Benchmarking Filtered Approximate Nearest Neighbor Search
Algorithms on Transformer-based Embedding Vectors

Patrick Iff
ETH Zurich, Switzerland
iffp@inf.ethz.ch

Maciej Besta
ETH Zurich, Switzerland
maciej.besta@inf.ethz.ch

ABSTRACT

Advances in embedding models for text, image, audio, and video
drive progress across multiple domains, including retrieval-aug-
mented generation, recommendation systems, vehicle/person re-
identification, and face recognition. Many applications in these
domains require an efficient method to retrieve items that are close
to a given query in the embedding space while satisfying a fil-
ter condition based on the item’s attributes, a problem known as
Filtered Approximate Nearest Neighbor Search (FANNS). In this
work, we present a comprehensive survey and taxonomy of FANNS
methods and analyze how they are benchmarked in the literature.
By doing so, we identify a key challenge in the current FANNS
landscape: the lack of diverse and realistic datasets, particularly
ones derived from the latest transformer-based text embedding
models. To address this, we introduce a novel dataset consisting
of embedding vectors for the abstracts of over 2.7 million research
articles from the arXiv repository, accompanied by 11 real-world
attributes such as authors and categories. We benchmark a wide
range of FANNS methods on our novel dataset and find that each
method has distinct strengths and limitations; no single approach
performs best across all scenarios. ACORN, for example, supports
various filter types and performs reliably across dataset scales but
is often outperformed by more specialized methods. SeRF shows
excellent performance for range filtering on ordered attributes but
cannot handle categorical attributes. Filtered-Disk ANN and UNG
excel on the medium-scale dataset but fail on the large-scale dataset,
highlighting the challenge posed by transformer-based embeddings,
which are often more than an order of magnitude larger than earlier
embeddings. We conclude that no universally best method exists.

Code:
https://github.com/spcl/fanns-benchmark

Datasets:
https://huggingface.co/datasets/SPCL/arxiv-for-fanns-small
https://huggingface.co/datasets/SPCL/arxiv-for-fanns-medium
https://huggingface.co/datasets/SPCL/arxiv-for-fanns-large

1 INTRODUCTION

Advances in embedding models for text [78, 80, 148], image [89,
125], video [121], audio [13, 29], and other modalities [81] have
significantly enhanced semantic search, where items are mapped

Paul Briigger
ETH Zurich, Switzerland
pbruegger@student.ethz.ch

Marcin Chrapek
ETH Zurich, Switzerland
marcin.chrapek@inf.ethz.ch

Torsten Hoefler
ETH Zurich, Switzerland
htor@inf.ethz.ch

to a high-dimensional vector space, and similarity is measured by
the distance between embedding vectors. Efficient similarity search
algorithms are essential to navigate this space. Given the scale of
modern datasets, exact nearest neighbor search (ENNS) algorithms
are too slow, necessitating the use of approximate nearest neighbor
search (ANNS) methods [14, 51, 54, 58, 68, 71, 72, 93, 94, 122].

Many real-world applications, including large language models
(LLMs) with retrieval-augmented generation [50, 117, 140], rec-
ommendation systems [75, 123, 144], vehicle and person re-iden-
tification [88, 153], face and voice recognition [55, 115, 144], and
e-commerce [82, 138], require retrieving only items that satisfy
specific filtering conditions on item attributes, e.g., access rights
for a document, a video’s timestamp, or a product’s price. These
requirements have driven the development of filtered approximate
nearest neighbor search (FANNS). Both academia and industry have
recognized its growing importance, leading to numerous research
publications [41, 53, 60, 85, 101, 109, 133, 143, 153, 154] and adop-
tion in database solutions such as Pinecone [111], Vespa [129], and
Vectara [128]. Evaluating FANNS methods requires vector datasets
that reflect real-world workloads. Yet, despite the rapid rise of
transformer-based text embeddings, no FANNS benchmarks with
such vectors are known to us.

Our contributions are threefold. First, to clarify the require-
ments for effective FANNS benchmarks, we survey the current
FANNS landscape and propose a comprehensive taxonomy of exist-
ing methods. We classify approaches along three key dimensions:
filtering approach, indexing technique, and supported filter types.
Second, we present a novel dataset featuring vectors generated
by embedding paper abstracts from the arXiv dataset [28] using
the transformer-based model stella_en_400M_v5 [104, 148]. Each
item in our dataset has 11 real-world attributes. Third, we bench-
mark a diverse set of FANNS methods on this dataset. Our eval-
uation reveals that each method involves distinct trade-offs, and
no single approach dominates across all conditions. For example,
ACORN supports multiple filter types and scales well, but is of-
ten outperformed by more specialized methods. Filtered-Disk ANN
and UNG perform strongly at medium scale but fail on our largest
dataset. SeRF performs consistently well but supports only range
filters on ordered attributes. These results demonstrate that FANNS
remains a nuanced design space, and that selecting the right method
depends on the specific workload and filtering requirements.

2 BACKGROUND
2.1 FANNS Problem Statement

In FANNS, we are given n items, m > 1 attributes, and p queries.
Each item I; = (vj,ai1,....aim) for i € {1,...,n} consists of a
d-dimensional embedding vector v; and a value for each of the
m attributes (a;; to a;m,). An item can, e.g., represent a research
paper with v; being an embedding of its abstract and attributes
corresponding to venue, year of publication, and authors. A query
Qj = (g, kj, fj) for j € {1,..., p} consists of a d-dimensional query
vector g;, the number of items to return k;, and a filter function f;
that determines whether an item matches the filter. For a query, q;
can, e.g., be the embedding of a search term with f; only returning
true for papers submitted to VLDB. We use 0; < m to denote the
number of attributes the filter f; depends on. Table 1 summarizes
all parameters.

Table 1: (§2.1) Parameters used in FANNS.

Parameter Description

Number of items

n
m Number of attributes

p Number of queries

d Dimensionality of embedding and query vectors
v; Embedding vector of the i-th item
aij [-th attribute of the i-th item

q; Query vector of the j-th query

k; Number of items to return for the j-th query

fi Filter expression of the j-th query

0j Number of attributes considered in f;

To answer a query Q;, we approximately retrieve the k; items
that satisfy the filter f; and have embedding vectors closest to
the query vector g; according to a given distance function (e.g.,
Euclidean distance, cosine similarity, Manhattan distance, or Ham-
ming distance). Most FANNS algorithms return only items that
match the filter; however, some approximate the filtering step, oc-
casionally retrieving items that do not satisfy it. We refer to this
relaxed version of the FANNS problem as the approximately filtered
approximate nearest neighbor search (AFANNS) problem.

2.2 Example Use-Case of FANNS

To illustrate the practical use of FANNS, we introduce an example
application depicted in Figure 1. We reference components and
actions in Figure 1 using letters [} and numbers @, respectively.
Consider a semantic search engine for research papers; a system
that retrieves the most relevant papers for a given query, even
when different terminology is used to describe the same concept.
To provide fine-grained control over search results, we incorporate
filters for venue, publication year, and authors.

Index Construction: To build such a system, we transform each
paper in our database [into an item, as described in Section 2.1.
The paper’s venue, publication year, and authors define @ the item’s
attributes. The paper’s abstract is processed @ by a text embedding
model B, such as NV-Embed [78, 105], LENS [79, 80], Stella [104,
148], GTE [3, 84], or BGE [25, 106], to generate the item’s embedding
vector. To efficiently answer FANNS queries for these items, we
insert @ them into a FANNS index @.

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

Query execution: When a user enters @ a search query, we
transform it into a FANNS query, as described in Section 2.1. The
filter f; and the number of requested results k; are set @ based on
the user’s input. The query text is processed @ by the same text
embedding model | used during index construction to generate
the query vector. The query is submitted @ to a FANNS algorithm
B, which utilizes @ the FANNS index [to retrieve the IDs of the
most relevant papers. These IDs are forwarded @ to a retriever B,
which fetches @ the corresponding papers from the database [§ and
returns @ them to the user.

© D=2

_

9=VLDB k=1)—9-

a Q\
uel
» .9.{ f,(i):(z.,FVLDB)_o,
vector L. Ol k=l
database" }g BEmbedding () a0

Model

HFANNS
Algorithm

4 D
Nlmmu:‘19 o

BRetriever

vyot
ODatabase

Vot
BEFANNS

tem I, Index

a,;=VLDB
=== a,,=2023

a,5=[). Doe,...]

o =0

a,5=[T. Fox,...]
o v, =0

a,,=SC
a,,=2021
ans=(C. Li....]

ety s
Figure 1: (§2.2) Example use case of FANNS.

2.3 Attribute Types
We provide a list of attribute types supported by FANNS algorithms.

e Unordered attributes: These attributes contain a single
value from a domain with no total order. An example is
the venue of a published paper, as each paper appears in a
single venue, and no total order exists between venues.

e Ordered attributes: These attributes contain a single value
from a totally ordered domain. An example is the publica-
tion year of a paper, as each paper has a single publication
year, and years follow a total order.

o Set attributes: These attributes contain a set of values
from an unordered domain. For instance, the authors of a
research paper can be represented as a set attribute.

2.4 Filter Types

We categorize filters that apply to a single attribute into three types.
Table 2 shows the compatibility of filters types with attribute types.

e Exact match (EM) filter: Matches only if an item’s at-
tribute value is equal to the queried value.

¢ Range (R) filter: Used on an ordered attribute and matches
only if an item’s attribute value is within the queried range.

e Exact match in set (EMIS) filter: Applies to a set attribute
and matches only if the item’s set attribute contains the
queried value.

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

FANNS algorithms that apply filtering to multiple attributes of
the same type implement multiple exact match (MEM), multiple
range (MR), and multiple exact match in set (MEMIS) filters.
We define a combined (C) filter as a filter capable of combining the
three basic single-attribute filters using arbitrary logical operators.

Table 2: (§2.4) Which filter applies to which attribute.

Unordered Ordered Set
attribute attribute attribute

Exact match filter v v X
Range filter b 4 v b 4
Exact match in set filter X X v

2.5 Approximate Nearest Neighbor Search

Since many FANNS algorithms build on ANNS methods without
filtering, we first introduce the most relevant ANNS algorithms.
These can be categorized into tree-based, hash-based, graph-based,
and quantization-based methods. For a comprehensive discussion of
ANNS, we refer to the surveys by Han et al. [62] and Echihabi et al.
[39]. Experimental evaluations [11, 12] indicate that no single ANNS
algorithm consistently outperforms others; rather, performance
depends heavily on dataset characteristics.

2.5.1 Tree-based methods. Tree-based methods partition the vector
space into multiple regions by constructing a search tree, where
nodes represent either regions or boundaries between them. Lower
tree levels typically correspond to finer partitioning of the vector
space. Tree-based methods, such as k-d trees [19], R-trees [61],
ball trees [107], cover trees [22], RP trees [30], M-trees [27],
K-means trees [126], and best bin first [17], along with other
variants [65, 91, 103, 118], are more efficient for lower-dimensional
vectors, as they often suffer from the curse of dimensionality [95].

2.5.2 Hash-based methods. Hash-based methods use a set of hash
functions to map vectors from a continuous d-dimensional space
into discrete hash buckets. These functions are designed so that sim-
ilar vectors are mapped into the same bucket with high probability.
When querying a hash-based index, the query vector is hashed, and
the vectors in the corresponding bucket are compared to the query
vector. Hash-based methods include locality-sensitive hashing
(LSH) [31, 68], spectral hashing [139], iDEC [54], deep hashing
[86], mmLSH [70], PM-LSH [152], R2LSH [90], EI-LSH [87], and
others [5, 6, 48, 52, 66, 83, 92, 108, 124].

2.5.3 Graph-based methods. Graph-based methods represent vec-
tors as vertices in a graph. Two vertices are connected if their
corresponding vectors are close to each other, forming a neigh-
borhood graph [8, 130]. For simplicity, we define the length of an
edge as the distance between its endpoints’ vectors. To find the
nearest neighbors of a query vector, the graph is traversed starting
from one or multiple entry points, following the direction of the
smallest distance to the query vector. A drawback of neighborhood
graphs is that for large datasets, many edges must be traversed,
leading to high query times. Navigable small world (NSW) graphs
[93] mitigate this issue by introducing long edges that significantly
reduce the number of steps needed for traversal. Hierarchical
navigable small world (HNSW) graphs [94] further improve the

performance of NSW by introducing a hierarchical structure, where
higher layers contain longer edges and lower layers contain shorter
ones. The HNSW graph is traversed from the highest to the lowest
level. Additional graph-based ANNS methods include DiskANN
[71], FreshDiskANN [120], NSG [46], GRNG [43], and others
[44, 45, 63, 69, 150].

2.5.4 Quantization-based methods. Quantization-based methods
map the n vectors to a set of ¢ < n clusters, each represented by
a cluster centroid. Each vector is assigned to the cluster whose
centroid is closest to the vector. One can either store all vectors
assigned to a given cluster, as in inverted file (IVF) [122], or ap-
proximate all vectors of a cluster by the respective cluster centroid,
which is less accurate but requires less storage space and allows for
faster query times. To find the nearest neighbors of a query vector,
we only compare it to the database vectors in the w < ¢ clusters
whose centroids are closest to the query vector. Product quan-
tization (PQ) [72] is a more advanced quantization scheme that
splits the vector space into s orthogonal subspaces. Each subspace is
quantized separately by finding a set of ¢ (d/s)-dimensional cluster
centroids and assigning each vector to its closest cluster within each
subspace. One of the most prominent quantization-based ANNS
algorithms is inverted file with product quantization (IVF-PQ)
[72], which consists of two levels. The first level employs an IVF
index, but instead of storing the full vectors within each cluster, it
approximates them by constructing a separate PQ index for each
cluster. Other quantization-based ANNS methods include additive
quantization [14], BAPQ [58], LOPQ [73], OPQ [51], RaBitQ
[49], SPANN [26], and additional approaches [7, 15, 98, 134, 137].

3 SURVEY AND TAXONOMY OF FANNS
3.1 Filtering Approaches

Two common approaches to solving the FANNS problem are pre-
filtering and post-filtering. In pre-filtering, an attribute-only index
such as a B-tree [16], B+-tree [1], or qd-tree [146] identifies all items
matching the filter. The k nearest neighbors (KNN) of these items
are then determined by computing the distance to the query vector
or approximating this distance using quantized embedding vectors
precomputed during index construction. In post-filtering, a nearest
neighbor search is performed on an unfiltered ANNS index, fol-
lowed by filtering out non-matching items. This can be done by
retrieving k” > k items in the hope that enough pass the filter or by
iteratively retrieving more items until k matches are found. Many
graph-based ANNS indices support a third approach, in-filtering,
where attributes are ignored during index construction, and only
vertices satisfying the filter are considered during query execu-
tion. A fourth approach involves a hybrid index that integrates
embedding vectors and attributes in a single index.

The efficiency of different approaches to solving the FANNS
problem depends on the dataset and filtering condition (see Fig-
ure 2). We define the selectivity of a filter f on a dataset D = {I; |
i €{1,...,n}} as in previous work! [85, 101, 109, 149]:

{I; | ; € D A f(I) = true}|
DI ’

selectivity =

Note that some works [131, 138, 143] use the inverse definition of selectivity.

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

Table 3: (§3) Overview of FANNS methods. ' Does not mention a filtering step during query execution. *“We have not been able
to find the source code of this work. @ The index is constructed for a single ordered attribute, in-filtering is proposed to handle
secondary attributes. @ Any EMIS filter can be used as an EM filter by using a set attribute with only a single value.

Filters Open
Method Year Problem Approach Technique(s) EM R EMIS MEM MR MEMIS C source
Rii [97] 2018 FANNS pre-/in-filtering quantization vV v vV v v v v V[9%]
MA-NSW [141] 2019 FANNS hybrid index graph v X X v b 4 b 4 X X
PASE [144] 2020 FANNS post-filtering quantization / graph ¢ ¢V v v v v V[4]
AnalyticDB-V [138] 2020 FANNS pre-/post-filtering quantization v v Vv v v 4 vV X
Milvus [131] 2021 FANNS pre-/post-filtering quantization / graph X ¢ X X v b 4 X V[112]
NHQ [132, 133] 2022 AFANNS hybrid index graph v X X v b 4 X X V[47]
HQANN [145] 2022 AFANNS © hybrid index graph v X X v b 4 X X X
AIRSHIP [151] 2022 FANNS in-filtering graph v v Vv v v v v X
HQI [101] 2023 FANNS hybrid index tree + quantization ¢ ¢ X v v b 4 vV X
VBASE [149] 2023 FANNS post-filtering any v v vV (4 (4 v v V[100]
FDANN [53] 2023 FANNS hybrid index graph e X v X X b 4 X V[99]
CAPS [60] 2023 FANNS hybrid index quantization + tree ¢ X X 4 X b 4 X V[59]
ARKGraph [153] 2023 FANNS hybrid index graph X v X X b 4 b 4 X v[9]
ACORN [109] 2024 FANNS in-filtering graph v v vV v (%4 v v V[57]
B-WST [41] 2024 FANNS hybrid index tree + graph X v X b 4 b 4 b 4 X V/[40]
SeRF [154] 2024 FANNS hybrid index graph X v X b 4 o X X v/[10]
iRangeGraph [143] 2024 FANNS hybrid index tree + graph X v X b 4 (1) X Q0 v[142]
UNIFY [85] 2024 FANNS hybrid index graph X v X X b 4 b 4 X V[33]
UNG [24] 2024 FANNS hybrid index graph e X v (2} b 4 4 X v[23]
. o Filter Type: Different FANNS methods support various
Selectivity filter types (see Section 2.4 for details).
9 few items many items g X . L .
S match the filter Table 3 provides an overview of existing FANNS methods classi-
\ v I\ ~ N\ ~ 4 fied along these three dimensions.
Use pre-filtering . Use an ANNS .
Cibmet T Use a hybrid N e 3.3 Explanation of FANNS Methods
ENNS or ANNS orin-filtering 3.3.1 Rii. The Rii [97] index is based on IVF-PQ. It takes a bitmap
The FANNS problem Corresponds to ANNS of matching items as input. If the selectivity is low, it compares the

has no solutions without filtering

Figure 2: (§3.1) The optimal approach for solving FANNS
depends on the filter’s selectivity within a given dataset.

In other words, selectivity is the fraction of database items that
match the filter. Pre-filtering is most efficient when selectivity is
low, meaning only a few items remain for the ENNS. Post-filtering
and in-filtering are most efficient when selectivity is high, i.e., most
items pass the filter. If selectivity is too low, ANNS may not return
enough valid candidates for post-filtering, and graph traversal with
in-filtering may fail due to a sparsely connected or disconnected
graph. A hybrid index is most efficient when selectivity is moderate,
making none of the three previous approaches optimal.

3.2 Classification of FANNS Methods

We classify FANNS methods along three dimensions:

e Approach: Each FANNS method follows one or a com-
bination of the following approaches: pre-filtering, post-
filtering, in-filtering, or hybrid indexing (see Section 3.1).

e Technique: FANNS methods build upon the same four fun-
damental techniques as ANNS methods: tree-based, hash-
based, graph-based, or quantization-based (see Section 2.5).

query vector directly with the efficiently accessible, contiguously
stored PQ codes (pre-filtering). If the selectivity is high, it first

performs the IVF step of IVF-PQ to identify the closest clusters.
Within those clusters, a PQ code is compared to the query vector

only if the corresponding item matches the filter (in-filtering).

3.3.2 MA-NSW. MA-NSW [141] is a graph-based FANNS index
that supports both EM and MEM filters. It constructs multiple NSW-
like, graph-based ANNS indices, one for each possible combination
of attribute values. During query execution, MA-NSW queries the
ANNS index that matches the query’s filter expression to approxi-
mately retrieve the KNN that satisfy the filter conditions.

3.3.3 PASE. PASE [144] integrates ANNS into the PostgreSQL [56]
database by implementing the IVF and HNSW ANNS indices. It
employs an iterative post-filtering approach, in which it repeat-
edly retrieves items from the ANNS index and filters them until k
matching items are found.

3.3.4 AnalyticDB-V. Alibaba’s AnalyticDB-V [138] extends the An-
alyticDB [147] SQL database with FANNS capabilities. It introduces
its own ANNS index, called Voronoi graph product quantization
(VGPQ), which is similar to IVF-PQ. For FANNS implementation, it
supports both pre-filtering and post-filtering.

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

3.3.5 Milvus. Milvus [131] extends the FAISS ANNS library [38,
114] by incorporating range filtering for one or multiple attributes.
It supports both pre- and post-filtering, as well as a partition-based
filtering scheme that partitions the data based on the most fre-
quently filtered attribute and builds a separate ANNS index for
each partition.

3.3.6 NHQ NHQ [133] proposes a method to extend any proxim-
ity graph-based ANNS index into a hybrid FANNS index. Instead of
constructing the ANNS index solely based on embedding distance,
it introduces a fusion distance that combines embedding distance
with attribute dissimilarity. While this approach is applicable to
any proximity graph-based ANNS index, NHQ also presents con-
struction schemes for two novel proximity graphs. Since its query
execution scheme operates using the fusion distance without an
explicit filtering step, NHQ may return items that do not match
the filter. Thus, it addresses the AFANNS problem rather than the
FANNS problem.

3.3.7 HQANN. Like NHQ [133], HQANN [145] employs a fusion
distance to transform any proximity graph-based ANNS index into
a hybrid FANNS index. The key difference between HQANN and
NHQ is that HQANN prioritizes attribute dissimilarity in the fusion
distance, whereas NHQ emphasizes embedding distance as the
dominant factor.

3.3.8 AIRSHIP. AIRSHIP [151] (see Figure 3) is a graph-based
FANNS index capable of handling arbitrary filter functions. It relies
on a graph-based ANNS index constructed without considering
attributes but adapts query execution to FANNS through in-filtering
and a series of optimizations. During query execution, AIRSHIP
traverses the entire graph but includes only vertices that satisfy the
filter in the result set. Additionally, it selects a starting point within
a cluster of items guaranteed to match the filter and traverses the
graph concurrently in multiple directions.

Index construction builds a proximity graph. Query execution
traverses the whole graph, but only stores items that match the filter.

Traverse graph in
multiple directions

Select starting point in region

Item-ID with many filter-matches. ™.,

\rY X% rv
3

X,

12 N

2 4 B \! Does the it_‘:em
v % 2= o match the fiter?
Figure 3: (§3.3.8) Visualization of the AIRSHIP index.

3.3.9 HQI Apple’s HQI [101] (see Figure 4) is a hybrid, workload-
aware index designed for batch processing of FANNS queries. To
integrate attribute filtering with nearest neighbor search, HQI first
transforms embedding vectors into attributes by applying k-means
clustering and storing each item’s cluster ID as an attribute. It
then employs a balanced qd-tree [146], an attribute-only index, to
partition the items. Each non-leaf node in the qd-tree contains a
predicate over the item attributes (including the cluster ID), with
its two child nodes holding items that do or do not satisfy the
predicate. The tree’s leaves form a non-overlapping partition of all
items. During query execution, HQI identifies the query vector’s
w closest cluster IDs and prunes all branches of the tree that do
not contain any of these w cluster IDs or whose attributes do not
match the filter. An IVF index is used within each leaf.

HQI Index: qd-tree with IVF in leafs

Attribute value----y ----Cluster-ID
]

Clustering of embedding space
Cluster-D i

uster i A 3
oloim2

A A HE . ® ® 3o0r6 or A
. oo AviomsT)07 \& }07
g e e IVF IVF IVF VP
@KAI ‘Q . ‘hpestt?ot N @A@ A@OA ®€B°@
ftemiD %, P2 EEE EME AAA 20O

Figure 4: (§3.3.9) Visualization of the HQI index.

3.3.10 VBASE. VBASE [149] extends PostgreSQL [56] by integrat-
ing ANNS into the database system. Its key insight is that most
ANNS query execution methods follow a two-stage process: an
initial stage where traversal moves from a starting point in the
direction of the query vector, and a second stage where the search
gradually moves away from the query vector to identify its KNN.
Rather than employing a naive pre-filtering approach, where the
ANNS index is queried with a fixed K’ > k and non-matching items
are filtered out, VBASE refines query execution by running the
ANNS query only until the traversal starts moving away from the
query vector. From that point onward, it iteratively retrieves and
filters additional items until the required k matches are found.

3.3.11 FDANN. Microsoft’s Filtered-Disk ANN (FDANN) [53] (see
Figure 5) implements a graph-based index with EMIS filtering. In
addition to supporting an EMIS filter with a single query-label, it
also allows filtering with multiple query-labels, where at least one of
them must be present in the item’s set attribute. Filtered-Disk ANN
introduces two methods for constructing FANNS indices based on
Vamana graphs [71]: FilteredVamana and StitchedVamana. During
query execution, it traverses the graph starting from a set of entry
points that are guaranteed to contain the query-label. Throughout
its NSW-like graph traversal, it considers only those vertices that
satisfy the filter criteria.

Index construction builds a Vamana graph. Query execution only
traverses the subgraph of vertices that contain the query label

}},—Starting-point for label & Ei?i'fnii'ﬂ,fj'zs Traversed au'kéﬁ r|a|l>)h |for
4 Item-ID FRNINY - aquery\{vl abel &
A v v v B A e
e o0 ., E00 T\ 66 J 1
2 3 B J B
A©—9 r,BC
H
12
6—BC
2 4 g &
\“a ~
L - ~aBeC Ao

Figure 5: (§3.3.11) The Filtered-DiskANN index visualized.

3.3.12 CAPS. In contrast to most FANNS methods, CAPS [60] (see
Figure 6) introduces a quantization- and tree-based index that is
easier to parallelize than the more common graph-based indices.
The CAPS index consists of two levels. The first level organizes
items into clusters, for example, using an IVF [122]. This clustering
can be based solely on embedding distance or on a combination
of embedding distance and attribute dissimilarity. At the second
level, CAPS constructs an attribute frequency tree (AFT), a tree-
based attribute-only index. Each level of the AFT splits items into
two buckets: one containing items with the most common attribute
value (a leaf node) and another with the remaining items (a non-leaf
node), unless the maximum depth is reached.

Level 1: Quantization of embedding space Level 2: AFT of the green (right) cluster

IVF-like clustering of items s
® K root
® A ;B 0O & 2o
A S Bl @
;P iy 18] i
o “" shape = attribute & ©\&
0" A ©
®
2, 1 00D a@®d® AAA
*iterg 1D+ -, @ A

Figure 6: (§3.3.12) Visualization of the CAPS index.

During query execution, CAPS first selects the w clusters closest
to the query vector (first level). Within these w clusters, it uses
AFTs to identify items matching the filter and then performs ENNS
on the filtered results (second level).

3.3.13 ARKGraph. Given a set of items, each with a single ordered
attribute, ARKGraph [153] addresses the more general problem of
constructing the K-nearest-neighbor graph (KGraph) [37] for the
subset of items that satisfy a range filter. The resulting KGraph can
be utilized for solving the FANNS problem or for other data analysis
tasks. A naive approach would store O(n?) KGraphs, one for each
possible query range. For any given item I with attribute value x,
this would require maintaining O(n?) different lists of KNN, one for
each possible query range [[,r] such that I < x < r. ARKGraph’s
first key insight is that the KNN of I for any query range [/, r] can
be efficiently computed by merging the KNN of I from the partial
query ranges [/, x) and (x, r]. Thus, instead of storing KNN lists for
all O(n?) query ranges, it suffices to maintain KNN lists for only
O(n) partial query ranges and reconstruct the KNN dynamically
for any given range. The second key insight is that an item often
shares the same KNN across multiple similar partial query ranges.
By grouping query ranges and storing only one KNN set per group,
ARKGraph further reduces index size and storage overhead. Refer
to Figure 7 for a comparison of the three approaches to storing an
item’s KNN across multiple query ranges.

Adjacency list of @zzzzzz:: -
Optimization 2:
Grouped ranges

1 Optimization 1:

Naive approach paiaifanses

Embedding Space

d=5 [1,4]: {2,4} [1,3): {1,2} [1,3): {12}
[1,5]: {2,4} [2,3): {2} [2,3): {2}
[1,6]: {2,6} (3,4]: {4} (3 4] {4}

[17]: (2.6} @51 {45} 0. {4,5)

[1,8]: {2,6)=<erge (3,6]: {4 6} group (3 & 8] 46}

K [2,4]: {2,4} (3,7]: {4,6}
i i [2,5]: {2,4} (3, 8] {4 6} E
g',ﬁté’gjﬁiﬂ"g é----ltem—lD (ordered [2,6]: {2,6} artial : g,';‘;?ggd :
space by attribute value) [2,7]: {2,6} qpuery query- H
[218]: {2,6} range | range

b 4 i
query-range *----- KNN of @ for that range -------------- g

Figure 7: (§3.3.13) Visualization of the adjacency lists of item
3 in ARKGraph using the three different approaches.

3.3.14 ACORN. ACORN [109] (see Figure 8) supports arbitrary
filter types and filtering across multiple attributes. The ACORN
index is a denser variant of the HNSW ANNS index [94], constructed
without considering attributes. During query execution, ACORN
traverses only the subgraph induced by vertices that match the
filter. This approach differs from AIRSHIP [151], which traverses

the entire graph but includes only matching vertices in the result set.

The ACORN index is designed such that its subgraphs approximate
an HNSW index [94], ensuring efficient nearest neighbor search
while maintaining filtering constraints.

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

The ACORN index X
is a denser version

of an HNSW graph »@

The subgraph ¢
induced by the nod
that match the filter
approximates an .
HNSW graph 2 5 7 1041 13 15

Figure 8: (§3.3.14) Visualization of the ACORN index.

3.3.15 p-WST. p-WST [41] (see Figure 9) is a FANNS index de-
signed for range filtering on a single attribute. A f-WST index is
structured as a segment tree [34] with a uniform branching factor
of f (see Figure 9). At layer [, the attribute value range is divided
into B segments, with a graph-based ANNS index constructed for
each segment. The authors propose multiple query strategies for
B-WST. The default strategy selects a minimal set of tree nodes
that fully cover the query range, queries the corresponding ANNS
indices, and merges the results. Additional strategies include Opti-
mizedPostfiltering, TreeSplit, and SuperPostfiltering.

Graph-based DO 0D 0VOV 10,11 120013141 15! 1(,17 18]

ANNS index
@ B 1(’1 & @ o 1(’17 18

within each non-
0909600@0@@@®~ @@@@

leaf node of the
segment tree ===~

M *+-Item-ID (ordered by attribute value)

Query-range: [4,13]

Segment tree
with B nodes on
the I-th layer
(here: B=3)

222: Query the four
green ANNS

indices to cover

the query range

Figure 9: (§3.3.15) Visualization of the f-WST for f = 3.

Up to B-1items ...~

per leaf-node

3.3.16 SeRF. SeRF [154] introduces the segment graph, a data struc-
ture designed to efficiently answer range-filtered FANNS queries
with half-bounded query ranges (i.e., where the query range has
an upper limit but no lower limit). The segment graph losslessly
compresses n HNSW indices [94], corresponding to the n possible
half-bounded query ranges, into a single index, which eliminates
the need to explicitly construct all n HNSW indices. This is achieved
by incrementally inserting items into an HNSW index in attribute-
value order. Each edge in the resulting graph stores the attribute
value at which it was added and, if pruned during construction, the
attribute value at which it was removed. As a result, the HNSW
graph contains edges that are valid only within specific attribute
value intervals. When executing a query on the segment graph
with a half-bounded query range, only edges whose validity inter-
val contains the upper limit of the query range are considered. To
generalize this approach for arbitrary query ranges (i.e., with both
upper and lower limits), SeRF introduces the 2D segment graph (see
Figure 10). This structure compresses n segment graphs, one for
each possible lower limit, into a single graph with n vertices, where
edges store two validity intervals: one for the lower and one for
the upper limit of the query range. Additionally, SeRF proposes an
in-filtering approach to extend its method to queries involving two
or more attributes.

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

When executing a query with range [x,y], we only consier edges withx € I, andy € .
The induced graph approximates an HNSW graph for all item in the interval [x,y]

Item-ID (ordered . 1 5 L 0 L 3 &
by attribute value) ™, L 9
'
~
Each edge contains
a validity-interval
for the lower limit---""
and for the upper limit-- 5 10 13 S
of the query-range. 8 M o rvf
N

Figure 10: (§3.3.16) SeRF’s 2D segment graph visualized.

3.3.17 iRangeGraph. iRangeGraph [143] (see Figure 11) is a graph-
based FANNS index designed for range filtering. It is primarily built
around a single ordered attribute but also supports in-filtering or
post-filtering for secondary attributes of arbitrary types. iRange-
Graph constructs a set of graph-based ANNS indices, referred to as
elemental graphs. These elemental graphs are organized in a seg-
ment tree [34] with O(log n) layers. At layer [, the entire attribute-
value range is divided into 2! segments, and a graph-based ANNS in-
dex is built for each segment, ensuring that each item appears once
in each of the log n layers. Query execution employs an efficient on-
the-fly method to dynamically merge a subset of elemental graphs
into a single graph-based ANNS index containing only items within
the query range. While its index construction is similar to f-WST
[41], iRangeGraph differs significantly in query execution: instead
of querying multiple graph-based indices for different subsets of
items and merging the results, it constructs a single graph-based
ANNS index dynamically at query time.

Graph-based

ANNS index
(elemental graph).

within each

node of the
segment tree -,

3

Segment tree

with 2' nodes on N
Sample edges from a subset

the I-th layer
of elemental graphs for the
R, “a-ltem-ID (ordered by attribute val on—the—ﬂY construction of
Asingle item Saniodered brstibutebalue) an ANNS index of items in
per leaf-node ™ Query-range: [3,7] the query range

Figure 11: (§3.3.17) Visualization of the iRangeGraph index.

3.3.18 UNIFY. UNIFY [85] is a graph-based method that supports
range filtering. It introduces two new types of proximity graph,
the segmented inclusive graph (SIG) and its HNSW-like variant
the hierarchical segmented inclusive graph (HSIG) (see Figure 12).
UNIFY assumes a single, ordered attribute. It divides the range of
possible attribute values into s segments, s.t., each segment contains
approximately the same number of items. The high-level idea of a
SIG is to build a proximity graph [135] for each of the 2° —1 possible
combinations of segments, and then merge these graphs into a
single graph that contains the 2° — 1 smaller graphs as subgraph.
Due to a clever construction algorithm, the SIG can be built without
explicitly constructing all 2° — 1 smaller graphs. The SIG is stored as
a segmented adjacency list, where outgoing edges are grouped by
their destination segment. When querying the SIG, we only traverse
the subgraph that correspond to those segments that intersect with
the query range. The HSIG is a multi-layered variant of the SIG
which is traversed from top to bottom in order to speed-up the
query execution. To handle queries with low selectivity, UNIFY
supports a pre-filtering variant and for queries with high selectivity,
it supports unfiltered ANNS with post-filtering.

@ node in segment 1 5 fo° 13 i\/
node in segment 2 . H £
@ i T
@ node in segment 3 ~
node in segment 4 i B
i 5 0 3
o = &
8 S/ 9
i B 16 \ry
» edge to segment 1
edge to segment 2 D, | A0 P 15 S
=)
» edge to segment 3 6 8 14 16 ,#‘
A ~

Ecesltolepments e - ltem-ID (ordered by attribute value)

Figure 12: (§3.3.18) UNIFY’s HSIG index visualized.

3.3.19 UNG. UNG [24] (see Figure 13) is a graph-based FANNS
index that supports both EMIS and MEMIS filters. It first identi-
fies all distinct label sets in the database and constructs a Label
Navigating Graph (LNG), which is a Directed Acyclic Graph (DAC)
with one vertex for each distinct label set and a directed edge from
label set a to label set b if a is a subset of b. The Unified Navigating
Graph (UNG) index is built by constructing a proximity graph for
each vertex in the LNG, where the vertices of each proximity graph
represent the items with the corresponding label set. To unify these
proximity graphs, cross-edges are added between vertices in the
proximity graphs of label sets a and b if there is a corresponding
edge from a to b in the LNG. When querying the UNG, the standard
graph traversal is initiated, starting in all proximity graphs whose
label sets are minimal supersets of the query label set.

Items & Labels Label Navigating Graph (LNG) Unified Navigating Graph (UNG)

--------- Item-ID
Dae 8‘ ® A B 3 10 5 8
2 ABC 9 BCD r—-’ Cross-group---»-
‘ edge
[1 12
3 A 10 A A B Labels Item-ID
480D @W®BED] " i
5 @8 2 aAe ABC BCD 2 613 4 9 1
\ K ~ k
((Proximity y
6ABE @ABOC . .labels dolehd graph in each S g4 Proximity
7 LNG vertex graph edge

aAaB©D 44 a 8" D"

Figure 13: (§3.3.19) Visualization of the UNG index.

4 A NEW DATASET TO BENCHMARK FANNS

Benchmarking FANNS methods requires suitable datasets. Such
datasets should contain vectors from a state-of-the-art embedding
model (requirement 1), real-world attributes (requirement 2), a set of
queries (vectors and filters) together with the pre-computed ground
truth (requirement 3), and be publicly available (requirement 4).

The most common approach to evaluate FANNS methods that
we observed in scientific literature is to use an ANNS dataset such
as SIFT [76], GIST [76], MNIST [77], GloVe [110], UQ-V [47], Msong
[47], Audio [47], Crawl [47], Enron [47], BIGANN [119], Paper [47],
Deep1B [36], MSTuring [119], or YandexT2I [119] and extend it
with synthetic, randomly generated attributes [24, 41, 53, 60, 85, 101,
131, 133, 141, 145, 151, 154] (failing to meet requirement 2). Another
common, though more labor-intensive, approach is to repurpose a
dataset not originally intended for FANNS such as TripClick [113],
LAION [116], RedCaps [35], YouTube-Rgb [2], Youtube-Audio [2],
Words [42], MTG [127], or WIT-Image [32] by manually creating
embedding vectors and queries, or by crawling the web to obtain
suitable real-world attributes [24, 41, 85, 109, 143, 154] (failing to
meet requirement 3). Finally, some papers originating from industry
rely on proprietary in-house datasets that are not publicly avail-
able [101, 138, 145] (violating requirement 4).

Unordered (1L CICT W Astribute: number.of main_categories

Attribute: submitter

o
<

=
<

10°

102

,_.
2
Frequency of that value
= =
=) o
> 2

#submitters with that many papers

1 2
Attribute value

Ordered Attribute: number_of_versions

50 100
#papers per submitter

Attribute: license

Attribute: mail

Attribute value (ordered by freq)

Attribute: update_date

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

[SITTITEI Actribute: numberof sub_categories 9

Attribute: sub_categories

ategories

= =
Q =)
> ™

=
<)
™

Frequency of that value
Frequency of that value

(5
b3

o
2

1 2 3 4 5 6 7
Attribute value Attribute value (ordered by freq)

Ordered Attribute: number_of_authors Attribute: authors

200000

100

=
5}
>

o
k3

150000

=
<

100000

=
Q
>

=
2/

-
)

Frequency of that value
Frequency of that value

50000

-
=)
2

Frequency of that value

o
13655

Attribute value (ordered by freq) Attribute value

Attribute value

Frequency of that value
=
)

#authors with that many papers E

0 200 400 600

Attribute value #papers per author

Figure 14: (§4) Distribution of the unordered attributes (blue), ordered attributes (green), and set attributes (yellow) in the
arxiv-for-fanns-large dataset. We show inverse histograms for authors and submitter since they have many possible values
and only few items with a given value. Outliers are omitted for clarity. The has_comment attribute is true for 74.216% of items.

The only two datasets that appear to satisfy all four requirements
are MNIST [77] and Paper [47]. The MNIST dataset, where the labels
correspond to the digits 0 to 9, and the Paper dataset, where each
attribute has at most three possible values, cover only a narrow
subset of potential FANNS use cases. Moreover, we observe that
datasets with text embeddings from state-of-the-art, transformer-
based models such as NV-Embed [78, 105], LENS [79, 80], GTE [3,
84], Stella [104, 148], and BGE [25, 106] are absent from the cur-
rent ANNS and FANNS benchmarks (not in line with requirement
1). These models typically generate normalized embedding vec-
tors with around 4096 dimensions, representing a fundamentally
different FANNS workload compared to existing datasets, which
usually contain embeddings with fewer than 1000 dimensions. We
therefore argue that an additional datasets with transformer-based
embeddings would be highly valuable to the community.

Table 4: (§4) Attributes in the novel arXiv dataset.

the stella_en_400M_v5 model [104, 148], based on abstracts from
the arXiv dataset [28], thus satisfying requirement 1. Among the top
10 models on the English MTEB leaderboard [102], Stella is the most
lightweight? [18]. Each item also contains 11 real-world attributes
(see Table 4) covering all three attribute types (see Section 2.3), with
diverse value distributions shown in Figure 14, fulfilling require-
ment 2. To satisfy requirement 3, each dataset variant includes three
sets of 10k queries for EM, R, and EMIS filters (see Section 2.4), along
with their corresponding precomputed ground truth. Query vectors
are generated by embedding search terms synthesized by GPT-
40 [67], while filter values are sampled from the dataset attributes.
Figure 15 illustrates the selectivity distribution (as defined in Sec-
tion 3.1) across queries in arxiv-for-fanns-large. To support
unfiltered ANNS evaluation, we also provide ground truth results
without any filtering. All three versions of the dataset are publicly
available on Hugging Face®, thereby fulfilling requirement 4.
Attribute: main_categories

‘Attribute: number_of sub_categories Attribute: update_date

5000

»
S
S
S

3000

350

300

9
2 250
5

g
& 2001
5

2000

1500

Name Attribute Type Data type
submitter unordered attribute string
has_comment unordered attribute boolean
number_of_main_categories ordered attribute integer
main_categories set attribute list of strings
number_of_sub_categories ordered attribute integer
sub_categories set attribute list of strings
license unordered attribute string
number_of versions ordered attribute integer
update_date ordered attribute integer
number_of authors ordered attribute integer

authors

set attribute

list of strings

To address this gap, we introduce the arxiv-for-fanns dataset,

where each item corresponds to a research paper. The dataset is
available in three scales: small (1k items), medium (100k items), and

large (over 2.7M items). Each item includes a 4096-dimensional,
normalized text embedding of the paper abstract, computed using

© 150 7
a8

ngO-
z

N
=3
3
S

Number of queries
Number of queries

500

1000

50 1

0- 1
0.00 0.25 0.50 0.75 0.0 0.1 0.2
Selectivity Selectivity

[
00 02 04 06 08 1.0
Selectivity

Figure 15: (§4) Selectivity of the three query sets.

5 BENCHMARKING FANNS

We benchmark a selection of FANNS methods on our newly intro-
duced arxiv-for-fanns dataset (see Section 4). Experiments with
the medium-scale dataset are conducted on a laptop, while those
on the large-scale dataset are executed on a compute cluster.

2As of March 11, 2025
Shttps://huggingface.co/datasets/SPCL/arxiv-for-fanns-large

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

Table 5: (§5.2) Parameters used for benchmarking (found through parameter search, see Section 5.2).

Method Experiment Parameters
all ef's € {10, 15, 20, 25, 30, 50, 100, 250, 500, 750}
medium, EM filter =M =16, Mg =24,y =10
medium, R filter M =32,Mp =24,y =12

ACORN [109] medium, EMIS filter M = 16, Mg =24,y =15

large, EM filter
large, R filter
large, EMIS filter

M=32,Mz =32,y =10
M =32,Mg =16,y =12
M =48 Mg =48,y =15

all m € {200, 400, 1k, 5k, 10k, 20k, 40k, 60k }
CAPS (kmeans) [60] medium, EM filter B =128

large, EM filter B =512

all L € {10, 20, 30, 50, 100, 150, 200, 300, 500, 1k}

medium, EM filter

Rsmalt = 32, Lyman = 80, Rytitched = 48, @ = 1.1

FDANN (stitched) [53] medium, EMIS filter Rgpan = 32, Lsman = 100, Rytitched = 48, @ = 1.2

large, EM filter
large, EMIS filter

Rymatl = 96, Lsman = 100, Rytitched = 64, = 1.4
Rsmall = 64, Lsman = 80, Rytitched = 64, @ = 1.2

all Lsearch € {10, 25,50, 75, 100, 150, 200, 300, 400}, iter = 12, M = 1.0

NHQ (kgraph) [133] medium, EM filter

large, EM filter

K =100,L =80,S = 15,R = 200, RANGE = 70, PL = 200, B = 0.5, Weight_search =1M
K =80,L =60,S = 10,R = 200, RANGE = 60, PL = 300, B = 0.6, weight_search = 1M

all efSearch € {50, 100, 150, 200, 300, 500, 1k, 2k, 4k}

medium, EM filter
large, EM filter

NHOQ (nsw) [133]

M = 40, MaxMO = 40, efConstruction = 300, weight_search = 1M
M = 40, MaxMO0 = 60, efConstruction = 150, weight_search = 1M

all Leearch € {10, 20, 30, 40, 50, 100, 150, 200, 300, 500, 1k}

medium, EM filter

0=2,R=24L =80, =14,0=16

UNG [24] medium, EMIS filter 6§ =8, R=32,L =100, =1.4,0 =16
large, EM filter 6 =6,R=48 L =150,a =1.6,0 =24
large, EMIS filter 6 =6,R =48, L =150,a =1.4,0 =24
all ef_search € {4, 8, 16,32, 64, 128, 256,512, 1024}
SeRF [154] medium, R filter index_k = 100, ef construction = 100, ef _max = 500

large, R filter

index_k = 100, ef construction = 100, ef_max = 600

5.1 Collected Metrics

We focus on the well-established recall vs. queries per second (QPS)
plots, which illustrate the trade-off between accuracy and query
throughput achieved by each method. We define recall@k as:

|knngye N knng|

k
where knn,j; denotes the set of k nearest neighbors returned by
the algorithm, and knny; is the ground truth. In addition, we report
the index construction time, peak memory usage during both index
construction and query execution, and the index size.

recall@k =

5.2 Parameter Search

Since all FANNS methods considered involve tunable parameters
that influence index construction, we perform a dedicated parame-
ter search for each combination of method, dataset scale (medium
vs. large), and filter type prior to benchmarking. Given that some
methods expose up to eight parameters, a full grid search is compu-
tationally infeasible. Instead, we adopt a greedy parameter search
strategy, outlined in Algorithm 1. The algorithm takes as input a list
of tunable parameters, their corresponding candidate values, and
the index of each parameter’s default value inside the list of candi-
date values. Candidate and default values are selected based on the
literature and publicly available implementations of each method.
The get_reward() function performs two iterations of building

the index with a given parameter configuration and querying it
using 50 randomly sampled queries from the dataset. It computes
the recall vs. QPS curve averaged over both iterations and returns
the highest QPS achieved at a recall of at least 0.95. If a method
does not reach a recall of 0.95, it returns the highest achieved recall
instead. The resulting parameter are listed in Table 5.

5.3 Benchmarking Methodology

Once the parameter search is complete, we benchmark each method
five times (without warm-up) and report the mean and standard de-
viation for all measured metrics following scientific benchmarking
practice [64]. Index construction is performed using all available
hardware threads on the respective system (details provided in the
next paragraph), while query execution is restricted to a single
thread?, following common practice [24, 60, 133]. We search for
k = 10 nearest neighbors and report recall@10, which is a standard
choice in the literature [24, 53, 109, 133, 145]. All benchmarks use
Euclidean distance, as it is supported by all methods under eval-
uation. Since our transformer-based embeddings are normalized,
KNN under Euclidean distance is equivalent to KNN under cosine
distance. We exclude any preprocessing, such as sorting items by
attribute value or transforming vectors into alternate formats when
reporting index construction time.

4QOur script reports multiple threads during query execution of CAPS and SeRF, how-
ever, CPU utilization confirms that only one thread is active and the others are idle.

Algorithm 1 (§5.2) Greedy Parameter Search

Require: params, value_lists, default_indices
1: indices = default_indices
2: P ={p: value_lists[p][indices[p]] for p in params}
3: best_reward = get_reward(P)
4: do_repeat = true
5. while do_repeat do

6: do_repeat = false

7: for all par € params do

8 for all change € [-1,1] do

9 P = {p : value_lists[p][indices[p]] for p in params}
10: P[par] = value_lists[par][indices[par] + change]
11 reward = get_reward(P)

12: if reward > best_reward then

13: if reward > (best_reward * 1.01) then

14: do_repeat = true

15: end if

16: best_reward = reward

17: indices[par] = indices[par] + change

18: end if

19: end for

20: end for

21: end while
22: return {p : value_lists[p][best_indices[p]] for p in params}

5.4 Software and Hardware Configuration

To ensure reproducibility, we encapsulate our benchmarking in-
frastructure in a Docker container based on Ubuntu 20.04.6, which
includes all necessary dependencies for the evaluated methods. In-
side the container, we use Python 3.8.10, gcc 9.4.0, and g++ 9.4.0.
Benchmarks on the arxiv-for-fanns-medium dataset are con-
ducted on a laptop equipped with 16 GB of RAM and an Intel
Core i7-1165G7 CPU with 4 physical cores and 8 hardware threads,
running Arch Linux with kernel version 6.15.5-arch1-1. For the
arxiv-for-fanns-large dataset, we execute benchmarks on a
single node of a compute cluster with 384 GB of RAM and two Intel
Xeon Gold 6154 CPUs, each with 18 physical cores and 36 hardware
threads, running CentOS Linux 8.

5.5 Remarks on Algorithms

NHQ-kgraph. We exclude the call to optimize_graph() from
query execution timing, as it is independent of the number of
queries and its cost is amortized when processing large batches.

ACORN. Algorithmically, ACORN only needs to check the filter
condition for visited vertices during graph traversal. However, the
implementation we benchmark performs this check for all items
prior to traversal. Since prior work is inconsistent on whether this
cost is included [24] or not [109], we report two recall vs. QPS
curves for ACORN: one including the filtering overhead (labeled
“upper bound”) and one excluding it (labeled “lower bound”).

SeRF. Unlike all other methods, SeRF performs index construc-
tion and query execution within a single process, without persisting
the index to disk. Therefore, we report only the overall peak mem-
ory usage, and we omit the index size from our results.

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

FDANN. The code provided in the FDANN repository [99] stores
two versions of the index, each approximately the size of the original
dataset. We optimize the code to store only one index at a time,
reducing the overall index size to half.

5.6 Results on arxiv-for-fanns-medium

Recall vs. QPS (Figure 16). We observe that ACORN, the only
evaluated method applicable to all three filter types, is generally
outperformed by more specialized methods. For the EM filter, NHQ
(kgraph), FDANN, and UNG achieve the best performance and
perform similarly, whereas CAPS, NHQ (nsw), and ACORN are
slower at comparable recall levels. The relative performance of
ACORN, NHQ (kgraph), and UNG is consistent with previous
benchmarks [24] on lower-dimensional datasets. FDANN, which
showed inferior performance in those earlier studies, excels with
our transformer-based embeddings, while NHQ (nsw) and CAPS
appear to underperform. For the EMIS filter, previous benchmarks
on lower-dimensional datasets [24] indicate that UNG outperforms
FDANN and ACORN; however, on our transformer-based embed-
dings, FDANN demonstrates superior performance.

Index Construction Time (Figure 17, left). We observe that index
construction time varies by up to an order of magnitude across
methods. CAPS is the fastest to build, followed by FDANN and
NHQ (kgraph). SeRF, UNG, and NHQ (nsw) are significantly slower,
with ACORN being the slowest across all filters.

Peak Memory Usage (Figure 17, middle). Except for NHQ (kgraph)
and SeRF, which show noticeably higher peak memory usage, dif-
ferences in memory consumption during index construction and
query execution are moderate across methods.

Index Size (Figure 17, right). The index built by most methods
is approximately 1.6 GB, corresponding to the size of the dataset.
CAPS and NHQ (kgraph) produce very small indexes, only a few
megabytes; however, they need to access the original database
vectors during query execution. If we account for the size of the
database vectors, the effective index size for these methods is also
around 1.6 GB.

5.7 Challenges In Scaling Up the Dataset Size

We encountered several challenges when scaling our benchmarking
from the arxiv-for-fanns-medium dataset with 100,000 items to
the arxiv-for-fanns-large dataset with over 2.7 million items.
While 2.7 million vectors may not sound particularly large, note
that our transformer-based embeddings have 4,096 dimensions,
significantly more than most existing datasets. As a result, our
dataset is over 85X larger than the well-known SIFT1M dataset [76],
which contains 128-dimensional embedding vectors.

Due to this large scale, 4 out of the 7 methods we benchmarked
required modifications to their source code to run with the large
dataset. UNG [24], CAPS [60], and NHQ (KGraph) [133] all suf-
fered from int32 overflows during memory allocation. Addition-
ally, CAPS originally allocated a data structure on the stack, which
we moved to the heap to support the large dataset. FDANN [53],
as mentioned in Section 5.5, initially stored two versions of the
index, exceeding the local memory of our cluster’s compute node.
Addressing the issues enabled benchmarking all 7 algorithms.

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

[I
1.0 5 -EARd S 1.0 H = 1.0 % b il WS
e :i" ; ™, Sy S SRARI .,
‘E L E " e . LN
® > \ % N
0.8 A 0.8 : 0.8 - L
N 5 s L
N > L] . %
o + o ') b
= 0.6 T = 0.6 - = 0.6 e
& | & e A
© © ©
9 -~ ACORN (lower bound) i o 0 h
& 0.4 1 -&i- ACORN (upper bound) <04 = 0.4 a
CAPS (kmeans) M
-HH- FDANN (stitched) -1§i- ACORN (lower bound)
0.2 + -Hd- NHQ (kgraph) 0.2 + -~ ACORN (lower bound) 0.2 + -+~ ACORN (upper bound)
-HH- NHQ (nsw) -t$1- ACORN (upper bound) -HH- FDANN (stitched)
UNG -FH- SeRF UNG
00 Il Il \\\H! Il L] 00 Il Il \\\H! Il L] 00 Il \\\\ll L]
102 103 102 10° 102 103

Queries per Second (QPS)

Queries per Second (QPS)

Queries per Second (QPS)

Figure 16: (§5.6) Recall@10 vs. QPS plots for the three filter types (EM, R, EMIS) on the arxiv-for-fanns-medium dataset.

Index Construction Time

Peak Memory Usage

m Index Constructi Query Execution
_ 40 _ Iy 7 8
€ < . =
@
eSS Es E [
o o o T
£30 £ £S5 &6
E 125 E 8
525 5 54 5
520 £ £ 5S4
5 Ea B3 £
3 3 3
215 2 2 g
§ § 5 =
8 S S2 S
% 10 %2 % =7
1 $ $ &
£05 = g
0.0 0 o 0
zzz o vz z0 H 2 H 2
3 z €z z =z 1 E S E
gEos 38 5= S S
< < < < <

NHQ (nsw)

= =
s a
[e
3 3
g g
o o
= I
z z

NHQ (kgraph)
CAPS (kmeans)
CAPS (kmeans)|

T
°
£
S
8
z
Z
a
i

FDANN (stitched)
CAPS (kmeans)

FDANN (stitched)

FDANN (stitched)|

Index Size
B Idx. Constr. Query Exec. Idx. Constr. uery Exec. 2.00 2.00 2.00
=7 —~a4 1.75 175 175
B I B
g 6 I T _ 150 _ 150 _ 150
@ @ @
B 33 ©1.25 ©1.25 8125
3 | 3 = : :
z4 2 & 1.00 5 1.00 5 1.00
£ I E 2 3 3 3
g3 g $075 $ 075 3075
= I = £ £ £
E 2 I E 1 0.50 0.50 0.50
&1 I & 0.25 0.25 0.25
0 0 0.00 0.00 0.00

SeRF!

ACORN!

SeRF|

UNG;

FDANN (stitched)

ACORN!

o]
z
=

3
g
g
K]
)
=z
2
2

FDANN (stitched)
CAPS (kmeans)
ACORN

NHQ (kgraph)
NHQ (nsw)

UNG

ACORN

ACORN

UNG

FDANN (stitched)

Figure 17: (§5.6) Index construction time (left), peak memory usage (middle), and index size (right) for the three filter types
(EM, R, EMIS) on the arxiv-for-fanns-medium dataset.

5.8 Results on arxiv-for-fanns-large

Recall vs. QPS (Figure 18). Comparing the recall vs. QPS curves of
the large-scale dataset to those of the medium-scale dataset reveals
key insights into method scalability. ACORN, both NHQ variants,
and SeRF maintain their relative performance, with query through-
put dropping by only a factor of about 4 despite the dataset being
27x larger. This indicates good scalability, especially considering
that both experiments used a single thread for query execution,
albeit on different machines. FDANN, CAPS, and UNG perform
poorly on the large dataset and fail to reach more than 25% recall.
We cannot fully rule out that the poor performance is due to sub-
optimal parameters, as our greedy search may have converged to a
local optimum. A full grid search or a different initialization could
potentially lead to better results. However, even with the greedy
search, we encountered computational limits, as the parameter
search for some methods with long index construction times and
many parameters ran for multiple weeks. These findings highlight
the challenge of tuning FANNS methods on large datasets, where
index construction is expensive. We believe further research into
efficient parameter tuning strategies would benefit the community.

Index Construction Time (Figure 19, left). Index construction on
the 27x larger dataset increased the runtime of most methods by
roughly an order of magnitude. Since the large dataset was pro-
cessed with 9X more threads, this suggests that index construction

time grows faster than linearly with dataset size or that speedup
from additional threads is sublinear. CAPS remains the fastest

method, while ACORN continues to lag behind most others. UNG
has by far the longest construction time, which may be due to UNG
failing to reach the target recall of 0.95, causing the parameter
search to shift toward more expensive configurations.

Peak Memory Usage (Figure 19, middle). Memory usage of all
methods scales roughly linearly with dataset size. Relative differ-
ences during index construction and query execution remain similar
to those on the medium-scale dataset.

Index Size (Figure 19, right). UNG stands out by compressing
the index to about one fourth of the dataset size without requiring
access to the original vectors at query time. As in the medium-scale
setting, CAPS and NHQ (kgraph) produce compact indexes of just
a few megabytes but require access to the original vectors at query
time. For the remaining methods, the index size is approximately
equal to the dataset size.

6 RELATED WORK

In the first part of our work, we survey the current state of the
FANNS field. While we are not aware of any existing surveys specif-
ically focused on FANNS, several works review the related ANNS
domain, such as the surveys by Echihabi et al. [39] and Han et
al. [62]. Other surveys explore prominent application areas of ANNS
and FANNS, most notably in the context of retrieval-augmented
generation (RAG) for LLMs [50] and reasoning language models
(RLMs) with integrated RAG capabilities [20].

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

1.0 1.0 L - = 1.0 ~# ACORN (lower bound)
bt SEoH Ty RN Lol [T H™ vl Poel | % ACORN (upper bound)
e s M % Fset ~ o +# FDANN (stitched)
3 N H @ o
SR " 08 SR o A UNG
0.8 .) _ N
e fe Y * 3 €)
* » \ ‘\ < \ ‘0 *
Al | » + >
S 0.6+ ACORN (lower bound) &l 1% = * g 9 d
0.6 - 0.6 . 3 ; 0.6
® -4 ACORN (upper bound) . ® * * ' ® ' \
® CAPS (kmeans) A ® : ' : ® * *
g +# FDANN (stitched) b g : | ; & i \
0.4 1 - NHQ (kgraph) 0.4 = ™y T 0.4 3 w
-+ NHQ (nsw) 0
UNG [ng}
| |
0.2 ++ ;, ! 0.2 + -H- ACORN (lower bound) 0.2 —
!
‘ o |l } -t$1- ACORN (upper bound) ¥ L
~ L ! 3
*Hoed] ‘ -FH- SeRF ot R
0.0 +H T I. bl LS 0.0 Ly 0.0 | AR e
10t 102 10° 102 103 10t 102 103

Queries per Second (QPS)

Queries per Second (QPS)

Queries per Second (QPS)

Figure 18: (§5.8) Recall@10 vs. QPS plots for the three filter types (EM, R, EMIS) on the arxiv-for-fanns-large dataset.

Index Construction Time

Q [EMIS

Index Constructi Query Execution

_m

@
3
~
&
3
N
=3
S

@

3
.
Q
S

N

S
-
S
S

Peak Memory Usage[GB]

v
S

9
8
Index Construction Time [min]

Index Construction Time [min]
Index Construction Time [min]

ek
|
peak
m
ek
e

0

o

UNG
SeRF
ACORN
UNG
UNG|

FDANN (stitched)
ACORN!

ACORN;
NHQ (kgraph)

ACORN
NHQ (kgraph)

FDANN (stitched)
CAPS (kmeans)
NHQ (kgraph)
NHQ (nsw)
ACORN
FDANN (stitched)
CAPS (kmeans);,
NHQ (nsw)
FDANN (stitched)
CAPS (kmeans),
NHQ (nsw)

unG el

Peak Memory Usage

Index Size
m 1dx. Constr. Query Exec. 100 Idx. Constr. Query Exec. m
175

5 I = 40 40 40
© 150 o) CU

g I g 7 = 5

g 125 & eo § 30 GEC &30
2 2 o o o

> 100 > 3 & &

§ | §

e £ w0 %20 % 20 320
2 | = 2 E E

% 50 X

s I T 20 10 10 10
& | &

0

SeRF|
ACORN
SeRF|
ACORN
ACORN
UNG]
ACORN
UNG|
FDANN (stitched)
°
CAPS (kmeans)
ACORN
NHQ (kgraph)
NHQ (nsw)
UNG
°
ACORN
°
ACORN
UNG
FDANN (stitched)

FDANN (stitched) Gt ™

FDANN (stitched)

Figure 19: (§5.8) Index construction time (left), peak memory usage (middle), and index size (right) for the three filter types
(EM, R, EMIS) on the arxiv-for-fanns-large dataset.

The second part of our paper introduces a novel dataset featuring
transformer-based embedding vectors, designed to reflect emerging
RAG workloads. This type of data is not represented in the existing
landscape of ANNS and FANNS datasets [36, 76, 110, 119]. Our em-
beddings are generated using the stella_en_400M_v5 model [104,
148], a widely used embedding model in LLM research [21, 74]. In
contrast to our arxiv-for-fanns dataset, end-to-end RAG bench-
marks such as the Massive Text Embedding Benchmark [102] con-
tain text passages rather than embedding vectors, making them
unsuitable for direct evaluation of FANNS methods.

Finally, we benchmark a range of existing FANNS methods [24,
53, 60, 109, 133, 154] on our dataset. While each of these meth-
ods includes evaluation results in its respective publication, there
is no comprehensive benchmark of FANNS methods on modern,
transformer-based embeddings. In the broader ANNS field, sev-
eral large-scale benchmarks [11, 12, 136] have been established,
providing valuable comparisons across methods and datasets.

7 CONCLUSION

The rapid progress of embedding models for various modalities
has intensified the need for fast and accurate FANNS methods. In
response, many approaches supporting EM, R, and EMIS filtering
have emerged recently. To structure this evolving field, we present a
taxonomy and survey of modern FANNS methods. We identify a key
gap: the lack of open datasets with transformer-based embeddings

enriched with real-world attributes. To address this, we release the
arxiv-for-fanns dataset with over 2.7 million 4096-dimensional

embedding vectors and 11 real-world attributes. We benchmark
several FANNS methods on this dataset and analyze their perfor-
mance under this challenging workload. No single method excels
universally. ACORN is robust and flexible but often outperformed
by specialized methods. SeRF performs well for range filters on
ordered attributes but lacks categorical filtering support. Filtered-
DiskANN and UNG perform well on medium-scale data but fail
to scale, highlighting the difficulty of handling high-dimensional
transformer-based embeddings. We conclude that the large dimen-
sionality of transformer-based vectors poses a major challenge for
FANNS methods. Moreover, we find that efficient parameter tuning
remains one of the most pressing open problems in this area.

8 ACKNOWLEDGEMENTS

We thank the Swiss National Supercomputing Centre (CSCS) for ac-
cess to their Ault system, which we used to execute our benchmarks.
Furthermore, we thank the PLGrid Consortium for access to their
Athena system, which we used to create the arxiv-for-fanns
dataset. This work was supported by the ETH Future Computing
Laboratory (EFCL), financed by a donation from Huawei Technolo-
gies. It also received funding from the European Research Council

e (Project PSAP, No. 101002047) and from the European Union’s
HE research and innovation programme under the grant agreement
No. 101070141 (Project GLACIATION).

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

REFERENCES

(]
[2]

7

(8]

[18

(19]

[20

[22

[23

[24

[25

[26]

David J Abel. 1984. A B+-tree structure for large quadtrees. Computer Vision,
Graphics, and Image Processing 27, 1 (1984), 19-31.

Sami Abu-El-Haija, Anja Hauth, Lu Jiang, Nisarg Kothari, Joonseok Lee, Hanhan
Li, Paul Natsev, Joe Ng, Sobhan Naderi Parizi, George Toderici, Balakrishnan
Varadarajan, Sudheendra Vijayanarasimhan, and Shoou-I Yu. 2025. YouTube 8M.
https://research.google.com/youtube8m/download.html. Accessed: 2025-03-06.
Alibaba-NLP. 2025. gte-Qwen2-7B-instruct. https://huggingface.co/Alibaba-
NLP/gte-Qwen2-7B-instruct. Accessed: 2025-01-22.

Alipay. 2025. Pase: PostgreSQL Ultra-High Dimensional Approximate Nearest
Neighbor Search Extension. https://github.com/alipay/PASE. Accessed: 2025-
03-04.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and optimal LSH for angular distance. Advances in
neural information processing systems 28 (2015).

Alexandr Andoni and Ilya Razenshteyn. 2015. Optimal data-dependent hashing
for approximate near neighbors. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing. 793-801.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2016. Cache
locality is not enough: High-performance nearest neighbor search with product
quantization fast scan. In 42nd International Conference on Very Large Data
Bases, Vol. 9. 12.

Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. 2011. Fast
approximate similarity search based on degree-reduced neighborhood graphs.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1055-1063.

Data Curation Lab at Rutgers University. 2025. ARKGraph: All-Range Approxi-
mate K-Nearest-Neighbor Graph. https://github.com/rutgers-db/ARKGraph.
Accessed: 2025-02-25.

Data Curation Lab at Rutgers University. 2025. SeRF. https://github.com/rutgers-
db/SeRF. Accessed: 2025-02-24.

Martin Aumueller, Erik Bernhardsson, and Alec Faitfull. 2025. ANN Benchmarks.
https://ann-benchmarks.com/index.html. Accessed: 2025-01-22.

Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. 2016. Soundnet: Learning
sound representations from unlabeled video. Advances in neural information
processing systems 29 (2016).

Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme
vector compression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 931-938.

Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247-1260.

Rudolf Bayer and Edward McCreight. 1970. Organization and maintenance of
large ordered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control. 107-141.

Jeffrey S Beis and David G Lowe. 1997. Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In Proceedings of IEEE
computer society conference on computer vision and pattern recognition. IEEE,
1000-1006.

Massive Text Embedding Benchmark. 2025. Overall MTEB English leaderboard.
https://huggingface.co/spaces/mteb/leaderboard_legacy. Accessed: 2025-03-11.
Jon Louis Bentley. 1975. Multidimensional binary search trees used for associa-
tive searching. Commun. ACM 18, 9 (1975), 509-517.

Maciej Besta, Julia Barth, Eric Schreiber, Ales Kubicek, Afonso Catarino, Robert
Gerstenberger, Piotr Nyczyk, Patrick Iff, Yueling Li, Sam Houliston, et al. 2025.
Reasoning language models: A blueprint. arXiv preprint arXiv:2501.11223 (2025).

Maciej Besta, Lorenzo Paleari, Ales Kubicek, Piotr Nyczyk, Robert Gerstenberger,
Patrick Iff, Tomasz Lehmann, Hubert Niewiadomski, and Torsten Hoefler. 2024.
Checkembed: Effective verification of llm solutions to open-ended tasks. arXiv
preprint arXiv:2406.02524 (2024).

Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for
nearest neighbor. In Proceedings of the 23rd international conference on Machine
learning. 97-104.

Yuzheng Cai. 2025. Unified Navigating Graph Algorithm for Filtered Approxi-
mate Nearest Neighbor Search. https://github.com/YZ-Cai/Unified-Navigating-
Graph. Accessed: 2025-04-23.

Yuzheng Cai, Jiayang Shi, Yizhuo Chen, and Weiguo Zheng. 2024. Navigat-
ing Labels and Vectors: A Unified Approach to Filtered Approximate Nearest
Neighbor Search. Proceedings of the ACM on Management of Data 2, 6 (2024),
1-27.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng
Liu. 2024. Bge m3-embedding: Multi-lingual, multi-functionality, multi-
granularity text embeddings through self-knowledge distillation. arXiv preprint
arXiv:2402.03216 (2024).

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale

[27]

[28]

[29

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39

[40

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199-5212.

Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. 1997. M-tree: An efficient
access method for similarity search in metric spaces. In Vidb, Vol. 97. Citeseer,
426-435.

Cornell University, Devrishi, Joe Tricot, Brian Maltzan, Shamsi Brinn, and
Timo Bozsolik. 2025. arXiv Dataset. https://www.kaggle.com/datasets/Cornell-
University/arxiv. Accessed: 2025-03-13.

Aurora Linh Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello. 2019.
Look, listen, and learn more: Design choices for deep audio embeddings. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 3852-3856.

Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low
dimensional manifolds. In Proceedings of the fortieth annual ACM symposium
on Theory of computing. 537-546.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004.
Locality-sensitive hashing scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computational geometry. 253-262.
Google Research Datasets. 2025. WIT : Wikipedia-based Image Text Dataset.
https://github.com/google-research-datasets/wit. Accessed: 2025-03-06.
SJTU DBGroup. 2025. UNIFY - Unified Index for Range Filtered Approximate
Nearest Neighbors Search. https://github.com/sjtu-dbgroup/UNIFY. Accessed:
2025-02-20.

Mark De Berg. 2000. Computational geometry: algorithms and applications.
Springer Science & Business Media.

Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson. 2025. RedCaps:
Web-curated image-text data created by the people, for the people. https:
//redcaps.xyz/. Accessed: 2025-03-06.

Artem Babenko Dmitry Baranchuk. 2025. Benchmarks for Billion-Scale Simi-
larity Search. https://research.yandex.com/blog/benchmarks-for-billion-scale-
similarity-search. Accessed: 2025-03-06.

Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor
graph construction for generic similarity measures. In Proceedings of the 20th
international conference on World wide web. 577-586.

Matthijs Douze, Alexandr Guzhva, Chenggqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. (2024). arXiv:2401.08281 [cs.LG]

Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New
trends in high-d vector similarity search: al-driven, progressive, and distributed.
Proceedings of the VLDB Endowment 14, 12 (2021), 3198-3201.

Josh Engels. 2025. RangeFiltered ANN. https://github.com/JoshEngels/
RangeFiltered ANN. Accessed: 2025-02-25.

Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian
Shun. 2024. Approximate Nearest Neighbor Search with Window Filters. arXiv
preprint arXiv:2402.00943 (2024).

Eric Yang Farrall. 2025. Word Embeddings. https://huggingface.co/datasets/
efarrall/word_embeddings. Accessed: 2025-04-23.

Cole Foster, Berk Sevilmis, and Benjamin Kimia. 2025. Generalized relative
neighborhood graph (GRNG) for similarity search. Pattern Recognition Letters
188 (2025), 103-110.

Cong Fu, Changxu Wang, and Deng Cai. 2019. Satellite system graph: Towards
the efficiency up-boundary of graph-based approximate nearest neighbor search.
CoRR (2019).

Cong Fu, Changxu Wang, and Deng Cai. 2021. High dimensional similarity
search with satellite system graph: Efficiency, scalability, and unindexed query
compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence
44, 8 (2021), 4139-4150.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

Yujian Fu. 2025. NHQ: Native Hybrid Query Framework for Vector Similar-
ity Search with Attribute Constraint. https://github.com/YujianFu97/NHQ.
Accessed: 2025-02-27.

Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In Proceedings of the 2012
ACM SIGMOD international conference on management of data. 541-552.
Jianyang Gao and Cheng Long. 2024. RaBitQ: quantizing high-dimensional
vectors with a theoretical error bound for approximate nearest neighbor search.
Proceedings of the ACM on Management of Data 2, 3 (2024), 1-27.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. 2023. Retrieval-augmented
generation for large language models: A survey. arXiv preprint arXiv:2312.10997
2 (2023).

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2946-2953.
Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vidb, Vol. 99. 518-529.

https://research.google.com/youtube8m/download.html
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://github.com/alipay/PASE
https://github.com/rutgers-db/ARKGraph
https://github.com/rutgers-db/SeRF
https://github.com/rutgers-db/SeRF
https://ann-benchmarks.com/index.html
https://huggingface.co/spaces/mteb/leaderboard_legacy
https://github.com/YZ-Cai/Unified-Navigating-Graph
https://github.com/YZ-Cai/Unified-Navigating-Graph
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://github.com/google-research-datasets/wit
https://github.com/sjtu-dbgroup/UNIFY
https://redcaps.xyz/
https://redcaps.xyz/
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://arxiv.org/abs/2401.08281
https://github.com/JoshEngels/RangeFilteredANN
https://github.com/JoshEngels/RangeFilteredANN
https://huggingface.co/datasets/efarrall/word_embeddings
https://huggingface.co/datasets/efarrall/word_embeddings
https://github.com/YujianFu97/NHQ

(53]

(63]

[64

[65

[68

(69

[70]

[72]

(73

(74]

[76

(7]

(78]

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krish-
naswamy, Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahap-
atro, Premkumar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms
for approximate nearest neighbor search with filters. In Proceedings of the ACM
Web Conference 2023. 3406-3416.

Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: indexable
distance estimating codes for approximate nearest neighbor search. Proceedings
of the VLDB Endowment 13, 9 (2020).

Patrick Grother, Patrick Grother, Mei Ngan, and Kayee Hanaoka. 2019. Face
recognition vendor test (frvt) part 2: Identification.

The PostgreSQL Global Development Group. 2025. PostgreSQL. https://www.
postgresql.org/. Accessed: 2025-01-22.

Department of Computer Science Guestrin Lab at Stanford University. 2025.
ACORN. https://github.com/guestrin-lab/ACORN. Accessed: 2025-02-25.
Qin-Zhen Guo, Zhi Zeng, Shuwu Zhang, Guixuan Zhang, and Yuan Zhang.
2016. Adaptive bit allocation product quantization. Neurocomputing 171 (2016),
866-877.

Gaurav Gupta. 2025. CAPS.
constrainedANN. Accessed: 2025-02-26.
Gaurav Gupta, Jonah Yi, Benjamin Coleman, Chen Luo, Vihan Lakshman, and
Anshumali Shrivastava. 2023. CAPS: A Practical Partition Index for Filtered
Similarity Search. arXiv preprint arXiv:2308.15014 (2023).

Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47-57.

Yikun Han, Chunjiang Liu, and Pengfei Wang. 2023. A comprehensive survey
on vector database: Storage and retrieval technique, challenge. arXiv preprint
arXiv:2310.11703 (2023).

Ben Harwood and Tom Drummond. 2016. Fanng: Fast approximate nearest
neighbour graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 5713-5722.

Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel
computing systems: twelve ways to tell the masses when reporting performance
results. In Proceedings of the international conference for high performance com-
puting, networking, storage and analysis. 1-12.

Michael E Houle and Michael Nett. 2014. Rank-based similarity search: Reducing
the dimensional dependence. IEEE transactions on pattern analysis and machine
intelligence 37, 1 (2014), 136-150.

Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor
search. Proceedings of the VLDB Endowment 9, 1 (2015), 1-12.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. 2024.
Gpt-4o system card. arXiv preprint arXiv:2410.21276 (2024).

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing. 604-613.

Masajiro Iwasaki. 2016. Pruned bi-directed k-nearest neighbor graph for prox-
imity search. In International Conference on Similarity Search and Applications.
Springer, 20-33.

Omid Jafari, Parth Nagarkar, and Jonathan Montafio. 2020. mmlsh: A practical
and efficient technique for processing approximate nearest neighbor queries
on multimedia data. In International Conference on Similarity Search and Appli-
cations. Springer, 47-61.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate
billion-point nearest neighbor search on a single node. Advances in neural
information processing Systems 32 (2019).

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117-128.

Yannis Kalantidis and Yannis Avrithis. 2014. Locally optimized product quan-
tization for approximate nearest neighbor search. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2321-2328.

Sejong Kim, Hyunseo Song, Hyunwoo Seo, and Hyunjun Kim. 2025. Optimizing
retrieval strategies for financial question answering documents in retrieval-
augmented generation systems. arXiv preprint arXiv:2503.15191 (2025).

Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. 2012. Efficient retrieval
of recommendations in a matrix factorization framework. In Proceedings of the
21st ACM international conference on Information and knowledge management.
535-544.

Hervé Jégou Laurent Amsaleg. 2025. Datasets for approximate nearest neighbor
search. http://corpus-texmex.irisa.fr/. Accessed: 2025-03-06.

Yann LeCun. 2025. mnist. https://huggingface.co/datasets/ylecun/mnist/viewer?
views%5B%5D=train. Accessed: 2025-03-06.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad
Shoeybi, Bryan Catanzaro, and Wei Ping. 2024. NV-Embed: Improved Tech-
niques for Training LLMs as Generalist Embedding Models. arXiv preprint

https://github.com/gauravi6gupta/

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[o1

[92]

[93]

[94]

[95

[96]

[97]

[98]

[99

[100]

[101]

[102]

[103

Patrick Iff, Paul Briigger, Marcin Chrapek, Maciej Besta, and Torsten Hoefler

arXiv:2405.17428 (2024).

Yibin Lei. 2025. LENS-d8000. https://huggingface.co/yibinlei/LENS-d8000.
Accessed: 2025-01-22.

Yibin Lei, Tao Shen, Yu Cao, and Andrew Yates. 2025. Enhancing Lexicon-Based
Text Embeddings with Large Language Models. arXiv preprint arXiv:2501.09749
(2025).

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019),
120-131.

Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and
Yuan Chen. 2018. The design and implementation of a real time visual search
system on JD E-commerce platform. In Proceedings of the 19th International
Middleware Conference Industry. 9-16.

Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W Tsang, and Xuemin
Lin. 2020. I/O efficient approximate nearest neighbour search based on learned
functions. In 2020 IEEE 36th international conference on data engineering (ICDE).
IEEE, 289-300.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan
Zhang. 2023. Towards general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281 (2023).

Angqi Liang, Pengcheng Zhang, Bin Yao, Zhongpu Chen, Yitong Song, and
Guangxu Cheng. 2024. UNIFY: Unified Index for Range Filtered Approximate
Nearest Neighbors Search. arXiv preprint arXiv:2412.02448 (2024).

Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep
supervised hashing for fast image retrieval. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2064-2072.

Wangqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, Lu Qin, and Xuemin
Lin. 2021. EI-LSH: An early-termination driven I/O efficient incremental c-
approximate nearest neighbor search. The VLDB Journal 30 (2021), 215-235.
Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. 2016. Large-scale vehicle re-
identification in urban surveillance videos. In 2016 IEEE international conference
on multimedia and expo (ICME). IEEE, 1-6.

Yi Liu, Minghui Wang, and Changxin Li. 2024. Research on High-Accuracy
Indoor Visual Positioning Technology Using an Optimized SE-ResNeXt Ar-
chitecture. In Proceedings of the 2024 7th International Conference on Signal
Processing and Machine Learning. 313-320.

Kejing Lu and Mineichi Kudo. 2020. R2LSH: A nearest neighbor search scheme
based on two-dimensional projected spaces. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1045-1056.

Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: approxi-
mate nearest neighbor search via virtual hypersphere partitioning. Proceedings
of the VLDB Endowment 13, 9 (2020), 1443-1455.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2017. In-
telligent probing for locality sensitive hashing: Multi-probe LSH and beyond.
Proceedings of the VLDB Endowment (2017).

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61-68.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.
Rosalind B Marimont and Marvin B Shapiro. 1979. Nearest neighbour searches
and the curse of dimensionality. IMA Journal of Applied Mathematics 24, 1
(1979), 59-70.

Yusuke Matsui. 2025. Reconfigurable Inverted Index (Rii): IVFPQ-based fast and
memory efficient approximate nearest neighbor search method with a subset-
search functionality. https://github.com/matsui528/rii. Accessed: 2025-04-23.
Yusuke Matsui, Ryota Hinami, and Shin’ichi Satoh. 2018. Reconfigurable in-
verted index. In Proceedings of the 26th ACM international conference on Multi-
media. 1715-1723.

Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2015. Pqtable: Fast
exact asymmetric distance neighbor search for product quantization using hash
tables. In Proceedings of the IEEE International Conference on Computer Vision.
1940-1948.

Microsoft. 2025. DiskANN. https://github.com/microsoft/Disk ANN. Accessed:
2025-02-26.

Microsoft. 2025. https://github.com/microsoft/MSVBASE. https://github.com/
microsoft/MSVBASE. Accessed: 2025-02-26.

Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Thab F
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023.
High-throughput vector similarity search in knowledge graphs. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1-25.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. 2022.
MTEB: Massive text embedding benchmark. arXiv preprint arXiv:2210.07316
(2022).

Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine

https://www.postgresql.org/
https://www.postgresql.org/
https://github.com/guestrin-lab/ACORN
https://github.com/gaurav16gupta/constrainedANN
https://github.com/gaurav16gupta/constrainedANN
http://corpus-texmex.irisa.fr/
https://huggingface.co/datasets/ylecun/mnist/viewer?views%5B%5D=train
https://huggingface.co/datasets/ylecun/mnist/viewer?views%5B%5D=train
https://huggingface.co/yibinlei/LENS-d8000
https://github.com/matsui528/rii
https://github.com/microsoft/DiskANN
https://github.com/microsoft/MSVBASE
https://github.com/microsoft/MSVBASE

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

[104]
[105]

[106

=
S o
)

[109

[110]

[111]
[112]

[113

[114]

[115

[116

[117

[118

[119

[120

[121

[122

[123

[124

[125

[126

[127]

[128

[129
[130

[131

intelligence 36, 11 (2014), 2227-2240.

NovaSearch. 2025. Stella_em_400M_v5. https://huggingface.co/NovaSearch/
stella_en_400M_v5. Accessed: 2025-03-11.

NVIDIA. 2025. NV-Embed-v2. https://huggingface.co/nvidia/NV-Embed-v2.
Accessed: 2025-01-22.

Beijing Academy of Artificial Intelligence. 2025. bge-en-icl. https://huggingface.
co/BAAI/bge-en-icl. Accessed: 2025-01-22.

Stephen M Omohundro. 1989. Five balltree construction algorithms. (1989).
Yongjoo Park, Michael Cafarella, and Barzan Mozafari. 2015. Neighbor-sensitive
hashing. Proceedings of the VLDB Endowment 9, 3 (2015), 144-155.

Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN: Per-
formant and Predicate-Agnostic Search Over Vector Embeddings and Structured
Data. Proceedings of the ACM on Management of Data 2, 3 (2024), 1-27.
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2025.
glove100_angular. https://www.tensorflow.org/datasets/catalog/glove100_
angular. Accessed: 2025-03-06.

Pinecone. 2025. Pinecone: The vector database to build knowledgeable AL
https://www.pinecone.io/. Accessed: 2025-03-11.

The Milvus Project. 2025. Milvus. https://github.com/milvus-io/milvus. Ac-
cessed: 2025-02-27.

Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon Brassey, and Carsten Eickhoff.
2025. TripClick. https://tripdatabase.github.io/tripclick/. Accessed: 2025-07-28.
Meta Research. 2025. Faiss. https://github.com/facebookresearch/faiss. Ac-
cessed: 2025-01-17.

Fred Richardson, Douglas Reynolds, and Najim Dehak. 2015. A unified
deep neural network for speaker and language recognition. arXiv preprint
arXiv:1504.00923 (2015).

Christoph Schuhmann. 2025. LAION-400-MILLION OPEN DATASET. https:
//laion.ai/blog/laion-400- open-dataset/. Accessed: 2025-03-06.

Anton Shapkin, Denis Litvinov, Yaroslav Zharov, Egor Bogomolov, Timur Gal-
imzyanov, and Timofey Bryksin. 2023. Dynamic Retrieval-Augmented Genera-
tion. arXiv preprint arXiv:2312.08976 (2023).

Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast
image descriptor matching. In 2008 IEEE conference on computer vision and
pattern recognition. IEEE, 1-8.

Harsha Vardhan Simhadri, George Williams, Martin Aumiiller, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Matthijs Douze, Lucas Hosseini, Ravishankar
Krishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong
Wang. 2025. Billion-Scale Approximate Nearest Neighbor Search Challenge:
NeurIPS’21 competition track. https://big-ann-benchmarks.com/neurips21.
html. Accessed: 2025-03-06.

Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and
Harsha Vardhan Simhadri. 2021. Freshdiskann: A fast and accurate graph-
based ann index for streaming similarity search. arXiv preprint arXiv:2105.09613
(2021).

Sivic and Zisserman. 2003. Video Google: A text retrieval approach to ob-
ject matching in videos. In Proceedings ninth IEEE international conference on
computer vision. IEEE, 1470-1477.

Sivic and Zisserman. 2003. Video Google: A text retrieval approach to ob-
ject matching in videos. In Proceedings ninth IEEE international conference on
computer vision. IEEE, 1470-1477.

Jan Suchal and Pavol Navrat. 2010. Full text search engine as scalable k-nearest
neighbor recommendation system. In Artificial Intelligence in Theory and Practice
III: Third IFIP TC 12 International Conference on Artificial Intelligence, IFIP AI 2010,
Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings
3. Springer, 165-173.

Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,
Piotr Indyk, Samuel Madden, and Pradeep Dubey. 2013. Streaming similarity
search over one billion tweets using parallel locality-sensitive hashing. Pro-
ceedings of the VLDB Endowment 6, 14 (2013), 1930-1941.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 1-9.

Pooya Tavallali, Peyman Tavallali, and Mukesh Singhal. 2021. K-means tree: an
optimal clustering tree for unsupervised learning. The journal of supercomputing
77,5 (2021), 5239-5266.

Trevor. 2025. Mtg Scryfall Cropped Art Embeddings. https:
//huggingface.co/datasets/Trevor]S/mtg-scryfall-cropped-art-embeddings-
open-clip- ViT-SO400M- 14-SigLIP-384. Accessed: 2025-04-23.

Vectara. 2025. Vectara: The Al Agent and Assistant platform for enterprises.
https://www.vectara.com/. Accessed: 2025-03-11.

Vespa. 2025. Vespa: We Make Al Work. https://vespa.ai/. Accessed: 2025-03-11.
Jingdong Wang and Shipeng Li. 2012. Query-driven iterated neighborhood
graph search for large scale indexing. In Proceedings of the 20th ACM interna-
tional conference on Multimedia. 179-188.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141

[142

[143

[144]

[145]

[146

[147

[148]

[149

[150]

[151

[152

[153]

[154]

A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2022. Navigable proximity graph-driven native hybrid queries
with structured and unstructured constraints. arXiv preprint arXiv:2203.13601
(2022).

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2024. An efficient and robust framework for approximate nearest
neighbor search with attribute constraint. Advances in Neural Information
Processing Systems 36 (2024).

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

Runhui Wang and Dong Deng. 2020. DeltaPQ: lossless product quantization
code compression for high dimensional similarity search. Proceedings of the
VLDB Endowment 13, 13 (2020), 3603-3616.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards
query fusion for structured and unstructured data. Proceedings of the VLDB
Endowment 13, 12 (2020), 3152-3165.

Yair Weiss, Antonio Torralba, and Rob Fergus. 2008. Spectral hashing. Advances
in neural information processing systems 21 (2008).

J Xu, A Szlam, and] Weston. 2021. Beyond goldfish memory: Long-term open-
domain conversation. arXiv 2021. arXiv preprint arXiv:2107.07567 (2021).
Xiaoliang Xu, Chang Li, Yuxiang Wang, and Yixing Xia. 2020. Multiattribute
approximate nearest neighbor search based on navigable small world graph.
Concurrency and Computation: Practice and Experience 32, 24 (2020), €5970.
Yuexuan Xu. 2025. iRangeGraph. https://github.com/YuexuanXu7/iRangeGraph.
Accessed: 2025-02-21.

Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. Proceedings of the ACM on Management of Data 2, 6
(2024), 1-26.

Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of
the 2020 ACM SIGMOD international conference on management of data. 2241-
2253.

Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of
the 2020 ACM SIGMOD international conference on management of data. 2241
2253.

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Ake Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-tree: Learning data layouts for big data analytics. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 193-208.
Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. AnalyticDB:
real-time OLAP database system at Alibaba cloud. Proceedings of the VLDB
Endowment 12, 12 (2019), 2059-2070.

Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong Wang. 2024. Jasper and
Stella: distillation of SOTA embedding models. arXiv preprint arXiv:2412.19048
(2024).

Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaogqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. { VBASE }: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonic-
ity. In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377-395.

Weijie Zhao, Shulong Tan, and Ping Li. 2020. Song: Approximate nearest
neighbor search on gpu. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 1033-1044.

Weijie Zhao, Shulong Tan, and Ping Li. 2022. Constrained approximate similarity
search on proximity graph. arXiv preprint arXiv:2210.14958 (2022).

Bolong Zheng, Zhao Xi, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu,
and Christian S Jensen. 2020. PM-LSH: A fast and accurate LSH framework for
high-dimensional approximate NN search. Proceedings of the VLDB Endowment
13, 5 (2020), 643655

Chaoji Zuo and Dong Deng. 2023. ARKGraph: All-Range Approximate K-
Nearest-Neighbor Graph. Proceedings of the VLDB Endowment 16, 10 (2023),
2645-2658.

Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF:
Segment Graph for Range-Filtering Approximate Nearest Neighbor Search.
Proceedings of the ACM on Management of Data 2, 1 (2024), 1-26.

https://huggingface.co/NovaSearch/stella_en_400M_v5
https://huggingface.co/NovaSearch/stella_en_400M_v5
https://huggingface.co/nvidia/NV-Embed-v2
https://huggingface.co/BAAI/bge-en-icl
https://huggingface.co/BAAI/bge-en-icl
https://www.tensorflow.org/datasets/catalog/glove100_angular
https://www.tensorflow.org/datasets/catalog/glove100_angular
https://www.pinecone.io/
https://github.com/milvus-io/milvus
https://tripdatabase.github.io/tripclick/
https://github.com/facebookresearch/faiss
https://laion.ai/blog/laion-400-open-dataset/
https://laion.ai/blog/laion-400-open-dataset/
https://big-ann-benchmarks.com/neurips21.html
https://big-ann-benchmarks.com/neurips21.html
https://huggingface.co/datasets/TrevorJS/mtg-scryfall-cropped-art-embeddings-open-clip-ViT-SO400M-14-SigLIP-384
https://huggingface.co/datasets/TrevorJS/mtg-scryfall-cropped-art-embeddings-open-clip-ViT-SO400M-14-SigLIP-384
https://huggingface.co/datasets/TrevorJS/mtg-scryfall-cropped-art-embeddings-open-clip-ViT-SO400M-14-SigLIP-384
https://www.vectara.com/
https://vespa.ai/
https://github.com/YuexuanXu7/iRangeGraph

	Abstract
	1 Introduction
	2 Background
	2.1 FANNS Problem Statement
	2.2 Example Use-Case of FANNS
	2.3 Attribute Types
	2.4 Filter Types
	2.5 Approximate Nearest Neighbor Search

	3 Survey and Taxonomy of FANNS
	3.1 Filtering Approaches
	3.2 Classification of FANNS Methods
	3.3 Explanation of FANNS Methods

	4 A New Dataset to Benchmark FANNS
	5 Benchmarking FANNS
	5.1 Collected Metrics
	5.2 Parameter Search
	5.3 Benchmarking Methodology
	5.4 Software and Hardware Configuration
	5.5 Remarks on Algorithms
	5.6 Results on arxiv-for-fanns-medium
	5.7 Challenges In Scaling Up the Dataset Size
	5.8 Results on arxiv-for-fanns-large

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

