2412.20179v1 [cs.PF] 28 Dec 2024

arxXiv

A Priori Loop Nest Normalization: Automatic Loop
Scheduling in Complex Applications

Lukas Triimper Philipp Schaad Berke Ates
Daisytuner ETH Zurich ETH Zurich
Darmstadt, Germany Zurich, Switzerland Zurich, Switzerland
lukas.truemper@daisytuner.com philipp.schaad@inf.ethz.ch beates@student.ethz.ch

Alexandru Calotoiu
ETH Zurich
Zurich, Switzerland
alexandru.calotoiu@inf.ethz.ch

void gemm_1(double **A, double **B,
double **C, double a, double b) {

for (int i = @; 1 < 1000; i++) {

for (int j = 0; j < 1100; j++)

Marcin Copik
ETH Zurich
Zurich, Switzerland
marcin.copik@inf.ethz.ch

S tically Equivalent void gemm_2(double **A, double **B,
emantically Equivalen double **C, double a, double b) {

Torsten Hoefler
ETH Zurich
Zurich, Switzerland
htor@inf.ethz.ch

for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1100; j++)

C[i][3] *= b; C[i][3] *= b;
for (int k = 0; k < 1200; k++) - for (int j = 0; j < 1100; j++)
for (int j = 0; j < 1100; j++) Different Loop Order for (int k = 0; k < 1200; k++)
C[i1[3] += a * A[i][k] * B[k][]]; C[i1[3] += a * A[i][k] * B[K][]]I;
} (Baseline (clang) 0_465} } (Baseline (clang) 9_095}

Auto-Scheduled: Different Performance to-Scheduling Auto-Scheduled:
Tiramisu 0.29s - Tiramisu 0.13s
Polly 0.77s Polly 0.31s
icc 0.04s J(Our Model 0.025) s> (Our Model 0.02s){icc 0.47s

Figure 1. Structurally different General Matrix-Matrix Multiply (GEMM) kernels yield significantly different performance.

Abstract

The same computations are often expressed differently across
software projects and programming languages. In particu-
lar, how computations involving loops are expressed varies
due to the many possibilities to permute and compose loops.
Since each variant may have unique performance properties,
automatic approaches to loop scheduling must support many
different optimization recipes. In this paper, we propose a
priori loop nest normalization to align loop nests and reduce
the variation before the optimization. Specifically, we define
and apply normalization criteria, mapping loop nests with
different memory access patterns to the same canonical form.
Since the memory access pattern is susceptible to loop varia-
tions and critical for performance, this normalization allows
many loop nests to be optimized by the same optimization
recipe. To evaluate our approach, we apply the normalization

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708951

with optimizations designed for only the canonical form, im-
proving the performance of many different loop nest variants.
Across multiple implementations of 15 benchmarks using dif-
ferent languages, we outperform a baseline compiler in C on
average by a factor of 21.13, state-of-the-art auto-schedulers
such as Polly and the Tiramisu auto-scheduler by 2.31 and
2.89, as well as performance-oriented Python-based frame-
works such as NumPy, Numba, and DaCe by 9.04, 3.92, and
1.47. Furthermore, we apply the concept to the CLOUDSC
cloud microphysics scheme, an actively used component of
the Integrated Forecasting System, achieving a 10% speedup
over the highly-tuned Fortran code.

CCS Concepts: « Software and its engineering — Com-
pilers.

Keywords: loop normalization, loop optimization, polyhe-
dral analysis, compiler, code optimization

ACM Reference Format:

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu,
Marcin Copik, and Torsten Hoefler. 2025. A Priori Loop Nest Nor-
malization: Automatic Loop Scheduling in Complex Applications.
In Proceedings of the 23rd ACM/IEEE International Symposium on
Code Generation and Optimization (CGO ’25), March 01-05, 2025,
Las Vegas, NV, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3696443.3708951

https://orcid.org/0000-0002-0961-7723
https://orcid.org/0000-0002-8429-7803
https://orcid.org/0000-0003-0242-3640
https://orcid.org/0000-0001-9095-9108
https://orcid.org/0000-0002-7606-5519
https://orcid.org/0000-0002-1333-9797
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708951
https://doi.org/10.1145/3696443.3708951
https://doi.org/10.1145/3696443.3708951

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

1 Introduction

Because of sophisticated code optimizations by compilers,
developers of high-performance software applications can
often conveniently express the same linear code differently
while achieving high performance on modern processors.
However, the performance of loop-based computations is
highly susceptible to the specific permutations and composi-
tion of loops chosen by the developer.

Different frameworks implement automatic loop sched-
uling methods to enable automatic high-performance loop-
based code. Since loop scheduling is a complex problem in
and of itself [2, 32], these frameworks rely on approximate
methods. For instance, Polly [18] finds a good schedule by
optimization of an integer-linear program (ILP) [8]. However,
Baghdadi et al. [4] show that this ILP only covers a certain
fraction of the practically-relevant scheduling space [4]. Re-
cent approaches [2, 3] leverage deep learning to search much
larger scheduling spaces at the price of local optima.

Although such auto-schedulers can achieve significant
speedups, their direct application to large, scientific appli-
cations is currently limited. The small example of GEMM
presented in Figure 1 already shows that the results of auto-
schedulers may vary by factors of 3x-10x depending on the
chosen loop order. Hence, developers must manually align
loop nests to look like the supported optimization recipes.

To enable robust, automatic loop scheduling in complex
applications, this paper introduces a priori loop nest normal-
ization for auto-scheduling. Specifically, we identify with
maximal loop fission and stride minimization two normaliza-
tion criteria, which canonicalize loop nests with different
memory access patterns. This method allows us to more
easily apply the same optimization recipes to various loop
nests with different performance properties. We test the
robustness of the optimization plus normalization with mul-
tiple semantically equivalent implementations of 15 bench-
marks from PolyBench [29] across Python and C and with
the highly optimized cloud microphysics scheme CLOUDSC
written in Fortran. This results in our optimization pipeline
outperforming not just baseline compiler results in C (x21)
and Fortran (X1.1), but also non-normalizing state-of-the-art
auto-schedulers such as Polly [18] (x2.3), and the Tiramisu
auto-scheduler [3] (x2.9), as well as performance-oriented
Python-based frameworks such as NumPy, Numba, and DaCe
by 9.04, 3.92, and 1.47. In short, our contributions are

o Definition of a priori loop nest normalization to align
loop nests with different performance properties.

e Implementation for LLVM IR and integration with a
state-of-the-art loop scheduling algorithm.

o Evaluation of the robustness of optimization plus nor-
malization on representative benchmarks across mul-
tiple programming languages as well as a case study
optimizing a highly tuned cloud micro-physics simu-
lation.

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

2 A-Priori Loop Nest Normalization for
Auto-Scheduling

The cost of moving data through the memory hierarchy is the
dominant factor for the performance of modern computing
architectures [34]. Therefore, a priori loop nest normaliza-
tion aims to provide simple memory access patterns as the
starting point of the optimization. It should map loop nests
with vastly different performance properties such as the
reuse distance [6, 14, 30] or the sustained memory bandwidth
to the same canonical form. After formally defining what we
understand as loops and computations, we will introduce the
two normalization criteria based on well-known compiler
transformations.

for (int i ...) {
compA();
for (int j ...) {
for (int k ...) {
compB();
compC();

}
}

(a) Loop nest pseudocode

Loop i

RN

compA Loop j

11

Loop k

./ N
compB compC

(b) Loop nest tree representation

Figure 2. Characterization of loop nests.

Computation. We define a computation as a unit of work
composed of one or more instructions, where exactly one of
the instructions is a write of a scalar value to a data container.

Loop. A loop comprises an iterator with its initial values
and update criterion, a termination condition, and a loop
body composed of a sequence of computations.

Loop nest. A loop nest is a loop where the loop body
can be composed by an ordered sequence of computations,
loops, and loop nests. In the following, we use the notation
compli, j, k] if a computation is nested inside the loops i, j,
and k, where i is the outermost and k the innermost loop.
Similarly, we use the notation loop|i, j] to represent a loop
nest or loop nested within the loops i and j. Figure 2 illus-
trates the tree representation of a loop nest.

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

void foo(double **A, double **B,
double **Q, double **P) {
for (int i = 0; 1 < 1024; i++)
for (int j = 0; j < 1024; j++) {
A[i][3]1 = A[1i][J] + B[i][3];
) Q[JI[i] = Q[j1[i] + P[JI[il;

(a) Two independent computations with contiguous
and strided memory accesses in a single loop.

void foo(double **A, double **B,
double **Q, double **P) {

for (int 1 = 0; i < 1024; i++)
for (int j = 0; j < 1024; j++)
A[i1[J] = A[i][3] + B[il[J1;

for (int i = 0; i < 1024; i++)
for (int j = 0; j < 1024; j++)
Q[31[i] = Q[JI[i] + P[3I[il;

—<

Stride Minimization

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

void foo(double **A, double **B,
double **Q, double **P) {
for (int i = 0; i < 1024; i++)
for (int j = 0; j < 1024; j++)
A[i][3] = A[11[3] + B[i][31;
for (int i = 9; i < 1024; i++)
for (int j = 0; j < 1024; j++)
Q[31[4i] = Q[JI[i] + P[31[il;
¥

(b) The same computations fissioned into two separate
loop nests.

void foo(double **A, double **B,
double **Q, double **P) {
for (int i = 0; i < 1024; i++)
for (int j = 0; j < 1024; j++)
A[i][3]1 = A[11[3J] + B[i][31;
for (int j = 0; j < 1024; j++)
for (int i = 0; 1 < 1024; i++)
Q[jI[i] = Q[31[i] + P[JI[il;
}

(c) Permutation of the second loop nests to minimize the strides of memory accesses.

Figure 3. Loop nest code samples subject to normalization.

2.1 Maximal Loop Fission

Fusing computations into shared loops is a common tech-
nique to improve performance [25]. However, the combi-
nation of computations usually increases the complexity of
memory accesses. An example, shown in Figure 3a, combines
two computations with contiguous and strided memory ac-
cesses. Since the developer may apply such compositions
manually when writing the code, we propose simplifying
all loops to make them easier to analyze: we fission them as
much as possible before the optimization

Letcompll[iy, ..., ij, ..., in] and comp2[iy, ..., i, ..., in] be two
computations within the same loop nest. If there are no data
dependencies or loop-carried dependencies between comp1
and comp2, we define a new loop nest with the same iterator,
initial values, update criteria, and termination conditions i] =
i1, ..., ij, = in. We then divide comp1 and comp2 across loop
nests such that after fissioning we have comp1[iy, ..., ij, ..., in]
and comp2[if, ..., 1; .., 1,]. We repeat this for loops and com-
putations nested at the same level of every loop nest until no
such transformations are possible. The result is a sequence
of "atomic" loop nests, as their loop bodies contain com-
putations and loops that can not be separated due to data
dependencies. An example of one instance of fissioning is
illustrated in Figure 3a and Figure 3b, where the two compu-
tations are split into separate loop nests.

2.2 Stride Minimization

Depending on the order of loops within a loop nest, memory
accesses have different strides, impacting the cache utiliza-
tion. Since the optimal order depends on other optimizations

such as tiling or vectorization, loop permutation requires a
non-trivial performance model and must be decided by an
auto-scheduler [26]. To reduce the variations of loop nests,
we propose stride minimization as a normalization crite-
rion before optimization. We assume the stride minimization
criterion is applied after the maximal loop fission criterion.

Let loop — (i1, ..., ij, ik..., in) be a loop nest with all itera-
tors of nested loops ordered according to an in-order traver-
sal. We define a generic optimization criterion, stride(loop),
which maps subsequent accesses to arrays within each com-
putation of a loop nest loop to a real value. For instance, the
sum of all distances between two subsequent accesses to all
arrays over all computations is a suitable function.

Let 7 (loop) = (i1, ..., i}, ik....in) be a permutation and
my(loop) = (i1, ..., ik, ij, ..., in) be another legal permutation
of the same loop nest. If stride(n;) < stride(m;), then m; is
the permutation with the smaller stride. Generalizing, for
each loop nest [00p,in, we find and replace it with the legal
permutation with a minimal stride 7.

The complexity of finding loop,i, depends on the defini-
tion of stride(loop). Since our goal is to reduce the variation
of loop nests for a downstream auto-scheduler, we argue
that the minimum can simply be found by enumeration for
many practically-relevant loop nests. For deep loop nests,
we propose to sort groups of iterators as an approximation.

An example of stride minimization can be seen in Figure 3c,
where the the sum of strides in minimized. If the dimensions
are not statically known, other definitions of stride(loop)
must be used, e.g., the number of out-of-order access w.r.t.
the permutation of loop iterators and array dimensions.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

Scop & data access analysis

Source Code » LLVMIR =——————mmmmd Control Flow Graph =====p Symbolic Representation
for (int i=1; i<32; i++) { start: start for: i € [1,31]
for (int j=1; j<64; j++) { v
oA ST e br label %for.cond
B[i][3] = A[i1[31; S1 . - -
s R for.cond: —> for.cond for2: j € [1,63]
CLITMAT = A[AT[F]5 v s2 . \ 2
br i1 %cmp, label %for.body, label %for.end
} folebed % f°“$°dy s1 B[i][]] = A[i][]]
br label %for2.cond Parameters: i € [1,31],j € [1,63]
for2.cond: for2.cond
o ' Reads: { A;}
br il %cmp2, label %for2.body, label %for.inc Writes:(B,‘i}
for2.body: for2.body
%idx_Al = getelementptr, ptr %A, N N
: i 52 C[310i] = A[L1[3]
. . AT e | | e ST S
Access computations via PRI Parameters: i € [1,31],j € [1,63]
getelementptr instructions L— forinc Reads: { A;;}
br'label %for2.cond Writes: { C“}
for.inc: '
l’:r"’label %for.cond

for.end:

Symbolic data accesses

for.end
exit]
end SESE Region

Figure 4. Lifting a symbolic representation of loop nests with high-level information from source code translated to LLVM IR.

3 Normalization on Intermediate
Representations

We implement the normalization on LLVM IR to apply to
as many codes as possible. In LLVM IR, loops and memory
accesses are represented as instructions. Hence, all high-
level information, such as array shapes, loop relations, and
data dependencies, must be inferred through static analysis.
For instance, to identify the strided memory access to array
C in computation S2 of Figure 4, the accesses must first be
derived from store and getelementptr and branch instruc-
tions. Therefore, we first lift a rich, symbolic representation
of loop nests from LLVM IR to do the normalization. This
lifting aims to represent loop nests in a hierarchy of loop
and computation nodes, where loop iterators, domains, and
data accesses are symbolic expressions. Figure 4 depicts the
basic idea of this workflow.

3.1 Lifting Symbolic Representations from LLVM IR

LLVM IR consists of instructions grouped into basic blocks.
Basic blocks are connected through conditional and uncondi-
tional branches, typically represented in a control-flow graph
(CFG). Polly implements several mechanisms to detect and
lift a polyhedral representation of loop nests from LLVM
IR. Since this simplifies large parts of the symbolic analysis,
we use Polly as the basis of our lifting workflow. Based on
Polly’s representation, we then generate an Abstract Syntax
Tree (AST) of the loop nest using existing methods [17] im-
plemented in the integer set library [35]. This AST consists
of a a tree of loops and computations nodes similar to our
definition. To analyze strides and fissioning opportunities
efficiently, we further augment the tree with dataflow infor-
mation describing the subset of data produced and consumed
by different nodes. We use the Stateful DataFlow multiGraph
(SDFG) [5] and existing dataflow analysis [10].

To apply the changes to the original code, we use the
property that the loop nests detected by Polly are maximal
single-entry-single-exit (SESE) regions [21]. SESE regions are
subgraphs of a CFG with unique incoming and outgoing
edges. SESE regions can easily be removed from the original
code and replaced by a function call to an external source
code generated from an SDFG.

3.2 Normalization Passes

We implement the two normalization criteria as two sepa-
rate transformation passes in a pipeline based on the lifted
representation of loop nests. An overview of the normal-
ization pipeline is shown in Figure 5. In the first step, we
fission the loop nests as maximally as possible. Since loop
fissioning always splits loop nests into smaller loop nests
of fewer computation nodes, we can apply transformations
in a fixed-point pipeline until no more fissioning transfor-
mations apply. In the second step, we search for the loop
permutation with minimal strides for each resulting loop
nest of the first step. To find a minimal permutation, we
enumerate all permutations and compute the strides from
the symbolic expressions of memory accesses. It should be
noted that although our representation is lifted from LLVM
IR, the normalization can also be applied to SDFGs obtained
from other sources.

4 The daisy scheduler

Ideally, normalization should make semantically equivalent

implementations of an algorithm performance-equivalent.
To test this hypothesis, we create a normalized auto-scheduler,
daisy, and evaluate the impact of normalization on the auto-
scheduler robustness. We create an A/B test comparing the

original implementation of benchmarks (A variants) and al-
ternative, semantically equivalent implementations (B vari-
ants).

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

void foo() {
for (int i = 0; i < 1000; i++) {
for (int j = @; j < 1100; j++)
bar (A[1][3]);
for (int k = 0; k < 1200; k++)
for (int j = 0; j < 1100; j++)
bar (B[11[31[k]);

Sk

Fissioned loop nests

S2:
3 Lifting workflow

¥ (Section 4.1)

¥

for: i € [0,999]
for2: j € [0,1099]

for: i € [0,999]
for2: j € [0,1099]

Fixed-Point
iteration

S1 Reads: { Ajj}

————————

Data container B

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

A Priori Loop Normalization Workflow

Memory access pattern

Permuting loops reduces

induced by loop order

access stride length

XYY (VWY

Data container B

S1 Reads: { Ajj}

for5: i € [0,999]

for5: i € [0,999]) [fors: i € [0,999])

for3: k € [0,1199] for3: k € [0,1199]

for4: j € [0,1099]

for4: j € [0,1099]

52 Reads: {Bjjk!}

for4: j € [0,1099]
52 Reads:{Bjjk}

Maximal Fission

-

[for3: k € [0,1199] | ><:

for4: j € [0,1099]
Stride Minimization
S2 Reads:{Bjjk}

for3: k € [0,1199]

S2 Reads:{Bjjk}

Figure 5. The normalization pipeline in two steps: Maximal loop fission and stride minimization.

Optimization Algorithm. We define a new auto sched-
uler, which applies our normalization passes and then queries
optimizations from a database using similarity-based transfer
tuning [33]. The stride minimization uses the sum of strides
of all array accesses as the optimization criterion. The data-
base consists of pairs of an embedding for the loop nest and
transformation sequences including loop interchange, tiling,
parallelization and vectorization. The database is seeded
from normalized loop nests of the A variants and then ap-
plied to the normalized B variants. If a B loop nest is not
reduced to an A loop nest, the transformation sequence can-
not be applied.

Seeding a Scheduling Database. We collect all loop nests
from the normalized A variants to define the auto-scheduler.
For each loop nest corresponding to a BLAS-3 kernel, we
add an optimization recipe to perform idiom detection, i.e.,
replacing the loop nest with the matching BLAS library call.
The optimizations for other loop nests are found using an
evolutionary search. In the first epoch of the search, the
candidate optimizations for each loop nest are seeded using
the Tiramisu auto-scheduler. This population is refined in
three iterations through standard mutation and selection
techniques, where the runtime determines the fitness. In the
second and third epochs, the population is re-seeded using
the current best optimization of the ten most similar loop
nests and refined in three iterations again. The Euclidean
distance of performance embeddings [33] determines the most
similar loop nests.

Benchmarks. PolyBench [29] is a popular set of bench-
marks for evaluating polyhedral compilers and auto-scheduling
methods. Many of the implemented benchmarks offer sev-
eral degrees of freedom, where the loop nests can be nested
and permuted differently without changing the semantics
of the algorithm. We have selected 15 parallelizable bench-
marks where schedulers have a significant search space for
optimization. To evaluate the auto-scheduler robustness, we

randomly generate an alternative B variant for each bench-
mark based on different permutations and compositions. In
the following, we only consider the large input size.

Baselines. We use Polly [18] based on LLVM 16.0.4 and
with optimization flags -O3 -polly -polly-parallel -polly-tiling
-polly-vectorizer=stripmine -polly-2nd-level-tiling -gomp. We
configure the Tiramisu auto-scheduler [3] to run a Monte-
Carlo Tree Search guided by the performance model. To
account for the stochasticity of this search, we test the top
three candidates and apply the best optimization among
these. Building the original Tiramisu auto-scheduler for the
Tiramisu DSL [4] using currently available software pack-
ages was unsuccessful. Therefore, we run the auto-scheduler
as a standalone search and implement an adapter, which
converts SDFGs to the JSON representation by the search.
To simplify the conversion, we apply the maximal loop fis-
sion criterion as part of the adapter and restrict the conver-
sion to perfectly nested parallel loops. Moreover, we com-
pare the results to icc 2021.9.0, a general baseline with auto-
parallelization -parallel and optimization -O3 flags enabled.

Experimental Setup. The experiments are performed on
an Intel Xeon E5-2680v3 clocked at 2.50 GHz with 64 GB of
main memory. We measure according to a standard frame-
work [20], where measurements are taken until the variance
drops below five percent, and the resulting median is re-
ported as the runtime.

4.1 Normalized Auto-Scheduling: Same Semantics,
Same Performance

We evaluate the runtime of Polly, Tiramisu, and icc against
daisy for the two implementations - A and B - of each of the
15 benchmarks. The results are summarized in Figure 6.

Robustness. The first observation is that since the A
and B variants are semantically equivalent, a robust auto-
scheduler should achieve a runtime ratio close to one. This
is true for daisy , where the largest difference between

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

2mm 3mm

50 ~Baseline: 0.03s 40 Baseline: 0.03s 10 Baseline: 0.002s

20
— — f— — 5

- 6 -—1.50

0.00

covariance fdtd-2d

Baseline: 0.35s

Lo H
0.20 —
0.15
0.05
X X
0.00

heat-3d
Baseline: 0.28s

1
-—100

50
20— 6
5
15
4
1.0 3
2
0.5
1
X X N
0.0 0

jacobi-2d
Baseline: 0.18s

Normalized Runtime
o
f
s

5 —

4 1.25

Normalized Runtime
-
o

0 0.00

mm daisy A daisy B s Polly A

3.0 -

1

£25 5 1.25
S 20 4 1.00
o

Q15 3 0.75
N

T 10 2 0.50
E

S o5 1 0.25
= | -

0

gemm
Baseline: 0.2s 50 Baseline: 0.02s

7
6
20— - 1.50 —
. 3 3
3 1.00
N 0.75 2 2
2
0.50
0.5 1 1
B 0.25
X X X X 0 X X o

Polly B

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

atax bicg correlation

15

Baseline: 0.002s Baseline: 2.29s

10 mm

0.20 — |
4

0.15
3

0.10
2
1 0.05

l | - x X

gemver
Baseline: 0.002s

gesummv
Baseline: 0.001s
0 0

mvt syr2k syrk
Baseline: 0.002s

Baseline: 0.02s

III

Tiramisu B

Baseline: 0.02s

s icc A iccB B Tiramisu A

Figure 6. Comparison of our model with state-of-the-art auto-scheduling methods and the icc compiler. The runtime is
expressed relative to the runtime of the A variant of the benchmarks using daisy. Hence, a lower value is better. The
implementation of the Tiramisu scheduler could not be applied to some of the benchmarks successfully. We mark those with X.

the performance of the A and B implementations is
14% and the mean difference is just 5%. However, all other
approaches show significant variation between A and B im-
plementations on several benchmarks, with differences of
over an order of magnitude for applications such as 2mm
or fdtd-2d. For the latter, this can be explained by strided
memory accesses in the B implementation that neither Polly
nor icc can optimize well. Similarly, the performance of the
Tiramisu auto-scheduler is susceptible to the specific struc-
ture of the loop nests of the A and B variants.

Performance. While achieving the same performance for
the different implementations of the same benchmark is vi-
tal to prove the robustness of a scheduler, the performance
must also be competitive with state-of-the-art approaches.
Figure 6 shows the runtime of each benchmark and the base-
line auto-schedulers relative to daisy. Our model achieves
a geometric mean speedup of 2.31 over Polly, 2.89 over the
Tiramisu auto-scheduler, and 1.58 over icc on the A variants.
For the B variants, our auto-scheduler achieves a geomet-
ric mean speedup of 2.97 over Polly, 7.03 over the Tiramisu
auto-scheduler, and 2.51 over icc. Our model underperforms
compared to Polly on correlation and covariance. In those
cases, our normalization passes fail to lift specific loop nests
to the symbolic representations. As a result, the loop nest is

not optimized, and a reduction is executed in parallel, caus-
ing expensive atomic reductions in the C++ code. In general,
however, daisy proves to be a sufficiently complex auto-
scheduler. Most importantly, the runtime variations across A
and B variants are in the order of measurement noise for our
model. Hence, daisy optimizes the A and B variants of the
benchmarks equally well using only optimizations derived
from normalized A variants.

4.2 Ablation Study: Same Optimizations, Different
Performance

To analyze the impact of the normalization and the optimiza-
tions offered by transfer tuning in isolation, we now compare
the results of compiling the benchmarks in the following
scenarios: using only clang, using transfer tuning without
normalization, using normalization without transfer tuning,
and finally using the full pipeline in daisy . We do this for
both the A and B versions of each benchmark. We note that
the normal compiler optimizations -03, etc. are applied in
all configurations. Figure 7 summarizes the relative runtime
of the benchmarks for optimization with and without prior
normalization. The results show that both normalization
and optimization using the similarity-based transfer
tuning algorithm are required to reach the best per-
formance consistently. Without the normalization step,

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

2mm 3mm
Baseline: 4.98s Baseline: 11.79s

21 S —
0.20 — —0.20 —
0.15
0.10
I 0.05
0.00

2
20

— 15—

Normallzed Runt\me
)
o i
& &5

atax bicg
Baseline: 0. 0045

— 4 I -

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

correlation

» 13 Baseline: 13.42s

Baseline: 0.003s

— 10— — — —

— —0.20 — -
6
5 0.15
4
3 0.10
2
0.05
, M
0 0.00

s covariance fdtd-2d gemm gemver 200 gesummv
Baseline: 13.83s 25 Baseline: 1. 85 ;'0 Baseline: 0. 515 200 — Baseline: 0.05s " Baseline: 0.002s
20 171 175 =L -— 1
020 — — — 30— —1.50 AT T
o
g 25 125
go 3
é 1.00
E 0.10 0.75 2
© 0.50
£ 0.05 I 1
=} 0.25 .
=
0.00 — — 0 -
heat-3d jacobi-2d mvt syr2k syrk

20 Baseline: 2.66s

mm clang A
mmm daisy (Opt) A

s Baseline: 2.54s 20
— 7 — 18—

1o 1.0
0.8 0.8
0.6 0.6
4 0.4
0.2

[—

0.0

e
-
)

o
@

o
IS

Normalized Runtim
o o
N >

daisy (Norm) A

Baseline: 0.04s

daisy (Norm + Opt) A

15 "Baseline: 1.62s

o5 |

125 Baseline: 9.79s
[} 100

—0.20 —

—0.20 —
0.15
0.10
. 0.05
— 0.00 0.00

mm clang B
mmm daisy (Opt) B

daisy (Norm) B
daisy (Norm + Opt) B

Figure 7. Comparison of clang and our model with and without normalization. The runtime is expressed relative to A variants

of the benchmarks using clang. Hence, a lower value is better.

the database queried by the transfer tuning algorithm would
need to explicitly enumerate all possible loop variations,
which would not scale.

4.3 Auto-Scheduling beyond C: Different Language,
Same Optimization

Applying auto-schedulers across programming languages
is essential — and we wish to test daisy not just on differ-
ent C implementations but also on implementations of the
same benchmarks in Python - increasing the number
of implementation variants considered. However, different
programming languages have different syntactical features.

For instance, Figure 8 shows the implementations of the
symmetric rank-k update (SYRK) kernel in PolyBench [29]
and NPBench [36], a scientific benchmarking suite for high-
performance NumPy [19]. For SYRK, the NPBench imple-
mentation uses ranges for indexing of NumPy arrays. When
translating the Python benchmarks to our IR, such syntacti-
cal features may yield different representations for the same
programs because of additional translation and optimization
passes. To evaluate the effect of a priori loop nest normal-
ization for auto-scheduling across programming languages,
we apply the same database-based auto-scheduler from Sec-
tion 4.1 to PolyBench benchmarks implemented in NPBench.
In detail, we use the DaCe Python frontend [5] to obtain

an SDFG for the NPBench benchmark and then apply the
normalization and auto-scheduler analogously. For reasons
of comparability, we adapt the input sizes of the NPBench
benchmarks to the large variants of PolyBench.

for (int i = 0; i < _PB_N; i++) {
for (int j = 0; j <= 1i; j++)
C[i][j] *= beta;
for (int k = 0; k < _PB_M; k++)
for (int j = 0; j < i; j++)
C[i][]J] += alpha * A[i][k] * B[J][k];

(a) PolyBench’s SYRK in C
for i in range(A.shape[0]):
C[i,:i+1] *= beta
for k in range(A.shape[1]):
C[i,:i+41] += alpha * A[i,k] * A[:i+1,k]

(b) NPBench’s SYRK using NumPy

Figure 8. The SYRK kernel implemented in C and NumPy.

Baselines. We consider three baselines: NumPy 1.25.2 [19],
Numba 0.58.0 [23], and DaCe 0.14.2 [5]. All frameworks use
custom operators to call optimized BLAS libraries for specific
operations. Besides the operators, Numba and DaCe support
additional optimizations. In detail, Numba is a just-in-time

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

2mm 3mm
45 Baseline: 0.01s Baseline: 0.02s 12
w0l || L ool [| 1

35— -~ 3.0— -

g 10 Lo
g ot . ”

0.0
covariance fdtd-2d

— 40 E
35 Baseline: 0.04s Baseline: 0.19s o

30 — — 35—
4~ — 20—

0.0

N
o

3 15

1.0
- I
0.0

N
)

I
=
w

2

1..
0

malized Runtim:

or
=
o

o
@

=4
°

heat-3d o jacobi-2d
170 Baseline: 0.25s Baseline: 0.16s 14
o [Lol — i

1.2

«

— — 66—

1.0

IS

0.8

w

Normalized Runtime
~

H

o

0.0

gemm gemver
Baseline: 0.01s

mmm daisy w/o normalization

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

atax bicg correlation
Baseline: 0.002s

Baseline: 0.002s 5o Baseline: 0.05s

1.0
- II

gesummyv
Baseline: 0.002s

0.0

150 Baseline: 0.005s

125 - | __ 30

— 25~
1.0
- I
0.0

mvt syr2k syrk
Baseline: 0.002s

Baseline: 0.01s 520 Baseline: 0.01s

800 — -~ 500 — . -

— 200
150
100
L — _-1o0__ p— 1

820

\

20/ T
0 — 0
== NumPy Numba DaCe}

Figure 9. Comparison of our model with NumPy-based frameworks implementing custom operators and optimizations for
different applications. The runtime is expressed relative to the runtime of daisy . Hence, a lower value is better.

compiler that can automatically parallelize and vectorize
loops if detected accordingly. DaCe generates SDFGs from
a Python frontend, which can be optimized with various
transformations - including, but not limited to the automatic
parallelization and vectorization of loops.

Results. Figure 9 shows the runtime of the benchmarks
for our approach and the improvements over the baseline
frameworks. It also shows the results for daisy without prior
normalization. Several benchmarks consist of BLAS kernels
such as gemm and gemv, for which the different frameworks
provide custom operators. Our model lifts BLAS-3 kernels
to matching library calls and optimizes the remaining loop
nests using optimizations found with the evolutionary search.
The lifting of BLAS-3 kernels fails without normalization
on several benchmarks, e.g., 2mm, 3mm and gemm. When
applying normalization, our model mostly matches the per-
formance of DaCe and outperforms NumPy and Numba. For
the syrk and syr2k loop nests, our model outperforms all
frameworks because the baseline frameworks do not provide
custom operators here. Compared to unoptimized C code, the
native Python code means a significant loss in performance
in these cases. Furthermore, there are benchmarks for which
auto-parallelization is necessary to achieve speedups, e.g.,
heat-3d and jacobi-2d. However, the structure of the loops,
as implemented by the developer, does not comprise much

potential for further optimization. Note that the correlation
and covariance benchmarks do not show the problems of
Section 4.1 due to a different structure of the SDFGs from
the Python frontend. The performance of our model is thus
close to the performance of DaCe, outperforming DaCe in
cases where no custom operators are available.

In summary, a priori normalization enables the ap-
plication of an auto-scheduler derived from specific
variants of C loop nests to loop nests translated from
Python programs.

5 CLOUDSC: Case Study of Normalization
and Optimization

We now expand our analysis to CLOUDSC, a parametrization
scheme for simulating clouds and precipitation. The model
is part of the Integrated Forecasting System (IFS) and is
employed in production by ECMWF for weather forecasts
and climate analysis. It is a nonlinear scheme that accounts
for approximately 10% of the IFS forecast model. Initially
written in Fortran, the code has been the focus of an effort
to understand performance portability with versions now
existing in C, as well as using OpenACC and CUDA. We use
an SDFG generated by the DaCe framework and apply our
normalization pipeline implemented in daisy.

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

! Function Definitions
REAL :: FOEEWM, FOELDCPM
FOEEWM (PTARE) = R2ES *&
&(MIN(1.0, ((MAX(RTICE,MIN(RTWAT,PTARE))-RTICE)*RTWAT_RTICE_R)**2)&
& *EXP(R3LES*(PTARE-RTT)/(PTARE-RALES))&
& +(1.0-MIN(1.0, ((MAX(RTICE,MIN(RTWAT,PTARE)) -RTICE)*RTWAT_RTICE_R)**2))&
& *EXP(R3IES*(PTARE-RTT)/(PTARE-RAIES)))
FOELDCPM (PTARE) = MIN(1.0, ((MAX(RTICE,MIN(RTWAT,PTARE))-&
&RTICE)*RTWAT_RTICE_R)**2)*RALVDCP+&
&(1.0-MIN(1.0, ((MAX(RTICE,MIN(RTWAT,PTARE))-RTICE)*RTWAT_RTICE_R)**2))*RALSDCP

! Vertical loop
DO JK=NCLDTOP,KLEV

! Loop Nest

DO JL=KIDIA,KFDIA
ZQP = 1.0/PAP(JIL,IK)
ZQSAT = FOEEWM(ZTP1(3JL,JK))*ZQP
ZQSAT = MIN(O.5,ZQSAT)
ZCOR 1.0/(1.0-RETV *ZQSAT)
ZQSAT ZQSAT*ZCOR
ZCOND = (ZQSMIX(JL,JK)-ZQSAT)/(1.0+ZQSAT*ZCOR*FOEDEM(ZTP1(IL,IK)))
ZTP1(JL,IK) = ZTP1(JL,IK)+FOELDCPM(ZTP1(JL,IK)) *ZCOND
ZQSMIX(JIL,JK) = ZQSMIX(IL,JK) -ZCOND
ZQSAT = FOEEWM(ZTP1(3JL,JK))*ZQP

ZQSAT = MIN(@.5,ZQSAT)

ZCOR = 1.0/(1.0-RETV *ZQSAT)
ZQSAT = ZQSAT*ZCOR
ZCOND1= (ZQSMIX(JL,IK) -ZQSAT)/(1.8+ZQSAT*ZCOR*FOEDEM(ZTP1(IL,IK)))
ZTP1(JL,IK) = ZTP1(IL,IK)+FOELDCPM(ZTP1(IL,IK)) *ZCONDL
ZQSMIX(IL,JK) = ZQSMIX(JL,IK)-ZCOND1

ENDDO

ENDDO
(a) A part of the simulation of the erosion of clouds. Functions
definitions are provided, and the outer vertical loop is shown.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

I Vertical loop
DO JK=NCLDTOP,KLEV

! Loop Nest
DO JL=KIDIA,KFDIA
ZQP_@(JL) = 1.0/PAP(JL,IK)
ENDDO
DO JL=KIDIA,KFDIA
ZQSAT = FOEEWM(ZTP1(JL,JK))*ZQP_8(JL)
ZQSAT = MIN(@.5,ZQSAT)
ZCOR = 1.0/(1.8-RETV *ZQSAT)
ZQSAT = ZQSAT*ZCOR
ZCOND_@(IL) = (ZQSMIX(JL,JK)-ZQSAT)/(1.0+ZQSAT*ZCOR*FOEDEM(ZTP1(IL,IK)))
ENDDO
DO JL=KIDIA,KFDIA
ZTP1(IL,JK) = ZTP1(JIL,JK)+FOELDCPM(ZTP1(IL,JK))*ZCOND_@(IL)
ENDDO
DO JL=KIDIA,KFDIA
ZQSMIX(IL,IK) = ZQSMIX(IL,IK)-ZCOND_@(IL)
ENDDO
DO JL=KIDIA,KFDIA
ZQSAT = FOEEWM(ZTP1(JL,JK))*ZQP_8(JL)
ZQSAT MIN(@.5,ZQSAT)
ZCOR 1.0/(1.0-RETV *ZQSAT)
ZQSAT ZQSAT_4(JL)*ZCOR
ZCOND1_0(JL)= (ZQSMIX(IL,IK)-ZQSAT)/(1.0+ZQSAT*ZCOR*FOEDEM(ZTP1(IL,IK)))
ENDDO
DO JL=KIDIA,KFDIA
ZTP1(IL,IK) = ZTP1(JIL,IK)+FOELDCPM(ZTP1(IL,JK))*ZCOND1_8(IL)
ENDDO
DO JL=KIDIA,KFDIA
ZQSMIX(IL,JIK) = ZQSMIX(JL,IK)-ZCOND1_0(JL)
ENDDO

ENDDO
(b) A part of the simulation of the erosion of clouds fissioned

into individual computations and fused by one-to-one produce-
consumer loop nest relations.

Figure 10. A loop nest taken from from the vertical loop of CLOUDSC before and after normalization and fusion.

An important characteristic of the code is the way it ac-
cesses data. The simulated volume is divided into vertical
columns, each computed independently. When iterating ver-
tically through a column, the physical properties stored in
multiple large arrays are updated. The update during each
step of the vertical loop comprises several nested loops, each
implementing distinct physical equations. These innermost
loops iterate over a "tiling" parameter — NPROMA, simulta-
neously updating multiple independent columns. Hence,
this innermost tiling parameter divides the total number
of columns between the outermost loop NBLOCKS and the in-
nermost loops NPROMA, i.e., num_columns=NBLOCKS*NPROMA.
Since both loops are fully data parallel, users can divide the
total problem size into NPROMA and NBLOCKS to find the opti-
mum balance between parallelism and data locality for their
hardware system.

5.1 Discovering Performance Optimizations in the
Erosion of Clouds

We first analyze a single physical update step inside the
vertical loop. Figure 10a depicts a part of the simulation of
cloud erosion. Since the computation is fully data-oblivious,
we can investigate its performance independent of other
computations inside the model.

The chosen loop nest is representative of many inner-
most loops within the vertical loop: It updates two arrays,
ZTP1 and ZQSMIX, over the NPROMA dimension with an itera-
tor JL in a fully data-parallel manner. For this, it computes
several intermediate scalars, which can be assumed to be

live only for the loop’s scope. By default, CLOUDSC is com-
piled with loop unrolling and function inlining to maximize
instruction-level parallelism. Therefore, the computations of
the sub-routines FOEEWM and FOELDCPM are inlined, and the
loop body is unrolled. Hence, the loop body is significantly
larger than the source code suggests, potentially hindering
crucial compiler optimizations such as register allocations.

We apply maximal loop fission to divide individual compu-
tations into smaller loops. This reverts the original decision
by the developers to group the computations according to the
physical equation. This enables the application of a typical
optimization recipe, which iteratively fuses all one-to-one
producer-consumer relations between loop nests. Hence, in-
termediate results are computed for the whole dimension of
JL and stored in the local arrays ZQP_0 and ZCOND_0. Each
loop nest only contains scalars, which are used within a short
distance of instructions. The resulting loop nests are shown
in Figure 10b.

Original Optimized

Single Iteration[ms] 0.040 0.006
KLEV Iterations[ms] 5.468 0.882
L1 Loads 2632 1281
L1 Evicts 963 178

Table 1. The table shows the runtime for a single iteration
and KLEV iterations of the loop nests. It further shows the
absolute number of loads and evicts on the L1 cache.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

14 Fortran baseline: 5.135 s

1.2

1.0
0.8
0.6
0.
0.
0.0

dsc C OaCe 63\5“

Normalized runtime
>

N

(L
C\O\)dSC © \Ou

Figure 11. CLOUDSC runtime for sequential execution of
the Fortran, C, DaCe, and daisy versions from left to right.
The runtime is normalized by the Fortran version. Hence, a
lower value is better.

Results. We measure the performance of the two versions
for a single iteration and KLEV iterations, corresponding to
the size of the vertical loop. We set NPROMA=128, as this value
offers the best results on our hardware. The experimental
setup is analogous to Chapter 4. Furthermore, we measure
load and evicts to and from the L1 cache to analyze the im-
provements of our optimization. Table 1 summarizes both
runtime and memory behavior, showing that our optimiza-
tion yields a speedup of 4. Furthermore, the optimization re-
duces the pressure on the L1 cache, as there are significantly
fewer transfers between L1 and L2. Hence, the normalization
allows us to discover new applications of well-known perfor-
mance optimizations as it transforms the physical equation
into a canonical form.

5.2 Evaluation

We now apply the same pipeline to the full model and com-
pare the runtime of daisy against the Fortran, C, and DaCe
versions. Figure 11 shows the measurements for sequential
execution. We keep NPROMA = 128 and set NBLOCKS =
512. The optimizations applied by daisy yield a speedup of
1.08x compared to the second-best version, which is the
highly-tuned Fortran code. As shown previously, optimiz-
ing the loop nest in the erosion of clouds saves approxi-
mately four milliseconds per execution of the vertical loop,
accumulating to about 200 milliseconds for the full model.
Hence, this optimization primarily explains the performance
improvements. Furthermore, we compare the different ver-
sions’ strong and weak scaling behavior in Figure 12a and
Figure 12b. With an optimization of the application’s crit-
ical path, the performance improvements also translate to
the parallel execution. We also measure the FLOP/s for For-
tran and daisy and compare it to the peak FLOP/s of the
machine. The peak FLOP/s of the machine is measured with
52522.83 MFLOP/s based on a benchmark optimized for

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

7 5.32%
daisy is faster than hand-tuned Fortran by...

9.07%
3
5.37%
2.68%
s s
[IIII sliEn sEmn
2 4

10 12

Time [s]

Threads

(a) Strong scaling behavior of CLOUDSC for the Fortran, C, DaCe,
and daisy versions from left to right and grouped by the number of
threads.

daisy is faster than hand-tuned Fortran by...

0,
4.3% 10.11%
5.32% 8.9%
o
]
Z 4
65536 /1 131072 /2 262144 /4 524288 /8

Workload / Threads

(b) Weak scaling behavior of CLOUDSC for the Fortran, C, DaCe,
and daisy versions.

Figure 12. Experimental results for the CLOUDSC case
study.

Fused-multiply-add (FMA) and AVX instructions. The For-
tran version yields 13634.03 MFLOP/s, and the daisy version
yields 14792.81 MFLOP/s, which is 25.96 % and 28.16% of peak
performance, respectively. This underscores that CLOUDSC
is already a highly tuned application, so finding optimization
opportunities is difficult. Hence, daisy improved the perfor-
mance of a critical loop nest in a highly-tuned application.

6 Discussion

The following sections discuss the implications and limita-
tions of our work.

Normalization Criteria. The idea of our normalization
is the simplification of memory accesses. This is motivated
by the observation that optimization recipes usually apply
to a particular memory access pattern, but large applications
group computations in loop nests according to formulas. We
derived the normalization criteria from two common ways to
change the memory accesses of a loop nest: by permutation
and composition. Our findings open a research avenue in
exploring normalization criteria and understanding their
impact on optimization pipeline performance.

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

Complexity of Auto-scheduling. Auto-scheduling is typ-
ically formulated as a search over a humongous space of
possible combinations of transformations [2, 3, 32]. This un-
constrained formulation requires careful design and training
of performance models and search methods. A priori loop
nest normalization separates the search and input space and
maps semantically equivalent loop nests to a single prob-
lem instance. This reduces the necessary model complexity
without a loss of generality of the optimization for the un-
constrained search space.

7 Related Work

Loop transformations and normalization have been studied
for decades. In particular, Chelini et al. [11] evaluate stride
minimization as an optimization criterion for loop schedul-
ing, and Callahan [9] discusses loop distribution as a tech-
nique to simplify the analysis of parallel loops. This paper,
in turn, demonstrates the application of such techniques for
the design of robust auto-schedulers. The following briefly
overviews the related work on auto-scheduling and loop
normalization.

Optimization Criteria. Auto-scheduling approaches de-
fine loop scheduling as an optimization problem over differ-
ent types of objective functions. In the domain of polyhedral
optimization, the minimization of the maximal dependence
distance [1, 7, 24] is a popular objective function, which is
also implemented in Pluto [8] and Polly [18]. While these
approaches usually guarantee global optima for the solutions
of the scheduling problems, the modeled schedule space and
objective function may fail to capture the complex features
of modern hardware [4]. Recent works [11, 22, 27] therefore
combine multiple specialized criteria such as Stride Optimiza-
tion and Dependence Guided Fusion into a multi-objective op-
timization. Another research direction learns the objective
function from data using deep learning [2, 3, 13, 31, 32]. All
these approaches seek to optimize more complex objective
functions in larger schedule spaces at the cost of a global opti-
mum. This paper proposes normalization as a pre-processing
step based on criteria that resemble manually derived ob-
jective functions. Normalization is primarily applicable to
models based on local optimization to reduce the variation
of states.

Idiom Detection. Idiom detection seeks to detect and re-
place specific idioms with optimized implementations. Since
the detection is prone to variations, loop normalization tech-
niques have been analyzed in this context early on. Pinter and
Pinter [28] define a loop normal-form for auto-parallelization
based on idiom detection, which requires that each loop-
carried dependency is between two loop iterations. The au-
thors propose loop unrolling to ensure this property. Callahan
[9] analyzes complex bounded recurrences to recognize par-
allelism in loops. The author discusses loop distribution as a

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

technique to simplify this analysis. Several approaches seek
to detect idioms on LLVM IR [12, 15, 16]. Declarative Loop
Tactics [12] uses Polly to compute the Scops of the code and
detects idioms based on the polyhedral representation. This
approach enforces a description of memory accesses by affine
function, which is more of a constraint than a normaliza-
tion. LiLAC [16] and KernelFaRer [15] require the standard
compiler optimizations to be performed before detection. In
contrast, we propose performing data-centric normalizations
beyond the standard optimizations of the compiler, which
may significantly change the memory access scheme.

8 Conclusion

In this paper, we present a priori loop nest normalization,
simplifying the auto-scheduling of loop nests in complex
applications. The approach maps loop nests with different
memory access patterns to the same canonical form, signifi-
cantly reducing the variety of loop nests to be optimized.

We demonstrate the approach in different case studies,
highlighting the improved robustness and higher applicabil-
ity of optimizations. The approach outperforms state-of-the-
art compilers, auto-schedulers, and performance-oriented
frameworks in C, Python, and Fortran by significant factors.
In particular, we apply the approach to a highly-tuned scien-
tific simulation, where it identifies additional optimizations
resulting in a 10% speedup.

The approach enables the application of state-of-the-art
auto-schedulers to large scientific code bases, bringing math-
ematical formulas into a form more amenable to optimiza-
tion.

Acknowledgments

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 program (grant agreement PSAP, No. 101002047), from
the European High-Performance Computing Joint Undertak-
ing (JU) under grant agreement EUPilot No 101034126 and by
the ETH Future Computing Laboratory (EFCL), financed by
a donation from Huawei Technologies. L.T. wishes to thank
D.XK. for many valuable discussions.

References

[1] Aravind Acharya and Uday Bondhugula. 2015. PLUTO+: Near-
Complete Modeling of Affine Transformations for Parallelism and
Locality. SIGPLAN Not. 50, 8 (jan 2015), 54-64. https://doi.org/10.
1145/2858788.2688512

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-
Mao Li, Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fa-
tahalian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learn-
ing to Optimize Halide with Tree Search and Random Programs.
ACM Trans. Graph. 38, 4, Article 121 (jul 2019), 12 pages. https:
//doi.org/10.1145/3306346.3322967

Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas,
Kamel Abdous, Taha Arbaoui, Karima Benatchba, and Saman P. Ama-
rasinghe. 2021. A Deep Learning Based Cost Model for Automatic

[2

—

3

—

https://doi.org/10.1145/2858788.2688512
https://doi.org/10.1145/2858788.2688512
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

—_
=
—

—
~
—

(10]

(11

—

[12

—

(13]

(14]

(15]

Code Optimization. In Proceedings of Machine Learning and Systems
2021, MLSys 2021, virtual, April 5-9, 2021, Alex Smola, Alex Dimakis,
and Ion Stoica (Eds.). mlsys.org. https://proceedings.mlsys.org/paper/
2021/hash/3def184ad8f4755ff269862ea77393dd- Abstract.html
Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (Washington, DC, USA) (CGO 2019). IEEE Press, 193-205.
Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo
Schneider, and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs:
A Data-Centric Model for Performance Portability on Heterogeneous
Architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 81, 14 pages. https://doi.org/10.1145/3295500.3356173
Kristof Beyls and Erik H. D’Hollander. 2001. Reuse Distance as a
Metric for Cache Behavior. In In Proceedings of the IASTED Conference
on Parallel and Distributed Computing and Systems. 617-662.

Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. 2008. Automatic Trans-
formations for Communication-Minimized Parallelization and Local-
ity Optimization in the Polyhedral Model. In Compiler Construction,
Laurie Hendren (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
132-146.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Lo-
cality Optimizer. SIGPLAN Not. 43, 6 (jun 2008), 101-113. https:
//doi.org/10.1145/1379022.1375595

D. Callahan. 1992. Recognizing and parallelizing bounded recurrences.
In Languages and Compilers for Parallel Computing, Utpal Banerjee,
David Gelernter, Alex Nicolau, and David Padua (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 169-185.

Alexandru Calotoiu, Tal Ben-Nun, Grzegorz Kwasniewski, Johannes
de Fine Licht, Timo Schneider, Philipp Schaad, and Torsten Hoefler.
2022. Lifting C Semantics for Dataflow Optimization. In Proceedings
of the 36th ACM International Conference on Supercomputing (Virtual
Event) (ICS "22). Association for Computing Machinery, New York, NY,
USA, Article 17, 13 pages. https://doi.org/10.1145/3524059.3532389
Lorenzo Chelini, Tobias Gysi, Tobias Grosser, Martin Kong, and Henk
Corporaal. 2020. Automatic Generation of Multi-Objective Polyhe-
dral Compiler Transformations. In Proceedings of the ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(Virtual Event, GA, USA) (PACT °20). Association for Computing Ma-
chinery, New York, NY, USA, 83-96. https://doi.org/10.1145/3410463.
3414635

Lorenzo Chelini, Oleksandr Zinenko, Tobias Grosser, and Henk Corpo-
raal. 2019. Declarative Loop Tactics for Domain-Specific Optimization.
ACM Trans. Archit. Code Optim. 16, 4, Article 55 (dec 2019), 25 pages.
https://doi.org/10.1145/3372266

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Associa-
tion, USA, 579-594.

Edward Grady Coffman and Peter] Denning. 1973. Operating systems
theory. Vol. 973. prentice-Hall Englewood Cliffs, NJ.

Joao P. L. De Carvalho, Braedy Kuzma, Ivan Korostelev, José Nelson
Amaral, Christopher Barton, José Moreira, and Guido Araujo. 2021.
KernelFaRer: Replacing Native-Code Idioms with High-Performance
Library Calls. ACM Trans. Archit. Code Optim. 18, 3, Article 38 (jun

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Lukas Triimper, Philipp Schaad, Berke Ates, Alexandru Calotoiu, Marcin Copik, and Torsten Hoefler

2021), 22 pages. https://doi.org/10.1145/3459010

Philip Ginsbach, Bruce Collie, and Michael F. P. O’Boyle. 2020. Auto-
matically Harnessing Sparse Acceleration. In Proceedings of the 29th
International Conference on Compiler Construction (San Diego, CA,
USA) (CC 2020). Association for Computing Machinery, New York, NY,
USA, 179-190. https://doi.org/10.1145/3377555.3377893

Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Poly-
hedral AST Generation Is More Than Scanning Polyhedra. ACM
Trans. Program. Lang. Syst. 37, 4, Article 12 (jul 2015), 50 pages.
https://doi.org/10.1145/2743016

Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbiirger,
Armin Grofllinger, and Louis-Noél Pouchet. 2011. Polly - Polyhedral
optimization in LLVM. http://impact2011.inrialpes.fr/en/index.html
First International Workshop on Polyhedral Compilation Techniques,
IPACT 2011 ; Conference date: 03-04-2011 Through 03-04-2011.
Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fern’andez del R’10, Mark Wiebe, Pearu Peterson, Pierre
G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362.
https://doi.org/10.1038/541586-020-2649-2

Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking
of Parallel Computing Systems: Twelve Ways to Tell the Masses
When Reporting Performance Results. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis (Austin, Texas) (SC ’15). Association for Comput-
ing Machinery, New York, NY, USA, Article 73, 12 pages. https:
//doi.org/10.1145/2807591.2807644

Richard Johnson, David Pearson, and Keshav Pingali. 1994. The Pro-
gram Structure Tree: Computing Control Regions in Linear Time. SIG-
PLAN Not. 29, 6 (jun 1994), 171-185. https://doi.org/10.1145/773473.
178258

Martin Kong and Louis-Noél Pouchet. 2019. Model-Driven Trans-
formations for Multi- and Many-Core CPUs. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association
for Computing Machinery, New York, NY, USA, 469-484. https:
//doi.org/10.1145/3314221.3314653

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba:
A LLVM-Based Python JIT Compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas)
(LLVM ’15). Association for Computing Machinery, New York, NY,
USA, Article 7, 6 pages. https://doi.org/10.1145/2833157.2833162
Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. 1999. An
Affine Partitioning Algorithm to Maximize Parallelism and Mini-
mize Communication. In Proceedings of the 13th International Con-
ference on Supercomputing (Rhodes, Greece) (ICS ’99). Association
for Computing Machinery, New York, NY, USA, 228-237. https:
//doi.org/10.1145/305138.305197

Sanyam Mehta, Pei-Hung Lin, and Pen-Chung Yew. 2014. Revisit-
ing Loop Fusion in the Polyhedral Framework. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP) (PPoPP ’14). http://www-users.cs.umn.edu/
~sanyam/publications/p233-mehta.pdf

Lina Mezdour, Khadidja Kadem, Massinissa Merouani, Amina Selma
Haichour, Saman Amarasinghe, and Riyadh Baghdadi. 2023. A Deep
Learning Model for Loop Interchange. In Proceedings of the 32nd ACM
SIGPLAN International Conference on Compiler Construction (Montréal,
QC, Canada) (CC 2023). Association for Computing Machinery, New
York, NY, USA, 50-60. https://doi.org/10.1145/3578360.3580257

https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/3524059.3532389
https://doi.org/10.1145/3410463.3414635
https://doi.org/10.1145/3410463.3414635
https://doi.org/10.1145/3372266
https://doi.org/10.1145/3459010
https://doi.org/10.1145/3377555.3377893
https://doi.org/10.1145/2743016
http://impact2011.inrialpes.fr/en/index.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/3314221.3314653
https://doi.org/10.1145/3314221.3314653
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/305138.305197
http://www-users.cs.umn.edu/~sanyam/publications/p233-mehta.pdf
http://www-users.cs.umn.edu/~sanyam/publications/p233-mehta.pdf
https://doi.org/10.1145/3578360.3580257

A Priori Loop Nest Normalization: Automatic Loop Scheduling in Complex Applications

[27]

(31]

(32]

Julian Miller, Lukas Triimper, Christian Terboven, and Matthias S.
Miiller. 2021. A Theoretical Model for Global Optimization of Par-
allel Algorithms. Mathematics 9, 14 (2021). https://doi.org/10.3390/
math9141685

Shlomit S. Pinter and Ron Y. Pinter. 1994. Program Optimization and
Parallelization Using Idioms. ACM Trans. Program. Lang. Syst. 16, 3
(may 1994), 305-327. https://doi.org/10.1145/177492.177494
Louis-Noél Pouchet and Tomofumi Yuki. 2017. PolyBench: The poly-
hedral benchmark suite (version 4.2).

Philipp Schaad, Tal Ben-Nun, and Torsten Hoefler. 2022. Boosting
Performance Optimization with Interactive Data Movement Visualiza-
tion. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Dallas, Texas) (SC "22).
IEEE Press, Article 64, 16 pages.

Shikhar Singh, James Hegarty, Hugh Leather, and Benoit Steiner. 2022.
A Graph Neural Network-Based Performance Model for Deep Learning
Applications. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming (San Diego, CA, USA) (MAPS
2022). Association for Computing Machinery, New York, NY, USA,
11-20. https://doi.org/10.1145/3520312.3534863

Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021.
Value Learning for Throughput Optimization of Deep Learning Work-
loads. In Proceedings of Machine Learning and Systems, A. Smola, A. Di-
makis, and L. Stoica (Eds.), Vol. 3. 323-334. https://proceedings.mlsys.
org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf

[33]

[34]

[35]

[36]

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Lukas Triamper, Tal Ben-Nun, Philipp Schaad, Alexandru Calotoiu,
and Torsten Hoefler. 2023. Performance Embeddings: A Similarity-
Based Transfer Tuning Approach to Performance Optimization. In
Proceedings of the 37th International Conference on Supercomputing
(Orlando, FL, USA) (ICS ’23). Association for Computing Machinery,
New York, NY, USA, 50-62. https://doi.org/10.1145/3577193.3593714
Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark
Abraham, Mauro Bianco, Bradford L. Chamberlain, Romain Cledat,
H. Carter Edwards, Hal Finkel, Karl Fuerlinger, Frank Hannig, Em-
manuel Jeannot, Amir Kamil, Jeff Keasler, Paul H J Kelly, Vitus Leung,
Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Per-
icas. 2017. Trends in Data Locality Abstractions for HPC Systems.
IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017),
3007-3020. https://doi.org/10.1109/TPDS.2017.2703149

Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhe-
dral Model. In Mathematical Software — ICMS 2010, Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 299-302.

Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and
Torsten Hoefler. 2021. NPBench: A Benchmarking Suite for High-
Performance NumPy. In Proceedings of the ACM International Con-
ference on Supercomputing (Virtual Event, USA) (ICS ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 63-74. https:
//doi.org/10.1145/3447818.3460360

Received 2024-09-11; accepted 2024-11-04

https://doi.org/10.3390/math9141685
https://doi.org/10.3390/math9141685
https://doi.org/10.1145/177492.177494
https://doi.org/10.1145/3520312.3534863
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://doi.org/10.1145/3577193.3593714
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360

	Abstract
	1 Introduction
	2 A-Priori Loop Nest Normalization for Auto-Scheduling
	2.1 Maximal Loop Fission
	2.2 Stride Minimization

	3 Normalization on Intermediate Representations
	3.1 Lifting Symbolic Representations from LLVM IR
	3.2 Normalization Passes

	4 The daisy scheduler
	4.1 Normalized Auto-Scheduling: Same Semantics, Same Performance
	4.2 Ablation Study: Same Optimizations, Different Performance
	4.3 Auto-Scheduling beyond C: Different Language, Same Optimization

	5 CLOUDSC: Case Study of Normalization and Optimization
	5.1 Discovering Performance Optimizations in the Erosion of Clouds
	5.2 Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

