after kazoo [9], a Python

client for ZooKeeper. While FaaSKeeper aims to provide consis-

tency model and interface compatible with ZooKeeper, we make

minor adjustments due to the limitations of cloud services and the

serverless model. While large ZooKeeper nodes are uncommon and

impractical, we can support the 1MB node in cloud object storage.

The size restrictions of 400 and 256 kB in DynamoDB, respectively,

limit the maximum data sent by users. This can be avoided by split-

ting larger nodes and using temporary S3 objects. Furthermore,

Zookeeper clients can define node permissions with access control

lists (ACLs). In FaaSKeeper, functions implement write permissions

thanks to the protection boundary between caller and callee, and

read permissions can be enforced with cloud storage ACLs.

4.5 Cloud Portability
To validate that FaaSKeeper design is cloud-agnostic and not locked

to a single provider, we ported it to the Google Cloud Platform. We

replace cloud services as specified in Table 2, and achieve the same

semantics of a serverless service with pay-as-you-go-billing. The

majority of the implementation effort was in adapting to new APIs

and adding synchronization primitives as transactions [8], with

changes in the system library (600 LoC), client code (200 LoC), and

configuration (150 LoC). Google Cloud has size limits of 10 MB

and 1 MB on queue and key-value storage operations, respectively,

simplifying the implementation of large ZooKeeper nodes.

However, both platforms have different pricingmodels that affect

the optimizations. While object storage costs the same, operations

pricing on the key-value Datastore is independent of the item size.

Compared to AWS DynamoDB, Datastore is 2.4x and 1.44x more

expensive on read and write operations of up to 1 KB, respectively.

While this simplifies the system design as we no longer need spe-

cial treatment for large nodes, this is not the common case for

ZooKeeper. On the other hand, the Pub/Sub queue charges clients

based on the amount of data sent and received, but not less than

1 KB per message. At $40 per terabyte of data, the queue is 6.7x

cheaper for small messages than AWS SQS, which charges $0.5 per

one million messages.

5 EVALUATION
We begin with analyzing ZooKeeper utilization (Section 5.1) and

benchmarking serverless components necessary to build a server-

less service (Section 5.2). Then, we evaluate the performance-cost

trade-offs of FaaSKeeper in relation to ZooKeeper (Section 5.3). We

answer the following questions:

§ 5.1 How frequently is ZooKeeper used in practice?

§ 5.2.1 Are synchronization primitives efficient?

§ 5.2.2 Do serverless queues provide cheap and fast invocations?

§ 5.3.1 How fast are cloud-native read requests in FaaSKeeper?

§ 5.3.2 How expensive is the processing of write requests?

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

0 500 1000 1500
Time since experiment start [s]

0

5

10

15

VM
 U

til
iza

tio
n

[%
]

Utilization 0.5-1%

YCSB Experiment Phases
Memory
CPU

0 500 1000 1500 2000
Time since experiment start [s]

0

200

400

600

Zo
oK

ee
pe

r R
eq

ue
st

s

12 writes

Read
Write

Figure 5: ZooKeeper utilization in HBase running YCSB.

§ 5.3.3 What are the cost savings in service monitoring?

§ 5.3.4 What is the cost break-even point for FaaSKeeper?

Evaluation Platform The deployment in the AWS region

us-east-1 consists of four functions, SQS queues, and DynamoDB
tables storing system state, user list, and watches. Functions are allo-

cated with 2048 MB of memory if not specified otherwise. Addition-

ally, we use a DynamoDB table or an S3 bucket for user data storage.

Benchmarks use Python 3.8.10, and we run microbenchmarks and

FaaSKeeper clients from a t3.medium virtual machine with Ubuntu
20.04 in the same cloud region. We also deploy FaaSKeeper in

the GCP region us-central1. Benchmarks use Python 3.8.10, and

we run benchmarking clients from a e2-medium virtual machine

with Ubuntu 20.04 in the same cloud region. ZooKeeper 3.7.0 is

deployed on three VMs running Ubuntu 20.04, using t3.small
and e2-small machines on AWS and GCP, respectively.

5.1 ZooKeeper
To understand how ZooKeeper is used in practice, we profile its uti-

lization in Apache HBase. We deploy HBase 2.5.6 with Hadoop 3.3.2

on four t3.2xlarge machines, with one holding HDFS NameN-

ode and HBase HMaster, and others serving data, and ZooKeeper

3.7.2 on three t3.medium machines. From the benchmarking vir-

tual machine t3.2xlarge, we execute the standard workloads from
YCSB [28], each running for five minutes, and present results in

Figure 5. The HBase service can handle thousands of requests while

using ZooKeeper only to control the state of the cluster, With less

than a thousand requests in over half an hour, replacing persistent

ZooKeeper with a serverless system is a significant optimization

opportunity.

Furthermore, we analyzed the size of ZooKeeper nodes after

the experiment ended. HBase created 29 nodes, with a median and

mean data size of 0 and 46 bytes, respectively. The largest node had

320 bytes of data and corresponded to each RegionServer.

5.2 Serverless Components
Now we evaluate the latency and throughput of components nec-

essary to build a serverless service (Section 2.1).

5.2.1 Synchronization Primitives. The serverless synchronization
primitives bring concurrent and safe updates to FaaSKeeper. Primi-

tives are implemented with conditional update expressions of Dy-

namoDB [12], and we evaluate the overheads and scalability of this

datastore system.

Latency. We evaluate each operation by performing 1000 repe-

titions on warmed-up data and present results in Table 6a. Each

timed lock operation requires adding 8 bytes to the timestamp.

However, the operation time increases significantly with the item

Primitive Size Min p50 p95 p99 Max

Regular

DynamoDB write
1 kB 3.95 4.35 4.79 6.33 60.26

64 kB 6.54 66.31 70.28 77.23 121.64

Timed lock

acquire
1 kB 6.13 6.8 8.13 14.14 65.32

64 kB 7.82 67.16 72.71 90.56 177.02

Timed lock

release
1 kB 6.03 6.62 7.94 12.52 78.44

64 kB 6.38 65.2 70.33 92.15 222.64

Atomic counter 8 4.88 5.59 7.01 11.69 62.4

Atomic list

append
1 5.14 5.89 8.0 10.71 21.12

1024 16.72 76.01 184.02 187.47 249.23

(a) Latency of synchronization primitives for varying item size (lock)
and list append length (atomic list).

0 200 400 600 800 1000 1200
Update requests submitted [op/s]

0

250

500

750

1000

1250

Re
qu

es
ts

 p
ro

ce
ss

ed
 [o

p/
s]

Locking with 84% efficiency.

Linear scaling
Standard, p50
Locked, p50

Standard, p99
Locked, p99

(b) Throughput of standard and locked DynamoDB updates.

Figure 6: Synchronization primitives on AWS DynamoDB.

size, even though large data attributes are neither read nor written

in this operation. This conditional and custom update adds 2.5 ms

to the median time of a regular DynamoDB write, and large outliers

further degrade the performance. This result further proves the

need to disaggregate the frequently modified system storage from

the user data store, where items can store hundreds of kilobytes

of data. Then, we evaluate the atomic counter and atomic list
expansion by adding a varying number of items of 1 kB size. This

allows users to add new watches in storage with a single operation.

Throughput. Timed locks allow FaaSKeeper to conduct indepen-

dent updates concurrently. We evaluate a pair of regular reads

and writes, compare ing them against our locks with a safe paral-

lelization. We measure the median throughput over a range of five

seconds and vary the workload, as well as the number of processes

sending requests. We use the c4.2xlarge VM as a client to support

this multiprocessing benchmark (Figure 6b). Even though locks

increase the latency of the update operation, the locked version still

achieves up to 84% efficiency when handling over 100 requests per

second from ten clients concurrently. This result agrees with previ-

ous findings that DynamoDB scales up to thousands of transactions

per second [71], and the throughput of operations on DynamoDB is

limited by Lambda’s parallelism and not by storage scalability [79].

Our synchronization primitives introduce a few milliseconds of

overhead per operation and allow for parallel FaaSKeeper writes

of up to 1200 requests per second.

5.2.2 Serverless Queues. Queues improve the writing process by

batching requests and are necessary to provide ordering (Sec-

tion 3.2) AWS offers two cloud-native queues with pay-as-you-go

billing and function invocation on new messages: SQS and Dy-

namoDB Streams. For FaaSKeeper, we select a queue that adds

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

Direct SQS SQS FIFO DynamoDB Stream
64B 64 kB 64B 64 kB 64B 64 kB 64B 64 kB

p50 39.0 48.69 39.83 51.68 24.22 34.47 242.65 237.75

p95 73.92 83.36 78.29 138.94 84.29 44.7 270.63 262.61

p99 124.01 117.25 125.24 184.91 162.42 55.26 417.21 464.52

Max 210.11 129.15 295.01 211.55 172.48 109.61 749.16 610.96

(a) End-to-end latency of FaaS invocation on AWS with a TCP reply.

25 50 75 100 125 150 175 200
Requests submitted [op/s]

101

102

103

Re
su

lts
 re

ce
iv

ed
 [l

og
, o

p/
s] Long batching on unordered queues.

FIFO queue saturates.

SQS, p50
SQS FIFO, p50
DynamoDB Stream, p50

SQS, p99
SQS FIFO, p99
DynamoDB Stream, p99

(b) Throughput of function invocations on queues with 64B payload.
Direct PubSub PubSub FIFO

64B 64 kB 64B 64 kB 64B 64 kB

p50 83.29 85.29 38.04 29.23 201.22 206.62

p95 94.63 95.61 95.77 39.46 234.8 250.46

p99 112.74 97.49 114.43 46.32 581.19 263.0

Max 1115.14 112.73 643.96 57.66 588.95 280.84

(c) End-to-end latency of FaaS invocation on GCP with a TCP reply.

Figure 7: Function invocations with serverless queues.

the minimal invocation overhead and allows to achieve sufficient

throughput. For SQS [6], we enable the FIFO property that comes

with the restriction of a maximum batch size of 10. We compare

against the standard version to estimate the potential overhead of

small batch sizes. For DynamoDB streams, we configure database

sharding to guarantee that all items in a table are processed in

order [3]. We restrict the function’s concurrency to permit only

one instance at a time.

Latency. We measure the end-to-end latency by triggering an

empty a function that returns a dummy result to the user with a TCP

connection.We consider the best-case scenario of warm invocations

with a cached connection to the same client. The median round-trip

latency to the client was 864 µs. In addition to queues, we measure

direct function invocations to estimate the potential of user-side

request batching without cloud proxies, and present AWS and GCP

results in Tables 7a and 7c. Surprisingly, the FIFO queue achieves

the lowest latency and is faster than a direct Lambda invocation.

Thus, offloading requests using SQS-based invocation comes with

approximately 20ms of overhead. However, the ordered PubSub

subscription is slower than the direct cloud function invocation

and unordered subscription, adding over 170 ms of overhead.

Throughput.Here, we verify how well queues perform with batch-

ing and high throughput loads. The queue triggers a function that

establishes a connection to the client, and the client measures the

median throughput across 10 seconds (Figure 7b). FIFO queues sat-

urate at the level of a hundred requests per second. Meanwhile,

DynamoDB and standard SQS experience huge variances, leading

to message accumulation and bursts of large message batches. Thus,

we cannot expect to achieve higher utilization in FaaSKeeper with

a state-of-the-art cloud-native queue, even with ideal pipelining

0 50 100 150 200 250
Size [kB]

0

5

10

15

Ti
m

e
[m

s] FaaSKeeper: cloud-native storage
dominates read time.

FaaSKeeper with in-memory cache
on par with self-hosted ZooKeeper.

Amazon Web Services (AWS)

FaaSKeeper, DynamoDB FaaSKeeper, Redis FaaSKeeper, S3 ZooKeeper

0 50 100 150 200 250 300 350 400
Size [kB]

0

20

40

60

Ti
m

e
[m

s]

FaaSKeeper with GCP Datastore vs AWS DynamoDB:
2.3x slower on small nodes, 30% faster on large nodes.
FaaSKeeper with GCP Datastore vs AWS DynamoDB:
2.3x slower on small nodes, 30% faster on large nodes.

Object storage slower than AWS S3.

Google Cloud Platorm (GCP)

FaaSKeeper, Datastore FaaSKeeper, Cloud Storage ZooKeeper

Figure 8: Read operations in FaaSKeeper and ZooKeeper.

and low-latency storage. However, we can assign one queue per

user, which helps to alleviate scalability concerns partially.

Cost. SQS messages are billed in 64 kB increments, and 1 million

of them costs $0.5. DynamoDB write units are billed in 1 kB incre-

ments, and 1 million of them costs $1.25. Thus, processing requests

via SQS is 160x cheaper than with DynamoDB streams.

SQS provides ordering with cost-efficient invocations. Neverthe-

less, it could be the bottleneck for individual clients.

5.3 FaaSKeeper vs ZooKeeper
We evaluate FaaSKeeper and compare against ZooKeeper in four

domains: read performance, write latency, service monitoring, and

cost trade-offs.

5.3.1 Read Operations. ZooKeeper is designed for efficient read

operations, and our FaaSKeeper must offer the same. We evaluate

the get_data operation that retrieves a ZooKeeper node, timing the

retrieval on the user side. On AWS, we evaluate S3, DynamoDB and

Redis (t3.small VM) as the user data store. On GCP, we evaluate

Cloud Storage and Datastore. We repeat the measurements 100

times for each node size and present results in Figure 8. We compare

FaaSKeeper against ZooKeeper, placing the benchmarking client in

the same cloud region zone as one of ZooKeeper’s nodes.

Hybrid storage distributes nodes between both storage options

(Section 4.2), allowing us to benefit from the low latency of Dy-

namoDB on small nodes while placing large user data to S3. This

avoids the cost explosion as reading 128 kB data from DynamoDB

is 20x more expensive than S3. ZooKeeper offers much lower la-

tency as it serves data from memory over a warm TCP connection:

FaaSKeeper matches its performance with an in-memory store.

Sorting results, watches, and deserialization in the client library

adds between 1.9 and 2.5% overhead in our Python implementation.

FaaSKeeper offers fast reads whose performance is bounded by

the latency and throughput of the underlying cloud storage, with

a stable cost proportional to workload.

5.3.2 Write Operations. We evaluate the performance and cost

of writing in FaaSKeeper and compare our framework against

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

4B 1kB 64kB 128kB 250kB
Node Size

100

101

102

103

Ti
m

e
[m

s]

FaaSKeeper configurations [MB]
 512, 1024, 2048

ZooKeeper

Write time: FaaSKeeper and ZooKeeper.

4B 1kB 64kB 128kB 250kB
Node Size

100

200

Ti
m

e
[m

s]

Function configurations [MB]
512, 1024, 2048

FaaSKeeper Follower function.

4B 1kB 64kB 128kB 250kB
Node Size

50

100

150

200

250

Ti
m

e
[m

s]

FaaSKeeper Leader Function.
Memory

512
1024
2048

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

25

50

75

100

Pe
rc

en
ta

ge
 [%

] $1.1 $1.4 $1.2 $2.5 $1.6 $2.1
Cost distribution of 100,000 requests.

Queue
DynamoDB

S3
Follower

Leader

Figure 9: Write operations in FaaSKeeper and ZooKeeper.

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

0

50

100

150

200

Follower function: time distribution.
Lock Node
Commit and Unlock
Push to Leader
Other

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

50

100

150

200
Leader function: time distribution.

Update User Storage
Pop Updates
Query Watches
Notify Client
Other

Figure 10: Time distribution of FaaSKeeper functions.

ZooKeeper. We measure set_data operation that replaces node

contents with base64-encoded data of different sizes (Figure 9),

pushing to the size limit of 250 kB. First, we notice that ZooKeeper

achieves lower write latency due to the direct connection with

a client and operating on a local state in memory. The latency

in FaaSKeeper is bounded by the functions and the overheads of

queue-based invocations. Then, we study the execution times of

follower and leader functions. The leader function contributes more

to the total write latency, especially on small input sizes, and ex-

hibits a strong variance. Finally, we look at the writing cost and find

that storage operations are responsible for 40-80% of it, with func-

tions contribution noticeably lower - even though the CPU time

of a serverless function is 8x more expensive than in a VM. Both

functions use no more than 100 MB of memory but require larger

allocations to increase I/O performance [30], leading to increased

cost and resource underutilization.

Overhead To locate the bottleneck of writing in FaaSKeeper, we

inspect where functions spend time. Figure 10 shows the impact

of synchronization operations is limited, and the runtime of leader

and follower functions are dominated by moving data to queues

and storage. This impacts both the latency and cost, as there is no

yield operation in serverless - functions waiting on I/O and external

services keep consuming resources and accruing costs.

Variability To understand the sources of performance variability

observed in Figure 9, we examine tail latencies of the important

operations (Table 3). We observe significant performance degrada-

tion at the tail percentiles when pushing to queue in follower and
updating S3 nodes in leader. This result aligns with the previous

subsection: distributed applications in serverless are particularly

affected by inefficient queues and remote storage.

Follower Size Min p50 p90 p95 p99

Fo
ll
ow

er

Total
4B 27.29 31.81 38.55 41.88 58.78

250 kB 30.24 102.53 142.35 163.15 183.49

Lock
4B 7.38 8.02 9.47 12.69 26.8

250 kB 6.77 8.36 15.38 17.79 28.48

Push
4B 9.65 13.35 15.55 17.28 38.15

250 kB 62.73 72.18 96.82 118.62 148.61

Commit
4B 7.31 7.93 9.41 11.91 26.83

250 kB 6.61 8.59 14.31 18.81 32.83

Le
ad

er

Total
4B 42.02 62.16 92.01 103.65 138.28

250 kB 58.94 132.62 213.5 294.01 465.47

Get Node
4 4.67 5.09 5.68 6.92 11.83

250 kB 4.58 4.97 7.31 11.13 19.83

Update Node
4 24.4 42.73 70.7 84.94 118.13

250 kB 32.51 102.07 183.17 265.42 432.92

Watch Query
4 3.88 4.48 5.45 7.0 28.64

250 kB 4.68 5.13 6.76 7.59 18.38

Table 3: Variability of functions performance, 2048 MB.

4B 128B 256B 512B 1kB 2kB 4kB
Node Size

0

25

50

75

100

125

150

Ti
m

e
[m

s]

Total write time decreased by 22-28%

FaaSKeeper write request time.

512 MB
1024 MB

2048 MB

4B
0.5GB

4B
2GB

128B
0.5GB

128B
2GB

512B
0.5GB

512B
2GB

1 kB
0.5GB

1 kB
2GB

4 kB
0.5GB

4 kB
2GB

20

40

60

80

100

120

Pe
rc

en
ta

ge
 [%

]

$0.7 $0.8 $0.7 $0.9 $0.7 $0.9 $0.7 $0.9 $1.1 $1.2

Cost distribution of 100,000 requests.

Queue
System Store

User Store
Follower

Leader

Figure 11: FaaSKeeper writes with hybrid storage.

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

50

100

150

200
Follower function: time distribution.

Lock Node
Push to Leader
Other

4 B
512 MB

4 B
2048 MB

64 kB
512 MB

64 kB
2048 MB

250 kB
512 MB

250 kB
2048 MB

100

200

300

400

500
Leader function: time distribution.

Commit
Update User Storage
Pop Updates

Query Watches
Notify Client

Figure 12: FaaSKeeper writes on Google Cloud.

Hybrid Storage We evaluate the impact of hybrid storage on the

node size range typical for ZooKeeper applications (Figure 11). By

replacing S3 with DynamoDB for user storage, we improve not only

the cost and performance of reading, but also decrease the write

time while keeping costs for infrequent large nodes under control.

Google Cloud Finally, we evaluate the write performance on

Google Cloud (Figure 12). Compared to AWS, FaaSKeeper achieves

worse performance due to significantly more expensive synchro-

nization with transactions on key-value storage. However, the hy-

brid storage optimization does not apply here since the cost of

reading from the NoSQL storage is larger than from object storage.

Resource Configuration Finally, we explore new configuration

options available in serverless. In Google Cloud, we test the ability

to change CPU allocation independently from the memory allo-

cation. When comparing functions with 512MB memory and 0.33

or 1 virtual CPU, we notice performance change of 2-10%, often

favoring the smaller allocation. However, a smaller CPU allocation

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

1 4 8 16 32 64
Number of clients

0

100

200

300

400

500

Ti
m

e
[m

s]

Execution time of heartbeat function.

1 4 8 16 32 64
Number of clients

0.10

0.15

0.20

0.25

Co
st

 [¢
]

Cost of heartbeat function over 24 hours.

128 MB 256 MB 512 MB 1024 MB 1536 MB 2048 MB

Figure 13: Heartbeat function performance and cost.

Parameter Description Value

𝑊𝑆3 (𝑠) Writing data to S3 5 · 10−6
𝑅𝑆3 (𝑠) Reading data from S3 4 · 10−7
𝑊𝐷𝐷 (𝑠) Writing data to DynamoDB 𝑠 · 1.25 · 10−6
𝑅𝐷𝐷 (𝑠) Reading data from DynamoDB

⌈
𝑠
4

⌉
· 0.25 ∗ 10−6

𝑄 (𝑠) Push to queue
⌈
𝑠
64

⌉
· 0.5 · 10−6

𝐹𝑊 /𝐷 (𝑠) Execution of follower and leader function. -

Table 4: Parameters of FaaSKeeper cost model.

translates to a 54-62% cost decrease. Applications like FaaSKeeper

are I/O-bound and benefit from flexible allocation of CPU resources.

Then, we compare the x86 and ARM instances of AWS Lambda.

There, ARM functions perform better on follower functions but ex-

perience significant slowdowns of up to 94% on the leader function.

Depending on the configuration, ARM functions can decrease costs

of follower functions by up to 32%.

Write operations are limited by data transmission to queues and

object storage, motivating the need for more efficient queues.

5.3.3 Service Monitoring. We estimate the time and resources

needed by FaaSKeeper to periodically launch the heartbeat func-

tion and verify status of clients owning ephemeral nodes. We

present results averaged from 100 invocations in Figure 13. Ex-

ecution time decreases with the allocation, corresponding with

previous findings on serverless I/O [30, 78].

We estimate the cost of monitoring over the entire day, with the

highest available frequency on AWS Lambda of an execution every

minute. The cost of the function is defined by the computation time

and the cost of scanning a DynamoDB table storing the list of users.

With the function taking less than 100ms for most configurations,

the overall allocation time over 24 hours is less than 0.2% of the

entire day. Thus, even for more frequent invocations and more

clients, we offer status monitoring for a fraction of VM price.

The serverless heartbeat function replaces a persistent VM allo-

cation and achieves the goal of client monitoring while reducing

the resource allocation time by a huge margin.

5.3.4 Cost. The most important evaluation compares the price of

running an elastic FaaSKeeper instance to Zookeeper with standard

and hybrid storage on AWS, with x86 functions. We consider a

scenario of 512 MB, with reads and writes to one node of 1 kB, and

the optimistic case that we experience no failures and, therefore,

no retries.

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
3 x t3.medium

3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large
3 x t3.small

3 x t3.medium
3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large

Hy
br

id
 S

to
ra

ge

 S
ta

nd
ar

d

37.44 7.49 3.74 1.87 0.75
74.88 14.98 7.49 3.74 1.50

149.76 29.95 14.98 7.49 3.00
112.32 22.46 11.23 5.62 2.25
224.64 44.93 22.46 11.23 4.49
449.28 89.86 44.93 22.46 8.99
59.90 11.98 5.99 3.00 1.20

119.81 23.96 11.98 5.99 2.40
239.62 47.92 23.96 11.98 4.79
179.71 35.94 17.97 8.99 3.59
359.42 71.88 35.94 17.97 7.19
718.85 143.77 71.88 35.94 14.38

Cost ratio of ZooKeeper and FaaSKeeper, 100% reads.

0.8

1.0
100.0
200.0

440.0

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
3 x t3.medium

3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large
3 x t3.small

3 x t3.medium
3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large

Hy
br

id
 S

to
ra

ge

 S
ta

nd
ar

d

10.14 2.03 1.01 0.51 0.20
20.27 4.05 2.03 1.01 0.41
40.54 8.11 4.05 2.03 0.81
30.41 6.08 3.04 1.52 0.61
60.82 12.16 6.08 3.04 1.22

121.63 24.33 12.16 6.08 2.43
15.89 3.18 1.59 0.79 0.32
31.78 6.36 3.18 1.59 0.64
63.56 12.71 6.36 3.18 1.27
47.67 9.53 4.77 2.38 0.95
95.34 19.07 9.53 4.77 1.91

190.68 38.14 19.07 9.53 3.81

Cost ratio of ZooKeeper and FaaSKeeper, 90% reads.

0.8

1.0

100.0

100K 500K 1M 2M 5M
Requests per day.

3 x t3.small
3 x t3.medium

3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large
3 x t3.small

3 x t3.medium
3 x t3.large
9 x t3.small

9 x t3.medium
9 x t3.large

Hy
br

id
 S

to
ra

ge

 S
ta

nd
ar

d

5.86 1.17 0.59 0.29 0.12
11.72 2.34 1.17 0.59 0.23
23.45 4.69 2.34 1.17 0.47
17.58 3.52 1.76 0.88 0.35
35.17 7.03 3.52 1.76 0.70
70.34 14.07 7.03 3.52 1.41
9.16 1.83 0.92 0.46 0.18

18.32 3.66 1.83 0.92 0.37
36.64 7.33 3.66 1.83 0.73
27.48 5.50 2.75 1.37 0.55
54.96 10.99 5.50 2.75 1.10

109.92 21.98 10.99 5.50 2.20

Cost ratio of ZooKeeper and FaaSKeeper, 80% reads.

0.8

1.0

100.0

Figure 14: Cost ratio of ZooKeeper and FaaSKeeper, running
a workload mix of 1 kB reads and writes with set_data.

FaaSKeeper We focus on read and write operations of 𝑠 kilobytes,

as the dailymonitoring costs are low.Watch and heartbeat functions

add charges only when notifications and ephemeral nodes are used.

Wemodel the cost of modifying node data (set_data in ZooKeeper),
and summarize model parameters in Table 4.

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

Reading. The cost of operation is limited to storage access.

Cost𝑅 = 𝑅𝑆3 (𝑠)

A workload of 100,000 read operations costs $0.04.

Writing. The cost of writing is separated into computing and storing

data: two queue operations, function executions, synchronization

in the follower and leader, and writing data to the user store.

Cost𝑊 = 2 ·𝑄 (𝑠) + 3 ·𝑊𝐷𝐷 (1) + 𝑅𝐷𝐷 (1) +𝑊𝑆3 (𝑠) + 𝐹𝑊 + 𝐹𝐷

A workload of 100,000 write operations costs $1.12. With hybrid

storage, the cost of user storage write𝑊𝑆3 (𝑠) becomes𝑊𝐷𝐷 (𝑠)
There, a workload of 100,000 write operations costs $0.72.

Storage. The databases and queues do not generate any inactivity

charges except for retaining data. Storing user data in S3 with

FaaSKeeper is 3.47x cheaper than storing the same data in the

block storage gp3 attached to the EC2 virtual machines hosting

ZooKeeper. The hybrid storage incurs higher costs, as retaining

data in DynamoDB is 3.125x more expensive than block storage.

However, the size of ZooKeeper data is not high as nodes are usually

small, and data access costs dominate the long-term storage.

ZooKeeper The cost is constant and includes the cost of a persis-

tent allocation of virtual machines. The smallest number of virtual

machines is three. However, a single machine with an attached

EBS block storage has an annual durability of 99.9%. To match the

annual durability of S3 used as the user store in FaaSKeeper (11

9’s), the ZooKeeper ensemble requires nine machines. Depending

on the VM selection, the daily cost changes from $0.5 on t3.small,
through $1 on the t3.medium used for our experiments, up to $2

on t3.large. Additionally, the machines must be provisioned with

block storage to store OS, ZooKeeper, and user data. 20GB of storage

adds a monthly cost of between $4.8 (3 VMs) and $14.4 (9 VMs).

ComparisonWe compare ZooKeeper’s cost against FaaSKeeper

with different read–to–write scenarios, using 1kB writes and func-

tions configured with 512 MB of memory, and present results in

Figure 14. In high–read–to–write scenarios for which ZooKeeper

has been designed, FaaSKeeper can process between 1 and 3.75

million requests daily before the costs equal the smallest possible

ZooKeeper deployment. With hybrid storage, this number grows to

5.99 million daily read requests. Since many user nodes do not con-

tain large amounts of data, FaaSKeeper can handle the daily traffic

of hundreds of thousands of requests while providing lower costs

than ZooKeeper. Contrary to the standard ZooKeeper instance, the

serverless design allows us to limit expensive computing time to

processing writes only. Furthermore, we can shut down the process-

ing components while not losing any data: the heartbeat function

is suspended after the deregistration of the last client, and the only

charges come from the durable storage of the system and user data.

6 BUILDING SERVERLESS SERVICES
In the following section, we address the primary challenges en-

countered during the development of FaaSKeeper and highlight the

current limitations of serverless technology. We compile a set of re-

quirements cloud providers could easily support and pave the way

for future improvements. They would make complex serverless

systems more efficient and performant, simplifying their imple-

mentation and increasing adoption. In particular, they would allow

FaaSKeeper to match ZooKeeper’s performance when using off-the-

shelf cloud services. We finally discuss howwell these requirements

are supported in research and emerging cloud architectures.

6.1 Areas of improvement
Using the lessons learned while creating FaaSKeeper, we propose a

list of requirements for serverless environments that would allow

complex services to flourish. However, the rationale behind these

requirements is not limited to our use case, and will improve other

applications, such as microservices [49] and serverless ML [26, 48].

Requirement #1: Fast invocations. Invocation overheads domi-

nate the execution time of short-running functions [30] and prohibit

FaaS processing with performance comparable to non-serverless

applications that can use a direct RPC call over a TCP connection.

ZooKeeper often requiresmultiple round trips to finish an operation,

and when each one takes milliseconds rather than microseconds,

the overheads quickly accrue, as seen in Figure 9.

Requirement #2: Exception handling. The user cannot control
asynchronous function invocations (Section 3.2). We envision this

should be solved via user-defined exception handlers, allowing for
easier and more efficient error handling.

Requirement #3: Synchronization primitives. To efficiently im-

plement distributed applications, serverless needs synchronization,

such as locks and atomics (Section 2.1). In practice, sub-millisecond

latency is needed, like the one offered by in-memory storage.

Requirement #4: FIFO Queues. Serverless functions require

queues to support the ordering and reliability of invocations (Sec-

tion 3.2). However, queues that use discrete batches prevent effi-

cient stream processingwith serverless functions. Instead, functions

should continuously poll for new items in the queue to keep the

pipeline saturated. Furthermore, they can be significantly slower

than regular invocations (Section 5.2.2).

Requirement #5: Statefulness. While stateless functions are suf-

ficient for many use cases, stateful functions are necessary to ef-

ficiently process requests that depend on each other (Section 3.2).

FaaS should support a reliable and low-latency function state.

Requirement #6: Partial updates. To increase the efficiency of

write operations, object storage could support partial updates where

data is written at a user-defined offset to the specified object, avoid-

ing the need for the read-update-write process (Section 3.2).

Requirement #7: Outbound channels. While the trigger sys-

tem provides inbound communication, functions lack an ordered,

push-based, and fast outbound communication channel with ac-

knowledgment of delivery. Cloud queues are an order of magnitude

slower than a TCP connection and do not validate that the recipient

read the message. Such a channel would significantly simplify the

design of serverless services such as FaaSKeeper (Section 3.2).

Requirement #8: Fast serverless storage. ZooKeeper is a data-
intensive system focused on fast read operations. In FaaSKeeper,

in-memory storage could deliver competitive performance, but it is

not available as serverless and cloud-native service (Section 5.3.1).

Requirement #9: Decoupling I/O and compute. FaaSKeeper
functions spend most of the time waiting on requests to cloud

services – increasing CPU allocation alone has little effect on per-

formance (Section 5.3.2). Furthermore, queue batching (R4) prevents

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

effective handling of many requests within a single function. In-

stead, functions should be swapped out during idle periods to free

up resources. While this is a fundamental change, improved I/O

management would decrease user costs and allow cloud providers

to increase utilization with a larger degree of oversubscription.

6.2 Discussion
Can serverless systems support our requirements?We spec-

ify nine requirements to define features missing in cloud-native

FaaS systems that are necessary for distributed, stateful, and scal-

able applications. The requirements align with the major server-

less challenges [50, 60] and are supported in research FaaS plat-

forms. Emerging systems provide microsecond-scale invocation

latency [31, 47] and I/O separation from functions [57]. New stor-

age systems satisfy the latency, consistency, and flexibility require-

ments of functions [54, 55, 72, 81], including serverless in-memory

caches [77, 80]. Furthermore, stateful serverless is becoming the

new norm in clouds [19, 29, 46, 69, 79]. Finally, we note that research

systems can support many of our requirements already: Cloudburst

(R1, R5) [72], PraaS (R1, R5, R7, R9) [29], Boki (R3-R5) [46].

What are the design trade-offs of FaaSKeeper? FaaSKeeper
achieves elastic scaling and a serverless price model by accept-

ing the increased latency of FaaS systems. However, performance

overheads are isolated to specific services and their impact will

decrease with the adoption of more efficient serverless platforms.

FaaSKeeper can match ZooKeeper’s read performance by incorpo-

rating an in-memory database, but these are unavailable as a cloud-

native serverless service and require third-party solutions [10, 77].

The increased processing time of write requests is caused primarily

by performance variations of cloud queues and object storage.

7 RELATEDWORK
Serverless for Storage Wang et al. [77] use functions for elastic

in-memory cache. Boki provides stateful serverless on shared

logs [46]. DynamoDB is used in transactional workflows with locks

in Beldi [79] and in a fault-tolerance shim AFT [71]. In contrast,

FaaSKeeper is designed as a service and not a backend for serverless

functions. We offer coordination for general-purpose applications

while optimizing resource allocation.

λFS implements a serverless metadata layer of a distributed file

system [27]. Similarly to FaaSKeeper, functions operate on top

of strongly consistent data storage. However, the implementation

of read operations is different in both systems. In λFS, metadata

reading is handled by functions that use caching to avoid reaching

to the data store. In FaaSKeeper, functions are removed entirely

from the reading path. Finally, λFS also identified some of the

requirements for efficient serverless applications (Section 6), such

as fast invocations that bypass the slow interface of HTTP requests.

Elastic Storage Cloud-native storage is known for elastic imple-

mentations that scales with changes in workload [56]. Examples

of reconfiguration controllers include a reactive model using CPU

utilization as the primary metric for scaling of in the Hadoop Dis-

tributed File System[59], a feedforward and feedback controller for

key-value storage to resize the service and minimize SLO viola-

tions [15], a workload-aware heterogenous reconfiguration engine

for HBase [33], a workload predictor with cost-aware reconfigura-

tion [61], latency monitoring and forecasting in database-agnostic

replication techniques [20]. PolarDB is an example of a disaggre-

gated database that offers a serverless billing model [25]. However,

ZooKeeper requires autoscaling procedures that integrate the state

ordering guarantees. FaaSKeeper achieves that by using the auto-

provisioning of serverless functions and databases.

ZooKeeper Other works explored different approaches to

ZooKeeper’s performance. Stewart et al. [74] replicated data on

multiple servers to provide predictable access latencies. Distler et

al. [37] introduced ZooKeeper extensions to optimize coordination

patterns by performing additional work on the server. Shen et

al. [67] proposed live migration for geographical reconfiguration.

The performance of ZooKeeper has been improved with hardware

implementations, using FPGAs [44] and offloading to network

adapters [73]. with PsPIN [36].

Other systems provide similar semantics guarantees and seman-

tics as ZooKeeper. Shi et al. [68] presented Giraffe, a coordination

service providing higher write performance and improved avail-

ability over ZooKeeper while keeping the same guarantees. Halalai

et al. [41] presented ZooFence, an automatic service partitioning

built on top of vanilla ZooKeeper instances. Their solution achieves

higher scalability than a standard ZooKeeper instance while up-

holding all consistency guarantees. Schiekofer et al. [66] presented

Agora, a ZooKeeper-like system that achieves higher throughput by

dynamically splitting data into independent and parallel partitions.

ZooKeeper data is split into partitions updated independently on

each server. To achieve the usual consistency guarantees and pre-

vent clients from observing an incorrect sequence of updates, read

requests for a given partition are stalled when the client has seen

newer data on another partition. Clients can use fast reads with
weaker consistency that return the stale partition state and ignore

potential inter-partitional dependencies. FaaSKeeper implements

the parallelization across serverless workers without the need for

data decomposition. Furthermore, our design allows for more flexi-

ble resource allocation thanks to data and compute disaggregation.

8 CONCLUSIONS
As the tools and mechanisms of cloud computing adapt to the

needs of an ever-growing FaaS landscape, creating a powerful, fast,

and efficient serverless application is becoming possible. In this

work, we present FaaSKeeper, a cloud-native and serverless coordi-

nation service offering the same consistency model and interface

as Zookeeper. FaaSKeeper allows for an elastic deployment that

matches system activity, reducing the cost of some configurations

by a factor of up to 719x. We discuss the lessons learned in creat-

ing FaaSKeeper, and identify nine requirements that clouds should

fulfill to ensure functionality and performance.

ACKNOWLEDGMENTS
This project received funding from EuroHPC-JU under grant agree-

ments DEEP-SEA, No 955606 and RED-SEA, No 955776. We thank

Amazon Web Services for supporting this research with credits

through the AWS Cloud Credit for Research, and Google Cloud

Platform through the Google Cloud Research Credits program with

the award GCP19980904.

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

A ZOOKEEPER
Below we summarize the provided consistency requirements [5,

43, 51] briefly, considering the case of𝑀 clients𝐶1, . . . ,𝐶𝑀 using a

ZooKeeper instance consisting of 𝑁 servers 𝑆1, . . . , 𝑆𝑁 .

Z1 Atomicity. Write requests never lead to partial results. They

are accepted and persistently committed by ZooKeeper or they fail.

Z2 Linearized Writes. If a client 𝐶𝑖 sends update request 𝑢 be-

fore request 𝑣 , and both are accepted, then it must hold that u

"happens before" v, i.e., 𝑢 < 𝑣 . The guarantee holds for a single ses-

sion. When clients𝐶𝑖 and𝐶 𝑗 send requests𝑢1, 𝑢2, . . . and 𝑣1, 𝑣2, . . . ,

respectively, the ordering between any 𝑢𝑖 and 𝑣 𝑗 is not defined.

Z3 Single and Reliable System Image. The order of successful
updates is visible as identical to every client: for any updates𝑢 and 𝑣 ,

if a client𝐶 connected to a server 𝑆 observes that𝑢 < 𝑣 , it must hold

that𝑢 < 𝑣 for any client𝐶′
connected to any server 𝑆 ′. Furthermore

if a client 𝐶 observes node 𝑍 with version 𝑉 , it cannot later see

the node 𝑍 with version 𝑉 ′
such that 𝑉 ′ < 𝑉 , even if session

mechanism switched servers due to failure or network outage. Each

view of the system will become up-to-date after bounded time, or a

disconnection notification will be delivered (timeliness). Accepted
updates are never rolled back.

Z4 Ordered Notifications. Watch notifications are delivered in

the order of updates that triggered them. Their ordering with re-

spect to other notifications and writes must be preserved. If an

update 𝑢 triggers a watch notification for a client𝐶 , the client must

observe the notification before seeing any data touched by trans-

action 𝑣 such that 𝑢 < 𝑣 . In particular, if a client 𝐶 has a watch

registered on any node 𝑍 with version𝑉 , it will receive watch noti-

fication before seeing any data associated with node 𝑍 with version

𝑉 ′
such that 𝑉 < 𝑉 ′

. The property outlined above is global, i.e., it

affects all changes preceded by the notification, not only changes

related to watches registered by the client.

B FAASKEEPER CONSISTENCY MODEL
Z1 Atomicity. The updates in the system storage are performed

in a single operation on the key-value storage that is guaranteed

to be atomic. The operation results are propagated to the leader

queue before the commit. The queue triggers the leader function

and retries it upon failure, guaranteeing the eventual propagation

of changes to all data replicas. Since the leader function verifies

node status before propagating changes (➊ in Alg. 2), incorrect

operations do not affect the system.

Z2 Linearized Writes. Updates are processed in a FIFO order

by the follower function. The queue guarantees that only a single

follower instance can be active at a time, and the function is not

allowed to reorder any two requests unless they come from a dif-

ferent session. Therefore, any two update requests 𝑢, 𝑣 in the same

session cannot be assigned a timestamp value such that 𝑢 ≥ 𝑣 . The

single leader instance guarantees that clients reading from user data

never observe 𝑣 before𝑢. Different sessions can use different queues

and see their respective requests be reordered, which conforms to

ZooKeeper’s undefined ordering of requests between clients.

Z3 Single and Reliable System Image. Nodes are stored in a cloud
storage with automatic replication and a strongly consistent read

must always return the newest data. Thus, if a client 𝐶 observes

updates 𝑢, 𝑣 such that 𝑢 < 𝑣 , all other clients must read either the

same or newer data. Furthermore, strongly consistent reads prevent

clients from observing an order of updates 𝑉 ,𝑉 ′,𝑉 .

Z4 Ordered Notifications. FaaSKeeper guarantees that transac-
tions with timestamp 𝑣 are not visible before receiving all notifica-

tions corresponding to updates 𝑣 ′ such that 𝑣 ′ < 𝑣 . When a read

returns a node with timestamp 𝑣 , it is first compared with the𝑀𝑅𝐷

value of the current session. If 𝑣 < 𝑀𝑅𝐷 , then by the transitive

property of the total order, any pending watch notifications must

be newer than 𝑣 , and data is safe to read. Otherwise, there are two

possible situations: (a) a watch notification relevant to the client

was active but not yet delivered (➍ in Alg. 2) before storing 𝑣 (➋

there), and (b) no relevant watch notifications are being processed.

In the former case, if a transaction 𝑣 ′ triggers watch 𝑤 , it is

added to the 𝑒𝑝𝑜𝑐ℎ counter before committing 𝑣 , Thus, for each

transaction following 𝑣 ′, watch 𝑤 must be included in the 𝑒𝑝𝑜𝑐ℎ

unless the notification is delivered to each client (➏). This prevents

the client from seeing transaction 𝑣 unless watch 𝑤 is notified.

In the latter case, the client library releases the data immediately

because watch𝑤 is not present in the 𝑒𝑝𝑜𝑐ℎ.

REFERENCES
[1] 2018. Amazon DynamoDB On-Demand – No Capacity Planning and Pay-Per-

Request Pricing. https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-

demand-no-capacity-planning-and-pay-per-request-pricing/. Accessed: 2023-

11-30.

[2] 2020. Azure Cosmos DB serverless now in preview. https://devblogs.microsoft.

com/cosmosdb/serverless-preview/. Accessed: 2023-11-30.

[3] 2020. Using AWS Lambda with Amazon DynamoDB. https://docs.amazonaws.

cn/en_us/lambda/latest/dg/with-ddb.html. Accessed: 2023-11-30.

[4] 2020. ZooKeeper Dynamic Reconfiguration. https://zookeeper.apache.org/doc/

current/zookeeperReconfig.html. Accessed: 2023-11-30.

[5] 2020. ZooKeeper Programmer’s Guide. https://zookeeper.apache.org/doc/current/

zookeeperProgrammers.html. Accessed: 2023-11-30.

[6] 2021. AWS SQS High Throughput Mode for SQS. https://aws.amazon.com/about-

aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-

mode-for-fifo-queues/. Accessed: 2023-11-30.

[7] 2021. DataStax Serverless: What We Did and Why It’s a Game

Changer. https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-

did-and-why-its-game-changer. Accessed: 2023-11-30.

[8] 2021. Google Cloud Datastore: Transactions. https://cloud.google.com/datastore/

docs/concepts/transactions. Accessed: 2023-11-30.

[9] 2021. Kazoo: high-level Python library for ZooKeeper. https://github.com/python-

zk/kazoo. Accessed: 2023-11-30.

[10] 2021. Upstash: Serverless Database for Redis. https://upstash.com/redis. Accessed:

2023-11-30.

[11] 2021. Using AWS Lambda with Amazon SQS. https://docs.aws.amazon.com/

lambda/latest/dg/with-sqs.html. Accessed: 2023-11-30.

[12] 2021. Using Expressions in DynamoDB. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/Expressions.html. Accessed: 2023-

11-30.

[13] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic and

Architectural Impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for

Computing Machinery, New York, NY, USA, 884–889. https://doi.org/10.1145/

3106237.3117767

[14] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight

Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa

Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/presentation/

agache

[15] Ahmad Al-Shishtawy and Vladimir Vlassov. 2013. ElastMan: Elasticity Manager

for Elastic Key-Value Stores in the Cloud. In Proceedings of the 2013 ACMCloud and
Autonomic Computing Conference (Miami, Florida, USA) (CAC ’13). Association

https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/
https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/
https://devblogs.microsoft.com/cosmosdb/serverless-preview/
https://devblogs.microsoft.com/cosmosdb/serverless-preview/
https://docs.amazonaws.cn/en_us/lambda/latest/dg/with-ddb.html
https://docs.amazonaws.cn/en_us/lambda/latest/dg/with-ddb.html
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://zookeeper.apache.org/doc/current/zookeeperReconfig.html
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sqs-now-supports-a-high-throughput-mode-for-fifo-queues/
https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-did-and-why-its-game-changer
https://www.datastax.com/blog/2021/02/datastax-serverless-what-we-did-and-why-its-game-changer
https://cloud.google.com/datastore/docs/concepts/transactions
https://cloud.google.com/datastore/docs/concepts/transactions
https://github.com/python-zk/kazoo
https://github.com/python-zk/kazoo
https://upstash.com/redis
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache

FaaSKeeper: Learning from Building Serverless Services with ZooKeeper as an Example HPDC ’24, June 3–7, 2024, Pisa, Italy

for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https:

//doi.org/10.1145/2494621.2494630

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and

Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April

2010), 50–58. https://doi.org/10.1145/1721654.1721672

[17] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J.

Satran, A. Tavory, and L. Yerushalmi. 2003. Towards an object store. In 20th
IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies,
2003. (MSST 2003). Proceedings. 165–176. https://doi.org/10.1109/MASS.2003.

1194853

[18] Ataollah Fatahi Baarzi, George Kesidis, Carlee Joe-Wong, and Mohammad

Shahrad. 2021. On Merits and Viability of Multi-Cloud Serverless. Association for

Computing Machinery, New York, NY, USA, 600–608. https://doi.org/10.1145/

3472883.3487002

[19] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and

Pedro García-López. 2019. On the FaaS Track: Building Stateful Distributed Appli-

cations with Serverless Architectures. In Proceedings of the 20th International Mid-
dleware Conference (Davis, CA, USA) (Middleware ’19). Association for Computing

Machinery, New York, NY, USA, 41–54. https://doi.org/10.1145/3361525.3361535

[20] Sean Barker, Yun Chi, Hakan Hacigümüs, Prashant Shenoy, and Emmanuel

Cecchet. 2014. ShuttleDB: Database-Aware Elasticity in the Cloud. In 11th Inter-
national Conference on Autonomic Computing (ICAC 14). USENIX Association,

Philadelphia, PA, 33–43. https://www.usenix.org/conference/icac14/technical-

sessions/presentation/barker

[21] Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2012. Data Centers in the Cloud:

A Large Scale Performance Study. In 2012 IEEE Fifth International Conference on
Cloud Computing. 336–343. https://doi.org/10.1109/CLOUD.2012.87

[22] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim

Kraska. 2008. Building a Database on S3. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (Vancouver, Canada) (SIGMOD
’08). Association for Computing Machinery, New York, NY, USA, 251–264. https:

//doi.org/10.1145/1376616.1376645

[23] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. 2010. InterCloud:

Utility-Oriented Federation of Cloud Computing Environments for Scaling of Ap-

plication Services. In Algorithms and Architectures for Parallel Processing, Ching-
Hsien Hsu, Laurence T. Yang, Jong Hyuk Park, and Sang-Soo Yeo (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 13–31.

[24] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam

McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev

Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Be-

dekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muham-

mad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,

Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011.

Windows Azure Storage: A Highly Available Cloud Storage Service with Strong

Consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-

chinery, New York, NY, USA, 143–157. https://doi.org/10.1145/2043556.2043571

[25] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,

Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,

Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,

Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. Association
for Computing Machinery, New York, NY, USA, 2477–2489. https://doi.org/10.

1145/3448016.3457560

[26] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy

Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML Workflows. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)

(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 13–24.

https://doi.org/10.1145/3357223.3362711

[27] Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue Cheng.

2024. λFS: A Scalable and Elastic Distributed File System Metadata Service using

Serverless Functions. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
4 (, Vancouver, BC, Canada,) (ASPLOS ’23). Association for Computing Machinery,

New York, NY, USA, 394–411. https://doi.org/10.1145/3623278.3624765

[28] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)

(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.

https://doi.org/10.1145/1807128.1807152

[29] Marcin Copik, Alexandru Calotoiu, Rodrigo Bruno, Gyorgy Rethy, Roman

Böhringer, and Torsten Hoefler. 2022. Process-as-a-Service: Elastic and Stateful

Serverless with Cloud Processes. (2022). https://spcl.inf.ethz.ch/Publications/

index.php?pub=458 Accessed: 2023-11-30.

[30] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and

Torsten Hoefler. 2021. SeBS: a serverless benchmark suite for function-as-a-

service computing. In Proceedings of the 22nd International Middleware Conference

(Québec city, Canada) (Middleware ’21). Association for Computing Machinery,

New York, NY, USA, 64–78. https://doi.org/10.1145/3464298.3476133

[31] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.

2023. rFaaS: Enabling High Performance Serverless with RDMA and Leases. In

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
897–907. https://doi.org/10.1109/IPDPS54959.2023.00094

[32] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,

and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting

Workloads for Improved Resource Management in Large Cloud Platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,

153–167. https://doi.org/10.1145/3132747.3132772

[33] Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo, José

Pereira, and Ricardo Vilaça. 2013. MeT: Workload Aware Elasticity for NoSQL.

In Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). Association for Computing Machinery, New York,

NY, USA, 183–196. https://doi.org/10.1145/2465351.2465370

[34] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An Elastic,

Scalable, and Self-Managing Transactional Database for the Cloud. ACM Trans.
Database Syst. 38, 1, Article 5 (April 2013), 45 pages. https://doi.org/10.1145/

2445583.2445588

[35] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin

Cui, Qiang Liu, Wei Huang, Yong Xiao, and Yongjun He. 2020. Taurus Database:

How to Be Fast, Available, and Frugal in the Cloud. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,

1463–1478. https://doi.org/10.1145/3318464.3386129

[36] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calotoiu, Thomas Benz, Timo

Schneider, Jakub Beránek, Luca Benini, and Torsten Hoefler. 2020. PsPIN: A high-

performance low-power architecture for flexible in-network compute. arXiv
preprint arXiv:2010.03536 (2020).

[37] Tobias Distler, Christopher Bahn, Alysson Bessani, Frank Fischer, and Flavio

Junqueira. 2015. Extensible Distributed Coordination. In Proceedings of the Tenth
European Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 10, 16 pages.

https://doi.org/10.1145/2741948.2741954

[38] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. 2005. Object storage: the

future building block for storage systems. In 2005 IEEE International Symposium
on Mass Storage Systems and Technology. 119–123. https://doi.org/10.1109/LGDI.

2005.1612479

[39] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007. Work-

load Analysis and Demand Prediction of Enterprise Data Center Applications. In

2007 IEEE 10th International Symposium on Workload Characterization. 171–180.
https://doi.org/10.1109/IISWC.2007.4362193

[40] Cary Gray and David Cheriton. 1989. Leases: An efficient fault-tolerant mech-

anism for distributed file cache consistency. ACM SIGOPS Operating Systems
Review 23, 5 (1989), 202–210.

[41] Raluca Halalai, Pierre Sutra, Étienne Rivière, and Pascal Felber. 2014. ZooFence:

Principled Service Partitioning and Application to the ZooKeeper Coordination

Service. In 2014 IEEE 33rd International Symposium on Reliable Distributed Systems.
67–78. https://doi.org/10.1109/SRDS.2014.41

[42] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming,
Revised Reprint (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

[43] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.

ZooKeeper: Wait-Free Coordination for Internet-Scale Systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference (Boston,
MA) (USENIXATC’10). USENIX Association, USA, 11.

[44] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus

in a Box: Inexpensive Coordination in Hardware. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). USENIX Association,

Santa Clara, CA, 425–438. https://www.usenix.org/conference/nsdi16/technical-

sessions/presentation/istvan

[45] David Jackson and Gary Clynch. 2018. An Investigation of the Impact of Lan-

guage Runtime on the Performance and Cost of Serverless Functions. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion). 154–160. https://doi.org/10.1109/UCC-Companion.2018.00050

[46] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with

Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Comput-

ing Machinery, New York, NY, USA, 691–707. https://doi.org/10.1145/3477132.

3483541

[47] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-

less Computing forLatency-Sensitive, Interactive Microservices. In Proceedings
ofthe 26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’21). Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/3445814.3446701

https://doi.org/10.1145/2494621.2494630
https://doi.org/10.1145/2494621.2494630
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/MASS.2003.1194853
https://doi.org/10.1109/MASS.2003.1194853
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3361525.3361535
https://www.usenix.org/conference/icac14/technical-sessions/presentation/barker
https://www.usenix.org/conference/icac14/technical-sessions/presentation/barker
https://doi.org/10.1109/CLOUD.2012.87
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3623278.3624765
https://doi.org/10.1145/1807128.1807152
https://spcl.inf.ethz.ch/Publications/index.php?pub=458
https://spcl.inf.ethz.ch/Publications/index.php?pub=458
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/IPDPS54959.2023.00094
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/2465351.2465370
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/3318464.3386129
https://doi.org/10.1145/2741948.2741954
https://doi.org/10.1109/LGDI.2005.1612479
https://doi.org/10.1109/LGDI.2005.1612479
https://doi.org/10.1109/IISWC.2007.4362193
https://doi.org/10.1109/SRDS.2014.41
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3445814.3446701

HPDC ’24, June 3–7, 2024, Pisa, Italy Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and Torsten Hoefler

[48] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,

Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. Association for Computing Machinery, New York,

NY, USA, 857–871. https://doi.org/10.1145/3448016.3459240

[49] Zewen Jin, Yiming Zhu, Jiaan Zhu, Dongbo Yu, Cheng Li, Ruichuan Chen,

Istemi Ekin Akkus, and Yinlong Xu. 2021. Lessons Learned from Migrating

Complex Stateful Applications onto Serverless Platforms. In Proceedings of the
12th ACM SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, China) (AP-
Sys ’21). Association for Computing Machinery, New York, NY, USA, 89–96.

https://doi.org/10.1145/3476886.3477510

[50] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-

delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-

wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.

2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.

CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[51] Flavio Junqueira and Benjamin Reed. 2013. ZooKeeper: Distributed Process Coor-
dination (1st ed.). O’Reilly Media, Inc.

[52] F. P. Junqueira, B. C. Reed, andM. Serafini. 2011. Zab: High-performance broadcast

for primary-backup systems. In 2011 IEEE/IFIP 41st International Conference on
Dependable Systems Networks (DSN). 245–256. https://doi.org/10.1109/DSN.2011.

5958223

[53] James M Kaplan, William Forrest, and Noah Kindler. 2008. Revolutionizing data

center energy efficiency. McKinsey & Company (2008), 1–13.

[54] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,

and Animesh Trivedi. 2018. Understanding Ephemeral Storage for Serverless

Analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 789–794. https://www.usenix.org/conference/atc18/

presentation/klimovic-serverless

[55] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,

and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless

Analytics. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,

USA, 427–444.

[56] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios

Tsoumakos, and Nectarios Koziris. 2011. On the Elasticity of NoSQL Databases

over Cloud Management Platforms. In Proceedings of the 20th ACM Interna-
tional Conference on Information and Knowledge Management (Glasgow, Scotland,
UK) (CIKM ’11). Association for Computing Machinery, New York, NY, USA,

2385–2388. https://doi.org/10.1145/2063576.2063973

[57] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Func-

tion as a Function. In Proceedings of the 2023 ACM Symposium on Cloud Computing
(, Santa Cruz, CA, USA,) (SoCC ’23). Association for Computing Machinery, New

York, NY, USA, 81–92. https://doi.org/10.1145/3620678.3624648

[58] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/

359545.359563

[59] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. 2010. Automated Control

for Elastic Storage. In Proceedings of the 7th International Conference on Auto-
nomic Computing (Washington, DC, USA) (ICAC ’10). Association for Computing

Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/1809049.1809051

[60] Pedro Garcia Lopez, Aleksander Slominski, Michael Behrendt, and Bernard Met-

zler. 2021. Serverless Predictions: 2021-2030. arXiv:2104.03075 [cs.DC]

[61] Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker Meyer,

Somali Chaterji, and Saurabh Bagchi. 2019. SOPHIA: Online Reconfiguration

of Clustered NoSQL Databases for Time-Varying Workloads. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA,

223–240. https://www.usenix.org/conference/atc19/presentation/mahgoub

[62] Bruce Jay Nelson. 1981. Remote procedure call. Carnegie Mellon University.

[63] Dana Petcu. 2011. Portability and Interoperability between Clouds: Challenges

and Case Study. In Towards a Service-Based Internet, Witold Abramowicz, Ig-

nacio M. Llorente, Mike Surridge, Andrea Zisman, and Julien Vayssière (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 62–74.

[64] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik, Pol Roca-

Llaberia, and Aitor Arjona. 2021. Toward Multicloud Access Transparency in

Serverless Computing. IEEE Software 38, 1 (2021), 68–74. https://doi.org/10.1109/

MS.2020.3029994

[65] Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and

Schahram Dustdar. 2013. Winds of Change: From Vendor Lock-In to the Meta

Cloud. IEEE Internet Computing 17, 1 (2013), 69–73. https://doi.org/10.1109/MIC.

2013.19

[66] Rainer Schiekofer, Johannes Behl, and Tobias Distler. 2017. Agora: A Dependable

High-Performance Coordination Service for Multi-cores. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
333–344. https://doi.org/10.1109/DSN.2017.23

[67] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robbert van

Renesse, and Hakim Weatherspoon. 2016. Follow the Sun through the Clouds:

Application Migration for Geographically Shifting Workloads. In Proceedings
of the Seventh ACM Symposium on Cloud Computing (Santa Clara, CA, USA)

(SoCC ’16). Association for Computing Machinery, New York, NY, USA, 141–154.

https://doi.org/10.1145/2987550.2987561

[68] Xuanhua Shi, Haohong Lin, Hai Jin, Bing Bing Zhou, Zuoning Yin, Sheng Di,

and Song Wu. 2014. GIRAFFE: A scalable distributed coordination service for

large-scale systems. In 2014 IEEE International Conference on Cluster Computing
(CLUSTER). 38–47. https://doi.org/10.1109/CLUSTER.2014.6968766

[69] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for

Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 419–433. https://www.usenix.

org/conference/atc20/presentation/shillaker

[70] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P. Junqueira. 2012.

Dynamic Reconfiguration of Primary/Backup Clusters. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12). USENIX Association, Boston, MA, 425–

437. https://www.usenix.org/conference/atc12/technical-sessions/presentation/

shraer

[71] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez,

Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-Tolerance Shim for

Serverless Computing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing

Machinery, New York, NY, USA, Article 15, 15 pages. https://doi.org/10.1145/

3342195.3387535

[72] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,

Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:

Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 12 (July 2020), 2438–2452.

https://doi.org/10.14778/3407790.3407836

[73] Elias Stalder. 2020. Zoo-Spinner: A Network-Accelerated Consensus Protocol. Mas-

ter’s thesis. ETH Zurich.

[74] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander: Ef-

ficiently Meeting Very Strict, Low-Latency SLOs. In 10th International Conference
on Autonomic Computing (ICAC 13). USENIX Association, San Jose, CA, 265–

277. https://www.usenix.org/conference/icac13/technical-sessions/presentation/

stewart

[75] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi

Kothari. 2009. Server Workload Analysis for Power Minimization Using Con-

solidation. In Proceedings of the 2009 Conference on USENIX Annual Technical
Conference (San Diego, California) (USENIX’09). USENIX Association, USA, 28.

[76] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40–44.

[77] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios

Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting

Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In

18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 267–281. https://www.usenix.org/conference/

fast20/presentation/wang-ao

[78] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference (Boston,
MA, USA) (USENIX ATC ’18). USENIX Association, USA, 133–145.

[79] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent

Liu. 2020. Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 1187–1204. https://www.usenix.org/conference/osdi20/

presentation/zhang-haoran

[80] Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver, Nicholas John New-

man, Ali Anwar, Lukas Rupprecht, Vasily Tarasov, Dimitrios Skourtis, Feng Yan,

and Yue Cheng. 2023. InfiniStore: Elastic Serverless Cloud Storage. Proc. VLDB
Endow. 16, 7 (mar 2023), 1629–1642. https://doi.org/10.14778/3587136.3587139

[81] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the

Gap Between Serverless and Its State with Storage Functions. In Proceedings
of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.

org/10.1145/3357223.3362723

https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3476886.3477510
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://doi.org/10.1145/2063576.2063973
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1809049.1809051
https://arxiv.org/abs/2104.03075
https://www.usenix.org/conference/atc19/presentation/mahgoub
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1109/DSN.2017.23
https://doi.org/10.1145/2987550.2987561
https://doi.org/10.1109/CLUSTER.2014.6968766
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.14778/3407790.3407836
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://doi.org/10.14778/3587136.3587139
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Components
	2.2 ZooKeeper

	3 From ZooKeeper to FaasKeeper
	3.1 Follower
	3.2 Leader
	3.3 Storage
	3.4 Watch Notifications
	3.5 Client
	3.6 Heartbeat
	3.7 Summary

	4 From FaaSKeeper Design To Cloud
	4.1 Disaggregating
	4.2 Mapping Storage
	4.3 Communicating Functions
	4.4 Compatibility with ZooKeeper
	4.5 Cloud Portability

	5 Evaluation
	5.1 ZooKeeper
	5.2 Serverless Components
	5.3 FaaSKeeper vs ZooKeeper

	6 Building Serverless Services
	6.1 Areas of improvement
	6.2 Discussion

	7 Related Work
	8 Conclusions
	Acknowledgments
	A ZooKeeper
	B FaaSKeeper Consistency Model
	References

