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…how a single FPGA can outperform a
10-node Xeon Cluster in raw throughput J
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Floating point numbers
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Arbitrary precision floating point
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Arbitrary precision floating point

Mantissa/significandExponentSign
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In software, we must partition the mantissa into chunks supported by the ISA:
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Arbitrary precision floating point

Mantissa/significandExponentSign

1 10000101 11001100110011111010010100101010111010101000000

In software, we must partition the mantissa into chunks supported by the ISA:

1100110011001111101001010010101011001100110011111010010100101010
0001010111111001100110011111010010100101010110011001100111110100
0111111001100010101111110011001100111110100101001010101100110011
0000011011111100110001010111111001100110011111010010100101010110

64-bit

64-bit

64-bit

64-bit

(Very, very, very high precision floating point)
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Arbitrary precision floating point

Mantissa/significandExponentSign

1 10000101 11001100110011111010010100101010111010101000000

In software, we must partition the mantissa into chunks supported by the ISA:

1100110011001111101001010010101011001100110011111010010100101010
0001010111111001100110011111010010100101010110011001100111110100
0111111001100010101111110011001100111110100101001010101100110011
0000011011111100110001010111111001100110011111010010100101010110

64-bit

64-bit

64-bit

64-bit

(Very, very, very high precision floating point)

On FPGA it’s a bit less clear
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When do we need this?

1.640718732832151113 ⋅ 102
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- 1.022410373880584977 ⋅ 10-9

- 0.000000000010224104 ⋅ 102(shifted to align)
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When do we need this?

1.640718732832151113 ⋅ 102

- 1.022410373880584977 ⋅ 10-9

- 0.000000000010224104 ⋅ 102

All this information is lost

(shifted to align)
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Why does this matter?
• The Cholesky decomposition routine Rpotrf has been modified to implement the
stabilization procedure described in footnote 5.

• Some loops in the LU decomposition routine Rgetrf have been parallelized.

SDPB also depends on the Boost C++ libraries [64] and the parsing library tinyxml2 [65].

Previous experience shows that high-precision arithmetic is important for accurately
solving bootstrap optimization problems. It is not fully understood why. The näıve reason
is that derivatives ∂m

z ∂n
z g∆,!(z, z) of conformal blocks vary by many orders of magnitude

relative to each other as ∆ varies. It is not possible to scale away this large variation,
and answers may depend on near cancellation of large numbers. In practice, the matrix
manipulations in our interior point algorithm “leak” precision, so that the search direction
(dx, dX, dy, dY ) is less precise than the initial point (x,X, y, Y ). By increasing the precision
of the underlying arithmetic, the search direction can be made reliable again. This strategy
(which we adopt) comes at a cost of increased runtime and memory usage. Better strategies
for dealing with numerical instabilities in bootstrap problems could bring enormous gains.

SDPB is parallelized with OpenMP [66]. Because most matrices appearing in the interior
point algorithm are block-diagonal, most computations are “embarrassingly parallel:” dif-
ferent blocks can be distributed to different threads. (The most prominent exception is the
LU decomposition of Q′, which is why Rgetrf was modified.) Consequently, performance
scales nearly linearly with the number of cores, as long as the number of matrix blocks
is sufficiently large. This is usually the case for interesting bootstrap problems, where J
(which sets the number of blocks) is typically much larger than the number of available
cores. It should be possible to achieve favorable scaling up to dozens or even hundreds of
cores using MPI and more careful memory management. Further scaling should be possible
with more fine-grained parallelization.

SDPB is available online at https://github.com/davidsd/sdpb under the MIT license.
The source code is carefully commented and written for readability (to the extent that C++
code is ever readable). We hope this will encourage customization and improvement.

3 Example Application: 3d Ising Critical Exponents

3.1 A 3d Ising Optimization Problem

Bootstrap optimization problems can be naturally approximated as PMPs [17, 9]. In this
section, we review the PMP for the system of correlators {〈σσσσ〉, 〈σσεε〉, 〈εεεε〉} in the 3d
Ising CFT. We will be brief. Much more detail is given in [9].

Associativity of the Operator Product Expansion (OPE) for {〈σσσσ〉, 〈σσεε〉, 〈εεεε〉}
implies the consistency condition

(
1 1

)
$V+,0,0

(
1
1

)
+
∑

O+

(
λσσO λεεO

)
$V+,∆,!

(
λσσO

λεεO

)
+
∑

O−

λ2
σεO

$V−,∆,! = 0. (3.1)

16

[1] David Simmons-Duffin. "A semidefinite program solver for the conformal bootstrap." Journal of High Energy Physics 2015(6).
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GMP and MPFR

The GNU MPFR Library

(arbitrary precision arithmetic == multiple precision arithmetic == bignum arithmetic)
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MPFR representation
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MPFR representation

St
ac
k

Precision

64 bits
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MPFR representation

St
ac
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Precision Sign

64 bits 32 bits
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MPFR representation

St
ac
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Precision ExponentSign

64 bits 32 bits 64 bits
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MPFR representation
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Precision Exponent Mantissa 
PointerSign

64 bits 32 bits 64 bits 64 bits
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Precision Exponent Mantissa 
PointerSign

…

64 bits 32 bits 64 bits 64 bits

64 bits 64 bits 64 bits
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Hardware representation

Hardware 

Si
gn Exponent

63 bits1 bit 64 bits 64 bits 64 bits…
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We borrow one bit for the sign
(sorry to applications who need numbers                )>1010

18
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Si
gn Exponent
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We borrow one bit for the sign
(sorry to applications who need numbers                )>1010

18

No precision field: Fixed at compile-time
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Hardware representation

Hardware 

Si
gn Exponent

63 bits1 bit 64 bits 64 bits 64 bits…

We borrow one bit for the sign
(sorry to applications who need numbers                )>1010

18

No precision field: Fixed at compile-time

Mantissa packed tightly with number
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Hardware representation

Hardware 

Si
gn Exponent

63 bits1 bit

n ⋅ 512 bits

64 bits 64 bits 64 bits…

We borrow one bit for the sign
(sorry to applications who need numbers                )>1010

18

No precision field: Fixed at compile-time

Mantissa packed tightly with number
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Addition and multiplication
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Addition and multiplication
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1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00

3. On overflow, shift and increment 
exponent

01 00 00e4 10 00e5
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00

3. On overflow, shift and increment 
exponent

01 00 00e4 10 00e5

Linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00

3. On overflow, shift and increment 
exponent

01 00 00e4 10 00e5

11 10e4 x 10 01e2

Linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00

3. On overflow, shift and increment 
exponent

01 00 00e4 10 00e5

11 10e4 x 10 01e2
1. Multiply mantissas as integers

11 10
x 10 01
11 10

0 00 00
00 00 00

01 11 00 00
01 11 11 10

Linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent
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Linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
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11 10e4
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01 11

Linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2
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Linear in the 
number of bits.

Super-linear in the 
number of bits.
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Addition and multiplication

11 10e4 + 10 01e2
1. Shift by difference in exponent

11 10e4
+ 10 01e2

11 10e4
+ 00 10e4

2. Add mantissas as integers
11 10

+  00 10
01 00 00

3. On overflow, shift and increment 
exponent

01 00 00e4 10 00e5

11 10e4 x 10 01e2
1. Multiply mantissas as integers

11 10
x 10 01
11 10

0 00 00
00 00 00

01 11 00 00
01 11 11 10

2. Drop lower bits
01 11 11 10

01 11e6
3. Add exponents and XOR sign

01 11

Linear in the 
number of bits.

Super-linear in the 
number of bits.
In a fully pipelined design:

Super-linear resource utilization.
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Arbitrary precision multiplication

a · b
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Arbitrary precision multiplication

a0|a1 · b0|b1
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Arbitrary precision multiplication

<latexit sha1_base64="62vWGYAsF/JR6uU4cMmMXshxd4Q="></latexit>

a · b = 2na1b1 + 2
n
2 (a1b0 + a0b1) + a0b0

a0|a1 · b0|b1
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Arbitrary precision multiplication

<latexit sha1_base64="62vWGYAsF/JR6uU4cMmMXshxd4Q="></latexit>

a · b = 2na1b1 + 2
n
2 (a1b0 + a0b1) + a0b0

right-shift by n
right-shift by n/2

a0|a1 · b0|b1
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Karatsuba arbitrary precision multiplication

<latexit sha1_base64="62vWGYAsF/JR6uU4cMmMXshxd4Q="></latexit>

a · b = 2na1b1 + 2
n
2 (a1b0 + a0b1) + a0b0

a0|a1 · b0|b1
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Karatsuba arbitrary precision multiplication
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a · b = 2na1b1 + 2
n
2 (a1b0 + a0b1) + a0b0

a0|a1 · b0|b1

<latexit sha1_base64="IuRNTf+0hF2wYU5hC5EJkQHARho=">AAACKHicbZDLSgMxFIYz9VbrbdSlm2ARKkLJiKgbsejGZQV7gXYYMmmmDc1khiQjlNLHceOruBFRpFufxMx0EG09EPj4/3M4Ob8fc6Y0QlOrsLS8srpWXC9tbG5t79i7e00VJZLQBol4JNs+VpQzQRuaaU7bsaQ49Dlt+cPb1G89UqlYJB70KKZuiPuCBYxgbSTPvq5gz4EnEHvoGFb8jP2Ur2Bq+LmZEpq1/WgpIc8uoyrKCi6Ck0MZ5FX37LduLyJJSIUmHCvVcVCs3TGWmhFOJ6VuomiMyRD3acegwCFV7jg7dAKPjNKDQSTNExpm6u+JMQ6VGoW+6QyxHqh5LxX/8zqJDi7dMRNxoqkgs0VBwqGOYJoa7DFJieYjA5hIZv4KyQBLTLTJtmRCcOZPXoTmadU5rzr3Z+XaTR5HERyAQ1ABDrgANXAH6qABCHgCL+AdfFjP1qv1aU1nrQUrn9kHf8r6+gZssJ5J</latexit>

(a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
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Karatsuba arbitrary precision multiplication

<latexit sha1_base64="62vWGYAsF/JR6uU4cMmMXshxd4Q="></latexit>

a · b = 2na1b1 + 2
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2 (a1b0 + a0b1) + a0b0
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Karatsuba arbitrary precision multiplication
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<latexit sha1_base64="YxbLHAg/qVVIOHpFV71bojlgTrI=">AAACKHicbZDLSgMxFIYz9VbrbdSlm2ARKmLJiKgbsejGZQV7gXYYMmnahmYuJBmhDH0cN76KGxFFuvVJTKaz0NYDgY//P4eT8/sxZ1IhNLUKS8srq2vF9dLG5tb2jr2715RRIghtkIhHou1jSTkLaUMxxWk7FhQHPqctf3Rn/NYTFZJF4aMax9QN8CBkfUaw0pJn31Sw58ATiD10DCt+xr7hU2gMIxhCRoTXuYZmA8b17DKqoqzgIjg5lEFedc9+7/YikgQ0VIRjKTsOipWbYqEY4XRS6iaSxpiM8IB2NIY4oNJNs0Mn8EgrPdiPhH6hgpn6eyLFgZTjwNedAVZDOe8Z8T+vk6j+lZuyME4UDclsUT/hUEXQpAZ7TFCi+FgDJoLpv0IyxAITpbMt6RCc+ZMXoXlWdS6qzsN5uXabx1EEB+AQVIADLkEN3IM6aAACnsEr+ACf1ov1Zn1Z01lrwcpn9sGfsr5/AHHInk0=</latexit>

(a1 + a0)(b1 + b0)� a1b1 � a0b0 = a1b0 + a0b1
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(a1 + a0)(b1 + b0)� a1b1 � a0b0 = a1b0 + a0b1
✅ ✅
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✅ ✅

We went from 4 to 3 multiplications!
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(a1 + a0)(b1 + b0)� a1b1 � a0b0 = a1b0 + a0b1
✅ ✅

We went from 4 to 3 multiplications!

Instead of               we now have                                             ! 
<latexit sha1_base64="wcBofZE0NQbjPu2VPtyM1nhzB+o=">AAAB9HicjVDLSgNBEJyNrxhfUY9eBoMQLyEbRD0GvXgzgomBZA2zk95kyOzsOtMbDEu+w4sHRbz6Md78GyePg4qCBQ1FVTddlB9LYbBc/nAyC4tLyyvZ1dza+sbmVn57p2GiRHOo80hGuukzA1IoqKNACc1YAwt9CTf+4Hzi3wxBGxGpaxzF4IWsp0QgOEMreW2Ee0wvx0V1Wzns5AtuqTwF/ZsUyBy1Tv693Y14EoJCLpkxLbcco5cyjYJLGOfaiYGY8QHrQctSxUIwXjoNPaYHVunSINJ2FNKp+vUiZaExo9C3myHDvvnpTcTfvFaCwamXChUnCIrPHgWJpBjRSQO0KzRwlCNLGNfCZqW8zzTjaHvK/a+ERqXkHpfcq6NC9WxeR5bskX1SJC45IVVyQWqkTji5Iw/kiTw7Q+fReXFeZ6sZZ36zS77BefsEN2ORvA==</latexit>

O(n2
)

<latexit sha1_base64="/3Hds3ZU7VKAnj+FftUpyXbEjPw=">AAACIHicjVDLTgIxFO3gC/E16tJNIzGBDWHwAUuiG3diIo8EkHRKgYZOO2nvGMhkPsWNv+LGhcboTr/G4bFAo4knucnJOeemvcf1BTeQz39YiaXlldW15HpqY3Nre8fe3asZFWjKqlQJpRsuMUxwyarAQbCGrxnxXMHq7vBi4tfvmDZcyRsY+6ztkb7kPU4JxFLHLraAjSC8ijLyNpxxofpRp4CPoyxuEd/XaoQXQ07utBRlO3bayeWnwH+TNJqj0rHfW11FA49JoIIY03TyPrRDooFTwaJUKzDMJ3RI+qwZU0k8Ztrh9MAIH8VKF/eUjkcCnqqLGyHxjBl7bpz0CAzMT28i/uY1A+iV2iGXfgBM0tlDvUBgUHjSFu5yzSiIcUwI1Tz+K6YDogmFuNPU/0qoFXLOWc65PkmXz+d1JNEBOkQZ5KAiKqNLVEFVRNE9ekTP6MV6sJ6sV+ttFk1Y85199A3W5xdvVaMV</latexit>

O(nlog23) ⇡ O(n1.58
)
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Karatsuba in HLS

template <int bits>
auto Karatsuba(ap_uint<bits> const &a, ap_uint<bits> const &b) ->

typename std::enable_if<(bits > MULT_BASE_BITS), ap_uint<2*bits >>::type {

using Full = ap_uint<bits>;
using Half = ap_uint<bits / 2>;

Half a0 = a(bits/2-1, 0); Half a1 = a(bits-1, bits/2);
Half b0 = b(bits/2-1, 0); Half b1 = b(bits-1, bits/2);

Full c0 = Karatsuba<bits / 2>(a0, b0); // Recurse
Full c2 = Karatsuba<bits / 2>(a1, b1); // Recurse
// ...compute |a1-a0| and |b1-b0|...
Full c1 = Karatsuba<bits / 2>(a1_a0, b1_b0); // Recurse

// ...combine all contributions and return...
}

template <int bits>
auto Karatsuba(ap_uint<bits> const &a, ap_uint<bits> const &b) ->

typename std::enable_if<(bits <= MULT_BASE_BITS), ap_uint<2*bits>>::type {

return a * b; // Bottom out using naive mult
}
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Fully pipelined
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Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0⇥ 36⇥

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9⇥ 33.1⇥
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1⇥ 110.3⇥
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9⇥ 176.3⇥
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3⇥ 264.0⇥
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8⇥ 351.3⇥

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).
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Xilinx Alveo U250 vs. CPU node with 2× Intel Xeon E5-2695 v4 18-core CPUs in a dual-socket configuration (36 cores per node) 
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cient configurations are marked in underlined bold font.
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tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
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Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0⇥ 36⇥

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9⇥ 33.1⇥
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1⇥ 110.3⇥
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9⇥ 176.3⇥
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3⇥ 264.0⇥
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8⇥ 351.3⇥

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).
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Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0⇥ 36⇥

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9⇥ 33.1⇥
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1⇥ 110.3⇥
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9⇥ 176.3⇥
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3⇥ 264.0⇥
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8⇥ 351.3⇥

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU - - - 227MOp/s 1⇥ 36⇥

FPGA 1 CU 361MHz 27% 8% 361MOp/s 1.6⇥ 57.3⇥
FPGA 4 CUs 293MHz 58% 42% 1202MOp/s 5.3⇥ 190.9⇥

TABLE II: Our 1024-bit (960-bit mantissa) floating-point
multiplier executed in hardware, compared to MPFR executed
fully in L1 cache on a 36-core CPU node.

512-bit multiplier fits up 4 times on each SLR for a total of 16
compute units, yielding 4.8GOp/s for a speedup over the full
36-core Xeon node of 9.8⇥, corresponding to a throughput of
more than 351⇥ CPU cores at 75% CLB usage and 56% DSP
usage. The 1024-bit multiplier can be instantiated once per
SLR, yielding 1.2GOp/s for a 5.3⇥ speedup over the Xeon
node (corresponding to 191⇥ CPU cores).

In the following, we will extend our accelerator to perform
matrix multiplication, where we can saturate the computational
pipeline without artificially removing the memory bound.

C. Benchmarking Matrix Multiplication
We evaluate the accelerator described in Sec. III, where we
maximize the number of compute units that can be instantiated
within the resource constraints and allowed by routing accord-
ing to the SLR/DDR bank assignment scheme in Fig. 4. For
the CPU comparison, we run the El::Gemm implementation
from Elemental, which is parallelized using MPI. We use a tile
size of 32⇥32 for the FPGA compute units, which balances
the trade-off between avoiding useless work on sizes that are
not a multiple of the tile size with the reduction in required
memory bandwidth at larger tile sizes.

Fig. 5 plots the performance of our accelerator for 512-
bit APFP numbers with 448-bit mantissas against the matrix
dimension for n⇥n matrices for different numbers of repli-
cations of the compute unit instantiated on the chip, com-
pared to 1–8 Xeon compute nodes running Elemental/MPFR
(dashed lines), in multiply-additions per second (we annotate
the more commonly used “multiply-accumulate” throughput
(MMAC/s), but note that our addition is not restricted to
accumulation). Resource usage is dominated by multiplication,
making it the primary constraint on how far we can scale
the design (in contrast to machine word-sized floating-point,
where additions and multiplications are typically weighted the
same when reporting performance). For the MPFR/Elemental
performance, we run both 448-bit and 512-bit mantissas and
take the maximum performance between each pair, to account
for performance effects that can occur when the mantissa size
is not a power of two.

A single replication of the 512-bit accelerator exhibits
performance corresponding to ⇠1�2 Xeon nodes (60⇠ cores),
while the 8-way replicated accelerator corresponds to the
throughput of >10⇥ Xeon nodes (375⇥ CPU cores). The
FPGA GEMM can thus outperform a small cluster of dual-
socket CPUs, and offers considerable speedup even at small
matrix sizes. Introducing more compute units to a fixed
size problem (strong scaling along a vertical line in Fig. 5)
reduces the amount of work per compute unit, resulting in
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Fig. 5: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 448-bit mantissas (512 bits total).

Precision CUs Frequency CLBs DSPs Max. Performance
512 (448) 1 327MHz 18.9% 4.5% 322MMAC/s
512 (448) 2 278MHz 31.7% 9.0% 540MMAC/s
512 (448) 4 278MHz 46.6% 14.4% 1049MMAC/s
512 (448) 8 293MHz 65.8% 35.8% 2002MMAC/s

TABLE III: Overview of 512-bit GEMM designs.

more replications requiring larger matrix inputs to reach peak
performance. An overview of all designs evaluated is shown
in Tab. III, including their logic utilization and the highest
performance achieved across different matrix sizes. Although
there is still some resource headroom, further replication
is prevented by the number of DDR4 memory interfaces
available on the shell used.

D. Extending Matrix Multiplication to 1024 bits

Extending the matrix multiplier to 1024 bit APFP numbers
introduces additional challenges on the target FPGA platform,
as a single 1024-bit matrix multiplication compute unit occu-
pies nearly a full SLR on the U250 chip. Based on the results
for 512-bit multiplication, two or three 1024-bit multipliers
should fit on the device, as this roughly corresponds to six
or nine 512-bit multipliers (since each level of Karatsuba
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Fig. 6: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 960-bit mantissas (1024 bits total)
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Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0⇥ 36⇥

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9⇥ 33.1⇥
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1⇥ 110.3⇥
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9⇥ 176.3⇥
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3⇥ 264.0⇥
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8⇥ 351.3⇥

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU - - - 227MOp/s 1⇥ 36⇥

FPGA 1 CU 361MHz 27% 8% 361MOp/s 1.6⇥ 57.3⇥
FPGA 4 CUs 293MHz 58% 42% 1202MOp/s 5.3⇥ 190.9⇥

TABLE II: Our 1024-bit (960-bit mantissa) floating-point
multiplier executed in hardware, compared to MPFR executed
fully in L1 cache on a 36-core CPU node.

512-bit multiplier fits up 4 times on each SLR for a total of 16
compute units, yielding 4.8GOp/s for a speedup over the full
36-core Xeon node of 9.8⇥, corresponding to a throughput of
more than 351⇥ CPU cores at 75% CLB usage and 56% DSP
usage. The 1024-bit multiplier can be instantiated once per
SLR, yielding 1.2GOp/s for a 5.3⇥ speedup over the Xeon
node (corresponding to 191⇥ CPU cores).

In the following, we will extend our accelerator to perform
matrix multiplication, where we can saturate the computational
pipeline without artificially removing the memory bound.

C. Benchmarking Matrix Multiplication
We evaluate the accelerator described in Sec. III, where we
maximize the number of compute units that can be instantiated
within the resource constraints and allowed by routing accord-
ing to the SLR/DDR bank assignment scheme in Fig. 4. For
the CPU comparison, we run the El::Gemm implementation
from Elemental, which is parallelized using MPI. We use a tile
size of 32⇥32 for the FPGA compute units, which balances
the trade-off between avoiding useless work on sizes that are
not a multiple of the tile size with the reduction in required
memory bandwidth at larger tile sizes.

Fig. 5 plots the performance of our accelerator for 512-
bit APFP numbers with 448-bit mantissas against the matrix
dimension for n⇥n matrices for different numbers of repli-
cations of the compute unit instantiated on the chip, com-
pared to 1–8 Xeon compute nodes running Elemental/MPFR
(dashed lines), in multiply-additions per second (we annotate
the more commonly used “multiply-accumulate” throughput
(MMAC/s), but note that our addition is not restricted to
accumulation). Resource usage is dominated by multiplication,
making it the primary constraint on how far we can scale
the design (in contrast to machine word-sized floating-point,
where additions and multiplications are typically weighted the
same when reporting performance). For the MPFR/Elemental
performance, we run both 448-bit and 512-bit mantissas and
take the maximum performance between each pair, to account
for performance effects that can occur when the mantissa size
is not a power of two.

A single replication of the 512-bit accelerator exhibits
performance corresponding to ⇠1�2 Xeon nodes (60⇠ cores),
while the 8-way replicated accelerator corresponds to the
throughput of >10⇥ Xeon nodes (375⇥ CPU cores). The
FPGA GEMM can thus outperform a small cluster of dual-
socket CPUs, and offers considerable speedup even at small
matrix sizes. Introducing more compute units to a fixed
size problem (strong scaling along a vertical line in Fig. 5)
reduces the amount of work per compute unit, resulting in
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Fig. 5: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 448-bit mantissas (512 bits total).

Precision CUs Frequency CLBs DSPs Max. Performance
512 (448) 1 327MHz 18.9% 4.5% 322MMAC/s
512 (448) 2 278MHz 31.7% 9.0% 540MMAC/s
512 (448) 4 278MHz 46.6% 14.4% 1049MMAC/s
512 (448) 8 293MHz 65.8% 35.8% 2002MMAC/s

TABLE III: Overview of 512-bit GEMM designs.

more replications requiring larger matrix inputs to reach peak
performance. An overview of all designs evaluated is shown
in Tab. III, including their logic utilization and the highest
performance achieved across different matrix sizes. Although
there is still some resource headroom, further replication
is prevented by the number of DDR4 memory interfaces
available on the shell used.

D. Extending Matrix Multiplication to 1024 bits

Extending the matrix multiplier to 1024 bit APFP numbers
introduces additional challenges on the target FPGA platform,
as a single 1024-bit matrix multiplication compute unit occu-
pies nearly a full SLR on the U250 chip. Based on the results
for 512-bit multiplication, two or three 1024-bit multipliers
should fit on the device, as this roughly corresponds to six
or nine 512-bit multipliers (since each level of Karatsuba
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Fig. 6: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 960-bit mantissas (1024 bits total)

51
2-

bi
t (

44
8-

bi
t)

10
24

-b
it 

(9
60

-b
it)

Xilinx Alveo U250 vs. CPU node with 2× Intel Xeon E5-2695 v4 18-core CPUs in a dual-socket configuration (36 cores per node) 



spcl.inf.ethz.ch
@spcl_eth

15

Multiplier performance

32 64 128 256 512
Addition Width per Stage [bits]

18

36

72

144

K
ar

at
su

ba
T

hr
es

ho
ld

[b
it
s]

372 340 437 432 411

451 435 434 415 412

380 447 453 448 386

230 237 250 227 246
14

15

16

17

18

19

20

C
LB

U
sage

[%
]

Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0⇥ 36⇥

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9⇥ 33.1⇥
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1⇥ 110.3⇥
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9⇥ 176.3⇥
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3⇥ 264.0⇥
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8⇥ 351.3⇥

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU - - - 227MOp/s 1⇥ 36⇥

FPGA 1 CU 361MHz 27% 8% 361MOp/s 1.6⇥ 57.3⇥
FPGA 4 CUs 293MHz 58% 42% 1202MOp/s 5.3⇥ 190.9⇥

TABLE II: Our 1024-bit (960-bit mantissa) floating-point
multiplier executed in hardware, compared to MPFR executed
fully in L1 cache on a 36-core CPU node.

512-bit multiplier fits up 4 times on each SLR for a total of 16
compute units, yielding 4.8GOp/s for a speedup over the full
36-core Xeon node of 9.8⇥, corresponding to a throughput of
more than 351⇥ CPU cores at 75% CLB usage and 56% DSP
usage. The 1024-bit multiplier can be instantiated once per
SLR, yielding 1.2GOp/s for a 5.3⇥ speedup over the Xeon
node (corresponding to 191⇥ CPU cores).

In the following, we will extend our accelerator to perform
matrix multiplication, where we can saturate the computational
pipeline without artificially removing the memory bound.

C. Benchmarking Matrix Multiplication
We evaluate the accelerator described in Sec. III, where we
maximize the number of compute units that can be instantiated
within the resource constraints and allowed by routing accord-
ing to the SLR/DDR bank assignment scheme in Fig. 4. For
the CPU comparison, we run the El::Gemm implementation
from Elemental, which is parallelized using MPI. We use a tile
size of 32⇥32 for the FPGA compute units, which balances
the trade-off between avoiding useless work on sizes that are
not a multiple of the tile size with the reduction in required
memory bandwidth at larger tile sizes.

Fig. 5 plots the performance of our accelerator for 512-
bit APFP numbers with 448-bit mantissas against the matrix
dimension for n⇥n matrices for different numbers of repli-
cations of the compute unit instantiated on the chip, com-
pared to 1–8 Xeon compute nodes running Elemental/MPFR
(dashed lines), in multiply-additions per second (we annotate
the more commonly used “multiply-accumulate” throughput
(MMAC/s), but note that our addition is not restricted to
accumulation). Resource usage is dominated by multiplication,
making it the primary constraint on how far we can scale
the design (in contrast to machine word-sized floating-point,
where additions and multiplications are typically weighted the
same when reporting performance). For the MPFR/Elemental
performance, we run both 448-bit and 512-bit mantissas and
take the maximum performance between each pair, to account
for performance effects that can occur when the mantissa size
is not a power of two.

A single replication of the 512-bit accelerator exhibits
performance corresponding to ⇠1�2 Xeon nodes (60⇠ cores),
while the 8-way replicated accelerator corresponds to the
throughput of >10⇥ Xeon nodes (375⇥ CPU cores). The
FPGA GEMM can thus outperform a small cluster of dual-
socket CPUs, and offers considerable speedup even at small
matrix sizes. Introducing more compute units to a fixed
size problem (strong scaling along a vertical line in Fig. 5)
reduces the amount of work per compute unit, resulting in
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Fig. 5: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 448-bit mantissas (512 bits total).

Precision CUs Frequency CLBs DSPs Max. Performance
512 (448) 1 327MHz 18.9% 4.5% 322MMAC/s
512 (448) 2 278MHz 31.7% 9.0% 540MMAC/s
512 (448) 4 278MHz 46.6% 14.4% 1049MMAC/s
512 (448) 8 293MHz 65.8% 35.8% 2002MMAC/s

TABLE III: Overview of 512-bit GEMM designs.

more replications requiring larger matrix inputs to reach peak
performance. An overview of all designs evaluated is shown
in Tab. III, including their logic utilization and the highest
performance achieved across different matrix sizes. Although
there is still some resource headroom, further replication
is prevented by the number of DDR4 memory interfaces
available on the shell used.

D. Extending Matrix Multiplication to 1024 bits

Extending the matrix multiplier to 1024 bit APFP numbers
introduces additional challenges on the target FPGA platform,
as a single 1024-bit matrix multiplication compute unit occu-
pies nearly a full SLR on the U250 chip. Based on the results
for 512-bit multiplication, two or three 1024-bit multipliers
should fit on the device, as this roughly corresponds to six
or nine 512-bit multipliers (since each level of Karatsuba
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Fig. 6: Multiply-addition performance multiplying two matri-
ces of size n⇥ n with 960-bit mantissas (1024 bits total)
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Unfortunately, we are now utterly memory bound…
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[1] Johannes de Fine Licht, Grzegorz Kwasniewski, Torsten Hoefler. "Flexible communication avoiding matrix multiplication on FPGA with high-level synthesis." 
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’20).

We know matrix multiplication!
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Matrix multiplication performance (512/448-bit)
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Running Elemental with MPI.
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8x 36-core nodes

One FPGA outperforms 10× dual-socket Xeon Nodes (375× cores)
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Plug-and-play

cmake .. -DAPFP_PLATFORM=xilinx_u250_gen3x16_xdma_3_1_202020_1 -DAPFP_COMPUTE_UNITS=8
make hw
make install

Step 1:
Configure, build, 
and install
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Plug-and-play

find_package(MPFR REQUIRED)
find_package(APFP REQUIRED)

include_directories(SYSTEM ${APFP_INCLUDES} ${MPFR_INCLUDES})
add_executable(foo src/foo.cpp)
target_link_libraries(foo ${APFP_LIBRARIES} ${MPFR_LIBRARIES})

cmake .. -DAPFP_PLATFORM=xilinx_u250_gen3x16_xdma_3_1_202020_1 -DAPFP_COMPUTE_UNITS=8
make hw
make install

Step 1:
Configure, build, 
and install

Step 2:
Link from CMake
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Plug-and-play

find_package(MPFR REQUIRED)
find_package(APFP REQUIRED)

include_directories(SYSTEM ${APFP_INCLUDES} ${MPFR_INCLUDES})
add_executable(foo src/foo.cpp)
target_link_libraries(foo ${APFP_LIBRARIES} ${MPFR_LIBRARIES})

apfp::Gemm(apfp::BlasTrans::normal, apfp::BlasTrans::normal,
m, n, k, IndexA, local_a.Matrix().LDim(),
IndexB, local_b.Matrix().LDim(),
IndexC, local_c.Matrix().LDim());

cmake .. -DAPFP_PLATFORM=xilinx_u250_gen3x16_xdma_3_1_202020_1 -DAPFP_COMPUTE_UNITS=8
make hw
make install

Step 1:
Configure, build, 
and install

Step 2:
Link from CMake

Step 3:
Call BLAS API
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We still have work to do at higher bit widths: HLS struggles with 
the giant, monolithic pipeline, and we get issues with contention.
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We still have work to do at higher bit widths: HLS struggles with 
the giant, monolithic pipeline, and we get issues with contention.

…there’s potentially 2× on the table for existing results!
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Thank you!
Reach me at: definelicht@inf.ethz.ch
Try our code: github.com/spcl/apfp

mailto:definelicht@inf.ethz.ch
https://github.com/spcl/apfp
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When to bottom out


