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Abstract—Atomic operations (atomics) such as Compare-and-
Swap (CAS) or Fetch-and-Add (FAA) are ubiquitous in parallel
programming. Yet, performance tradeoffs between these opera-
tions and various characteristics of such systems, such as the
structure of caches, are unclear and have not been thoroughly
analyzed. In this paper we establish an evaluation methodology,
develop a performance model, and present a set of detailed
benchmarks for latency and bandwidth of different atomics. We
consider various state-of-the-art x86 architectures: Intel Haswell,
Xeon Phi, Ivy Bridge, and AMD Bulldozer. The results unveil
surprising performance relationships between the considered
atomics and architectural properties such as the coherence state
of the accessed cache lines. One key finding is that all the
tested atomics have comparable latency and bandwidth even if
they are characterized by different consensus numbers. Another
insight is that the design of atomics prevents any instruction-
level parallelism even if there are no dependencies between the
issued operations. Finally, we discuss solutions to the discovered
performance issues in the analyzed architectures. Our analysis
can be used for making better design and algorithmic decisions
in parallel programming on various architectures deployed in
both off-the-shelf machines and large compute systems.

I. INTRODUCTION

Multi- and manycore architectures are established in both
commodity off-the-shelf desktop and server computers, as well
as large-scale datacenters and supercomputers. Example de-
signs include Intel Xeon Phi with 61 cores on a chip installed
in Tianhe-2 [17], or AMD Bulldozer with 32 cores per node
deployed in Cray XE6 [31]. Moreover, the number of cores on
a chip is growing steadily and CPUs with hundreds of cores
are predicted to be manufactured in the foreseeable future [5].
The common feature of all these architectures is the increasing
complexity of the memory subsystems characterized by multi-
ple cache levels with different inclusion policies, various cache
coherence protocols, and different on-chip network topologies
connecting the cores and the caches [8].

Virtually all such architectures provide atomic operations
that have numerous applications in parallel codes. Many of
them (e.g., Test-and-Set) can be used to implement locks
and other synchronization mechanisms [10]. Others, e.g.,
Fetch-and-Add and Compare-and-Swap, enable construct-
ing miscellaneous lock-free and wait-free algorithms and data
structures that have stronger progress guarantees than lock-
based codes [10].

Despite their importance and widespread utilization, the
performance of atomic operations has not been thoroughly
analyzed so far. For example, according to the common view,
Compare-and-Swap is slower than Fetch-and-Add [22].

However, it was only shown that the semantics of Compare-
and-Swap introduce the notion of “wasted work” resulting in
lower performance of some codes [22, 9]. Other works provide
basic insights and illustrate that the performance of atomics
is similar on multi-socket systems due to the overheads from
socket-to-socket hops [4]. Yet, to the best of our knowledge,
no model and benchmarks analyze in detail the latency or
bandwidth of the execution of the actual operations in the
context of complex multilevel cache and memory hierarchies.
For example, a single node in popular Cray XE6 cabinets
provides two AMD Bulldozer CPUs connected with a Hy-
perTransport (HT) link, each CPU consists of two dies also
connected with HT, and each die provides one L3 cache and
four L2 caches shared by eight cores [31]. It is unclear what
the performance of different atomics is on such a system, what
is the influence of the cache coherency protocol, what is the
performance impact of mechanisms such as adjacent cache
line prefetchers, and whether optimizations such as instruction-
level parallelism are available for atomics.

In this paper, we introduce a performance model and
establish a methodology for benchmarking atomics. Then,
we use it to analyze the latency and bandwidth of the most
popular atomic operations (Compare-and-Swap, Fetch-and-
Add, Swap). Our results unveil undocumented architectural
properties of the tested systems and identify several perfor-
mance issues of the evaluated operations. We discuss solutions
to these problems and we illustrate how our model and analysis
simplify parallel programming in areas such as graph analytics.
The key contributions of this work are:
• We introduce a performance model for the latency and

bandwidth of atomics. The model takes into account different
cache coherency states and the structure of the caching
hierarchy.

• We establish a methodology for benchmarking atomic opera-
tions targeting state-of-the-art multi- and manycore architec-
tures with deep memory hierarchies.

• We conduct a detailed performance analysis of Compare-
and-Swap, Fetch-and-Add, and Swap. We use the analysis
to validate the model, to illustrate undocumented architectural
properties of the tested systems, and to suggest several
improvements in the hardware implementation of respective
atomics.

• We discuss how our analysis simplifies parallel programming
using the example of graph traversal algorithms.



(a) The evaluated Haswell. (b) The evaluated Bulldozer.

Fig. 1: (§ II-B) The illustration of two of the analyzed architectures: Intel Haswell and AMD Bulldozer. We exclude the Intel Ivy Bridge and Xeon Phi
testbeds due to space constraints. The former combines the features of the Haswell and Bulldozer testbeds as it hosts private L1s and L2s and offers 24 cores
grouped in two CPUs. The latter is a manycore design where each core has a private L1 and L2; the cores form a ring.

II. BACKGROUND

We now present a general approach for benchmarking
memory accesses (Sec. II-A) that we will later use and extend.
Then, we discuss the evaluated architectures and atomics
(Sections II-B and II-C).

A. Benchmarking Memory Accesses

In our analysis we use and extend the X86membench
infrastructure for benchmarking memory accesses [8] that
utilizes the high resolution RDTSC time stamp counter. Each
benchmark consists of the following phases:
Preparation: A buffer of the selected size is allocated and

filled with the data specific to each benchmark (see more
details in Section III). The TLB is warmed up and the data
is placed in caches in the selected coherency state.

Synchronization: This phase makes sure that all threads
finished the preparation phase and it defines a future moment
in time when all the threads will start the measurement phase.

Measurement: All participating threads: take a time stamp
t start, do a measurement, and take the other time stamp
t end.

Result collection: The time stamps of all participating
cores are communicated and the total time of execution is
calculated as max(t end) - min(t start).

B. Evaluated Architectures and Systems
Next, we present the targeted architectures and systems. We

illustrate more details in Figure 1 and Table I.
Haswell is an Intel state-of-the-art microarchitecture that

offers sophisticated mechanisms such as hardware transac-
tional memory (HTM) [33]. In our benchmarks we use a
quadcore Haswell chip included in a commodity off-the-
shelf server machine; see Figure 1a. The L1 and L2 caches
are private to each core and the L3 inclusive cache is shared
by all the cores. We select this configuration to analyze a
simple commodity multicore system.

Ivy Bridge is an Intel microarchitecture used in various su-
percomputers such as Tianhe-2 [17] or NASA Pleiades [32].
Here, we evaluate an Ivy Bridge configuration installed in
a cluster Euler from ETH Zurich that contains two 12-core

CPUs connected with Quick Path Interconnect (QPI). The
L1 and L2 are private to each core and the L3 inclusive
cache is shared by all the cores. We use this configuration
to analyze the performance characteristics of deep memory
hierarchies with three cache levels.

Bulldozer is an AMD microarchitecture designed to im-
prove power efficiency for HPC applications [3]. Here,
we evaluate a configuration included in the Cray XE6
Monte Rosa supercomputer [31]; see Figure 1b. A compute
node deploys two 16-core AMD Bulldozer Interlagos CPUs.
Each CPU hosts two 8-core dies that are connected with
HyperTransport (HT) [29]. We selected this system to unveil
differences between Intel and AMD systems and to analyze
the effects coming from a particularly complex design with
three cache levels, multiple CPUs, shared L2 caches, and
multiple dies per CPU.

MIC is an Intel state-of-the-art manycore architecture de-
ployed in Xeon Phi processors that targets massively parallel
systems. We evaluate a configuration with 61 cores. Each
core has a private L1 and L2; there is no L3. The cores
are connected with a ring topology. We use MIC to analyze
a highly parallel coprocessor installed in supercomputing
machines such as Tianhe-2 [17].

The considered systems represent both multicore commod-
ity off-the-shelf machines (Haswell) and high-end manycore
HPC systems (MIC, Ivy Bridge, Bulldozer). They all use the
same cache line size (64B) and use extensions of the well
known MESI [20] cache coherency protocol. Haswell and
Ivy Bridge utilize MESIF; it avoids redundant data transfers
from other cores or memory by adding the Forward state
to designate a cache to respond to any requests for the
given shared line [8]. AMD Bulldozer deploys the MOESI
protocol that prevents write-backs to memory by introducing
the Owned state which allows a dirty cache line to be
shared [8]. Finally, Xeon Phi deploys a protocol based on
MESI that extends the Shared state with a directory-based
cache coherency protocol GOLS (Globally Owned Locally
Shared) to simulate the Owned state to enable sharing of a
modified line.



Architecture: Haswell Ivy Bridge Bulldozer MIC

P
ro

ce
ss

or

Manufacturer Intel Intel AMD Intel
CPU model Core i7-4770 Xeon E5-2697v2 Opteron 6272 Xeon Phi 7120
Cores/CPU 4 12 16(2x8) 61
CPUs 1 2 2 1
Core frequency 3400 MHz 2700 MHz 2100 MHz 1238 MHz
Interconnect - 2x QPI (8.0 GT/s) 4x HT 3.1 (6.4 GT/s) -

C
ac

he
s

Cache line size 64B 64B 64B 64B
L1 cache 32KB per core 32KB per core 16KB per core 32KB per core
L1 Update policy write back write back write through write back
L2 cache 256KB per core 256KB per core 2MB per 2 cores 512KB per core
L2 Update policy write back write back write back write back
L2 incl/excl: neither neither neither inclusive
L3 cache 8MB fully shared 30MB fully shared 8MB per 8 cores -
L3 Update policy write back write back write back -
L3 incl/excl: inclusive* inclusive* non-inclusive -
CC protocol MESIF MESIF MOESI MESI-GOLS

Memory

Main memory 8GB 64GB 32GB 8GB
memory channels/CPU 1x dual channel 2x dual channel 2x dual channel 8x dual channel
Huge page size 2MB 2MB 2MB 2MB

Others

Linux kernel used 3.14-1 2.6.32 2.6.32 2.6.38.8
CAS assembly instruction Cmpxchg Cmpxchg Cmpxchg Cmpxchg
FAA assembly instruction Xadd Xadd Xadd Xadd
SWP assembly instruction Xchg Xchg Xchg Xchg

TABLE I: The comparison of the tested systems. We denote the cache coherency protocol as CC protocol. “*” indicates that the shared inclusive L3 cache
in Intel Haswell and Ivy Bridge contains a core valid bit for each core on the CPU that indicates whether a respective core may contain a given cache line
in its private higher level cache (the bit is set) or whether it certainly does not contain this cache line (the bit is zeroed).

Another difference between the tested systems is the struc-
ture of L3; we will later show that it impacts the performance
of atomics. Xeon Phi hosts no L3. Ivy Bridge and Haswell
deploy the inclusive L3 cache where each cache entry contains
a core valid bit for each core on the CPU. If this bit is set then
the related core may have the respective cache line in its L1 or
L2, possibly in a dirty state. If none of the core valid bits is set
(or if the cache line is not present in L3) then the respective
cache line is also not present in L1 and L2. On the contrary,
L3 in AMD Bulldozer is neither exclusive nor inclusive: the
presence of a cache line in L2 does not determine its presence
in higher level caches. This will have a detrimental effect on
the performance of atomics as we will illustrate in Section V.

C. Evaluated Atomics Operations

Finally, we discuss the selection of the evaluated atomics.
Compare-and-Swap(*mem, reg1, reg2) (CAS): it loads

the value stored in *mem into reg1. If the original value
in reg1 is equal to *mem then it writes reg2 into *mem.
CAS is used in numerous lock-free and wait-free data
structures [10] as well as various graph processing codes such
Graph500 [23].

Fetch-and-Add(*mem, reg) (FAA): it fetches the value
from a memory location *mem into a register reg and adds
the previous value from reg to *mem. FAA implements
shared counters and various data structures [22].

Swap(*mem, reg) (SWP): it swaps the values in a memory
location *mem and a register reg. We choose SWP due to
its significance in, e.g., implementing locks [10].
Here, we focus on benchmarking the atomic assembly oper-

ations and we thus assume that each operation loads only one
operand from the memory subsystem. The remaining operands
are precomputed and stored in the respective registers. For
CAS we also evaluate the variant with two operands fetched.
Our strategy reflects many parallel codes and data structures

where the arguments of the atomic function calls are constants
or precomputed values; for example BFS traversals [23] or
distributed hashtables [6].

The analyzed atomics have different consensus numbers,
where consensus is the problem of agreeing on one value in
the presence of many parties [10]. The consensus number of
an operation op, denoted as CN(op), is the maximum number
of threads that can reach consensus with a wait-free algorithm
that only uses reads, writes, and op. In this evaluation, we
select both the operations that have smaller consensus numbers
(CN(SWP) = CN(FAA) = 2) and the operation with a high
consensus number (CN(CAS) = ∞) to analyze whether it
has any performance implications.

III. DESIGN OF BENCHMARKS

Measuring the performance of atomics is non-trivial due to
the complexity of deep memory hierarchies, various types of
workloads with different caching patterns, and the richness of
hardware mechanisms such as cache prefetchers that influence
the performance results [8]. We now present the methodology
that overcomes these challenges. We conduct:
Latency benchmarks: Here, pointer chasing is used to
obtain the average latency of an atomic. This benchmark
targets latency-constrained codes such as shared counters or
synchronization variables used in parallel data structures.

Bandwidth benchmarks: Here, all the memory cells of a
given buffer are accessed sequentially and the bandwidth is
measured. While this part targets some bandwidth-intensive
codes such as graph traversals [23], it also shows that the
tested atomics do not enable any instruction-level parallelism
(ILP) even if there are no dependencies between issued
operations.

A. Relevant Parameters
We focus on the following parameters that impact the

performance of atomics:



Cache coherency state: we use cache lines in various CC
states (M,E,S,O,I) to analyze the impact of the CC protocol
on the performance of atomics.

Cache proximity: we place the accessed cache line in dif-
ferent caches to evaluate the impact of state-of-the-art deep
cache hierarchies. The data accessed by a core can be in its
local cache or in another core’s cache located: on the same
die, on a different die but on the same CPU, or on a different
CPU.

Memory proximity: we use memories with different prox-
imities to cover today’s NUMA systems. We will refer to a
memory that can be accessed by a core without using a die-
die interconnection as the local memory and anything else as
the remote memory.

Thread count: we vary the number of threads accessing the
same cache line to analyze the overheads due to contention.

Operand size: we evaluate operations that modify operands
of various sizes to discover the most advantageous size to be
used for shared counters or synchronization variables.

B. Structure of Benchmarks

The general structure of the benchmarks is similar to the
structure described in Section II-A with the difference of
measuring atomic instructions instead of reads or writes.

CAS: Latency Benchmarks We measure the latency of
unsuccessful CAS. We execute consecutive CAS operations
in a pointer chase. Reg 1 holds the address of *mem and is
compared with the value held by *mem. Those two values are
never equal in the pointer chase thus CAS always fails.

CAS vs FAA vs SWP: Instruction Level Parallelism
On all the tested systems the CAS assembly operation always
modifies the same predefined register. Thus, the CPU cannot
execute multiple CASes simultaneously because the result of
one CAS affects the outcome of the next CAS. FAA and SWP
however have only one explicit argument. Our bandwidth
benchmarks avoid data dependencies between the instructions
to allow parallel execution of FAA and SWP. We will later
illustrate that the hardware implementation of each atomic still
enforces fully serialized execution.

C. Interference from Hardware Mechanisms

There are several mechanisms that could introduce sig-
nificant noise in the benchmarks; we turn them off where
possible. First, we avoid TLB misses by using hugepages and
filling the TLB with proper entries prior to the measurements.
Second, we disable the respective mechanisms that affect
the clock frequency; these are Turbo Boost, Enhanced Intel
SpeedStep (EIST), and CPU C-states. Thus, the frequency of
each core is always as specified in Table I. Third, we turned
off prefetchers (Hardware Prefetcher, Adjacent Cache Line
Prefetch) to prevent false speedups in the latency benchmarks.
Finally, by switching off HyperThreading we make sure that
any two cores visible to the programmer are also two physical
cores.

IV. PERFORMANCE MODEL

We now introduce our performance model. We concretize
the model by assuming that we model caching architectures
that match the considered Intel and AMD systems (cf. Sec-
tion II-B and Table I). We will later (Section V) validate the
model and explain several differences between the predictions
and the data that illustrate interesting architectural properties
of the considered systems.

A. Latency

Each atomic fetches and modifies a given cache line (“read-
modify-write”). We predict that an atomic first issues a read
for ownership in order to fetch the respective cache line and
invalidate the cache line copies in other caches. Then the
operation is executed and the result is written in a modified
state to the local L1 cache. We thus model the latency L of an
atomic operation A executing with an operand from a cache
line in a coherency state S as:

L(A,S) = RO(S) + E(A) +O (1)

A denotes the analyzed atomic; A ∈ {CAS,FAA,SWP}.
S denotes the coherency state; S ∈ {E,M,S,O}. RO(S) is
the latency of the read for ownership (reading a cache line
in a coherency state S and invalidating other caches). E(A)
is the latency of: locking a cache line, executing A by the
CPU, and writing the operation result into a cache line in the
coherency state M. As all other copies of the cache line are
invalidated, this will be a write into L1 local to the core exe-
cuting the instruction. Finally, O denotes additional overheads
related to various proprietary optimizations of the coherence
protocols that we describe in Section V. We conjecture that
the most dominant element of L(A,S) is RO(S); a prediction
supported by several studies illustrating high latencies of reads
for ownership [8, 20, 21].
RO(S) strongly depends on S and the location of the cache

line. We start with modeling operations that access cache lines
located on the same die as the requesting core.

1) On-die Accesses: E/M states: If S is E or M then there
is a single copy of the related cache line and no invalidations
will be issued. Thus, RO(E) and RO(M) will be equal to the
latency of a simple read denoted as R:

RO(E/M) = R(E/M) (2)

Private L1 and L2, shared L3 We first assume that
each core has private L1 and L2 caches and there is a shared
L3 across all the cores. Examples of such systems are the
considered Intel Ivy Bridge and Intel Haswell configurations.
We first denote the latency of reading a cache line by a core
from a local L1, L2, and L3 cache as RL1,l, RL2,l, and RL3,l,
respectively. Then, we have:

R(E/M) = RL,l iff the cache line is in L (3)

where L ∈ {L1, L2, L3}. We now model the latency of
accessing a cache line in L1 or L2 of a different core. Here,



we assume that the latency of transferring a cache line between
L1 and L3 can be estimated asRL3,l−RL1,l. The total latency
is increased by an additional cache line transfer from L3 to
the requesting core:

R(E/M) = RL3,l +RL3,l −RL1,l (4)

Private L1, shared L2 and L3 In some architectures
(e.g., Bulldozer) L2 is shared. For such systems, if the cache
line is in the L1 owned by a core that shares L2 with the
requesting core, then:

R(E/M) = RL2,l +RL2,l −RL1,l (5)

Private L1 and L2, no L3 Finally, Xeon Phi represents
systems with private L1/L2 and no L3. Recent research [27]
illustrated that the latency of a cache line transfer between any
two cores on a Xeon Phi chip can be assumed identical. Thus,
we have:

R(E/M) = RL2,l +RL2,l −RL1,l +H (6)

where H is the latency of the hop from the local L2 to
the remote L2, including the overhead from accessing the
directories maintained by the cache coherency protocol.

2) On-die Accesses: S/O states: If the cache line is in S or
O, then the read for ownership invalidates its copies in other
caches. Assuming there are N copies, we have:

RO(S/O) = R(S/O) + max
i∈{1,...,N}

Linv,i (7)

where Linv,i is the latency of invalidating the ith cache
line. Here, we assume that multiple invalidations are executed
in parallel, thus we take the maximum of the latencies. This
equation also covers invalidations due to silent evictions in
the single-core case. We also predict that Linv,i should not
significantly differ from R(E) (of the ith cache line), because
both require invalidating private caches independent of data
being cached there. Similarly, we approximate reads of S/O
cache lines with reads of E cache lines.

3) Off-die Accesses: The operations accessing cache lines
located on a different die include an additional penalty from
the underlying network (QPI on Intel and HT on AMD
systems). Here, we assume a constant overhead H per one
cache-to-cache hop (spanning two dies) that we add to the re-
spective latency expressions from Section IV-A2. The latency
of accesses to the main memoryM is modeled as a sum of the
L3 miss and the overhead introduced by processing the request
by the memory controller. For NUMA systems we also add H
if necessary for an additional die-to-die hop. Finally, on Intel
systems we also add M to each R(M) because such accesses
require writebacks to memory; AMD prevents it with the O
state.

B. Bandwidth

Here, we assume that the tested atomics always flush the
write buffers and thus do not allow for ILP [12, 13]. Thus, the
bandwidth B of an atomic A executing with an operand from
a cache line in a coherency state S can be simply modeled as:

B(A,S) = Csize/L(A,S) (8)

where Csize is the cache line size. This model assumes that
each atomic modifies a different cache line. In the case where
the continuous memory block is accessed sequentially and thus
each cache line is hit multiple times, we have:

B(A,S) =
N

L(A,S) + (N − 1) · (RL1,l + E(A))
· Csize (9)

where Osize is the operand size and N = Csize/Osize is
the number of operands that fit into a cache line. Eq. (10)
is valid for Intel systems. L1 on AMD is write-through, thus
RL2,l would replace RL1,l.

V. PERFORMANCE ANALYSIS

We now illustrate our main results and provide several
surprising insights into the performance of the tested atomics.
We exclude the results that show similar performance trends;
they are all included in an extended technical report1. We
use the results to validate the model. Here, we first calculate
the median values of the parameters from Section IV. The
obtained numbers can be found in Table II. They are derived
from the medians of latencies of operations to given cache-
levels/memory. The R terms are derived from the read latency.
H is the difference between reading remote/local L3. The E
terms are obtained by subtracting an atomic read latency from
an atomic execution latency in L1. We omit the model lines for
clarity of plots and we discuss each case where the differences
between the model and the data exceed 10% of the normalized
root mean square error (NRMSE) defined as:

NRMSE =
1

x̄

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (10)

where x̂i are predictions, xi are the observed data points,
and x̄ is the mean of the observed values.

Parameter: Haswell Ivy Bridge Bulldozer Xeon Phi

RL1,l 1.17 1.8 5.2 2.4
RL2,l 3.5 3.7 8.8 19.4
RL3,l 10.3 14.5 30 -
H - 66 62 161.2
M 65 80 75 340
E(CAS, .) 4.7 4.8 25 12.4
E(FAA, .) 5.6 5.9 25 2.4
E(SWP, .) 5.6 5.9 25 3.1

TABLE II: The model parameters (all numbers are in nanoseconds).

The overhead term O (see Eq. (1)) depends on the operation
type, the coherency state, the accessed cache line, and the

1http://spcl.inf.ethz.ch/Research/Parallel Programming/Atomics/
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Fig. 2: The comparison of the latency of CAS, FAA, SWP, and read on Haswell. The requesting core accesses its own cache lines (local) and cache lines
of a different core from the same chip (on chip).

architecture; all the measured values of O are included in
the technical report due to space constrains. The available
vendor documentations do not enable definite explanation
of the reasons behind the variability of O [1, 13, 12]. We
conjecture that the reasons may include: proprietary undocu-
mented optimizations, variable locking overheads, or different
snooping techniques (e.g., whether or not the snoop request
bypasses the targeted core).
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A. Latency

First, we present a selection of the latency results. We
compare CAS, FAA, and SWP that access cache lines in the
E, M, S and O states. We exclude the F state from the Intel

analysis as it starts to affect the performance when more than
two CPUs are used [21] while our Intel testbeds host at most
two CPUs. Finally, the latency of reads (read) is plotted for
a comparison with a simple memory access.

1) Intel Haswell and Ivy Bridge: We illustrate the latency
results of the Intel systems in Figures 2 and 3. Atomics are
consistently slower than reads by ≈5-10ns on both systems
for the E/M states (cf. Figures 2a and 2d). From this we
conjecture that atomics trigger a read for ownership and the
latency difference between atomics and simple reads stems
from E , as predicted by Eq. (1). The desired cache line is
read into the private cache of the core and all its copies are
invalidated. For cache lines in the E and M states a read for
ownership has the same latency as a read since the line is
only present in one cache, requiring no invalidations. The
difference in latency impacts the performance of local L1
accesses where the read latency is ≈1-2ns (see Figure 2d).
It does not significantly influence accesses to remote caches
or memory where latencies are >60ns. As predicted by our
model and contrary to the common view, CAS has the same
latency as FAA/SWP, except for the E and M states on Ivy
Bridge, where the latency of CAS accessing L1 is consistently
(by ≈2-3ns) lower than that of FAA/SWP (see Figure 3). We
attribute this effect to an optimization in the structure of L1
that detects that no modification will be applied to a cache
line, reducing the latency.

In the S/E states executing an atomic on the data held by a
different core (on the same CPU) is not influenced by the data
location (L1, L2 or L3); see Fig. 2a, 2c, 2d, 3. The data is
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Fig. 4: The latency comparison of CAS/FAA/SWP/read on Bulldozer. The requesting core accesses its own cache lines (local), cache lines of different cores
that share L2 and L3 with the requesting core (on chip, shared L2 and L3, respectively), and cache lines of a core from a different socket (other socket).

evicted silently, with neither writebacks nor updating the core
valid bit in L3. Thus, all the accesses snoop L1/L2, making
the latency identical (as modeled by Eq. (7)).

M cache lines are written back when evicted updating the
core valid bits. Thus, there is no invalidation when reading
an M line in L3 that is not present in any local cache. This
explains why M lines have lower latency in L3 than E lines;
cf. Figures 2a and 2b.

Remote accesses in the M/E states are by ≈50ns slower
than that of another core on the same CPU due to H; see
Fig. 3.

In our latency benchmarks CAS is always unsuccessful.
Because no data is modified it is not necessary to invalidate
any cache lines. Contrary to unsuccessful CAS, FAD and
SWP require invalidations. Those invalidations cause a higher
latency to local L1 cache in S state compared to the M/E
states. CAS has similar latency to FAD and SWP in shared
state. This shows that CAS triggers invalidations even when
it fails.

2) AMD Bulldozer: We illustrate the latency results of
AMD Bulldozer2 in Figure 4. Atomics are again slower than
reads in each case. Yet, the difference between reads and
CAS/FAA is not the same for all the cache levels. CAS and
FAA take ≈8ns longer than reads into the cache of a different
core. Yet, for the local cache they consistently take ≈20ns
longer than respective reads (cf. Figures 4a/4b and 4c). We
attribute this surprising result to variable overheads related to
O.

The L3 results indicate that the latency is growing with the
increasing data block size. We conjecture that this effect is
caused by the HT Assist, a unit that uses a part of L3 and
works as a filter for accesses to remote cores [1]. The HT
Assist module causes some accesses to L3 to miss and thus
to incur higher latencies.

Both the S and the O states follow similar performance
patterns (we exclude the plots due to space constraints). The

2For AMD, we had to eliminate the effects from AMD hardware prefetchers that
always request multiple consecutive cachelines in case of an L2 miss. For this, we had
to increase the minimal distance between the accessed memory addresses. As the size of
L1 in Bulldozer is only 16KB, this prevented obtaining results for L1. Identical effects
were observed by Molka et al. [21].
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Fig. 6: The comparison of the latency of CAS on Xeon Phi. The requesting
core accesses its own cache lines (local) and cache lines of a different core
from the same chip (on chip).

latencies of atomics to shared data in the L2 of the requesting
core are similar independent of which cores contain the data;
they are dominated by H (additional ≈62ns). Bulldozer’s L3
is not inclusive and does not have core valid bits. Thus,
L3 cannot determine whether the data is in the L1 or L2
of a different core entailing an invalidation broadcast. This
broadcast has to reach caches on a remote CPU, generating
very high latencies.

3) Intel Xeon Phi: Finally, we discuss the latency results
for Xeon Phi, see Figure 6. The performance patterns are very
similar across all the tested operations and coherency states
as predicted by the model; here we illustrate CAS. Similarly
to other Intel and AMD systems, atomics introduce significant
overheads over reads for the S state (≈250ns for L1 accesses).
Yet, contrarily to Haswell, Ivy Bridge, and Bulldozer, CAS is
slower than FAA (≈10ns for local L1 and ≈15ns for remote
L1 accesses) while FAA is slower than read (≈2ns for local
L1 and ≈5ns for remote L1 accesses).

This minor latency differences in accessing cache lines
owned by different cores are due to the design of the Xeon
Phi ring-bus: each of these two accesses requires checking
different cache directories. This is consistent with previous
results for memory accesses as observed by other studies [27].
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Fig. 5: The comparison of the bandwidth of CAS, FAA, and writes on Haswell. The requesting core accesses its own cache lines (local) and cache lines of
a different core from the same chip (on chip).

4) Discussion & Insights: Our analysis provides novel in-
sights. It turns out that, contrary to the common view [22], the
latency of CAS, FAA, and SWP is in most cases identical and
sometimes (L1 on Haswell and L3/memory on AMD) CAS
is faster than FAA. Thus, atomics with different consensus
numbers still entail similar overheads. As we will show in
Section V-E, additional overheads in CAS are due to fetching
an additional argument from caches or memory.

The results indicate the correctness of the model assump-
tions and predictions. The only significant deviations are
caused by factors not directly related to the cache coherency
protocol (TLB misses) and the overheads from the proprietary
HT Assist module on AMD Bulldozer. We also observe minor
(<10%) variations in the latencies to remote caches caused by
system noise.

The analysis suggests several potential improvements for the
hardware implementation of atomics. For example, we show
that unsuccessful CASes invalidate the copies of fetched cache
lines entailing significant overheads. Yet, such operations do
not modify the fetched cache line, making the invalidations
unnecessary. We conjecture that this strategy incorporates the
pipelining of atomics, thus requiring the invalidations. Another
potential strategy would issue invalidations after CASes suc-
ceed. As unsuccessful CASes usually constitute a crucial part
of all the issued CASes in various parallel designs [22], this
might accelerate some workloads.

B. Bandwidth

We now analyze a selection of the bandwidth results. We use
a single thread; multiple threads are analyzed in § V-D. Due
to space constraints we illustrate the Haswell results for the M
state (Figure 5) and only briefly discuss other testbeds. Here,
we compare atomics to writes. Our goal is to show that atomics
do not use ILP even if no dependencies between successive
operations exist.

Similarly to latency, the bandwidth results for Haswell
indicate that CAS is comparable or more efficient than FAA
(≈0.04 GB/s). Moreover, the bandwidth is larger in higher
level caches (for the E/M cache lines). Yet, the differences
between the levels are not significant (≈0.05 GB/s) as only

the first access to each line is affected by cache proximity.
Bandwidth (to L3) for the E lines is lower than for the M
lines due to to the silent eviction of the former.

In each testbed the bandwidth of atomics is ≈5-30x lower
than that of writes as the latter utilize ILP. Yet, we specifically
enabled the possibility of the parallel execution of FAA/SWP
(see Section III-B). This design prevents ILP, limiting perfor-
mance.

1) Discussion & Insights: Significantly lower bandwidth
of atomics (than that of writes) is due to the differences in
using write buffers. Cores store to their write buffers and
continue executing further instructions before the previous
writes actually reach the cache (which can take >100ns as our
results indicate). The buffer might merge consecutive writes
increasing bandwidth. On the contrary, atomic operations
cause the write buffers to be drained. That means that every
atomic is affecting the cache directly without being merged or
buffered.

In addition, our results indicate that atomics do not allow
for ILP whatsoever. Relaxing this restriction in some cases
(e.g., for the independent executions of FAA or SWP) could
significantly improve the bandwidth.
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Fig. 7: The comparison of the latency of CAS using operands of 64 and 128
bits in size (AMD Bulldozer, the M state).
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Fig. 9: The effect on the bandwidth of FAA (accessing cache lines in the Modified state) coming from prefetchers and various power efficiency and acceleration
mechanisms (Turbo Boost, EIST, C States) deployed in Intel Haswell.

C. Operand Size

CAS comes with several flavors that differ in the size of the
operands. We analyze variants that use 64 and 128 bits. The
tested Intel systems provide identical latency in each case. On
the contrary, AMD Bulldozer has lower latency when using
64 bits, see Figure 7. The latency difference is insignificant
(≈5ns) when accessing cache of a core that does not share L2
with the requesting core and close to 20ns for other caches and
memory. Using CAS that operates on 64bit operands would
thus be desirable in latency-constrained applications running
on AMD Bulldozer.

D. Contention

We now evaluate the effect of concurrent threads accessing
the same cache line repeatedly (using writes or atomics) on the
tested manycore systems (Ivy Bridge, Xeon Phi, Bulldozer);
see Figure 8. One thread is pinned to each participating
core. This benchmark targets the codes with highly contended
shared counters and synchronization variables.

The bandwidth of writes on Ivy Bridge has almost 100GB/s
with eight cores and is growing steadily with the thread
count. These numbers are very close to the accumulated non-
contended bandwidth. We observe a similar effect on Haswell
and thus we conjecture that both architectures detect that
issued operations access the same cache line in an arbitrary

order, annihilating the need for the actual execution of all
the writes. Contrarily to other Intel systems, adding more
threads on Xeon Phi quickly decreases the bandwidth until
it converges to ≈708 MB/s (CAS), ≈730 MB/s (FAA) and
≈2960 MB/s (writes).

Bulldozer also suffers from the contention. A single thread
reaches the highest bandwidth but additional threads (up
to eight) decrease the performance. Beyond this point the
bandwidth increases steadily, similarly to Ivy Bridge.

We conclude that all the considered architectures have
significantly lower bandwidth in a contended execution of
atomic operations than in a non-contended case. This may
constitute a performance limitation in state-of-the-art multi-
and manycore designs with massive thread-level parallelism.

E. Number of Operands Fetched

Here, we show how the performance of CAS changes when
two operands are fetched from the memory subsystem. We
analyze the latency results for Bulldozer, see Figure 8d for
the E state. It turns out that additional reads and invalidations
impact the latency only marginally because of the pipelined
execution of CASes/reads, requiring additional ≈2-4ns and
≈15-30ns for local and remote accesses, respectively.

Surprisingly, the latency of accessing M cache lines is not
affected and is similar to the one from Figure 4a. This effect



is caused by the proprietary AMD optimization called the
MuW state [15]. It immediately invalidates the accessed M
cache line and allows the requesting core to modify it without
further actions, limiting remote invalidations and improving
the performance even further.

F. Prefetchers and Other Mechanisms

State-of-the-art architectures host different mechanisms that
impact the CPU performance. For example, Haswell de-
ploys Hardware Prefetcher (prefetching data/instructions after
successive L3 misses or after detecting cache hit patterns),
Adjacent Cache Line Prefetcher (unconditional prefetching
of two additional cache lines), and several mechanisms that
may affect the clock frequency and power efficiency (Turbo
Boost, EIST, and C States). We now illustrate how these
mechanisms impact the latency and bandwidth of atomics.
We select Haswell as the testbed and we skip the latency
results because they are only marginally (≈1% difference)
affected. The bandwidth results are illustrated in Figure 9.
Any of the prefetchers improves bandwidth for L3 cache
accesses by reducing the effect of snooping (improvement
up to ≈0.3 GB/s). Interestingly, if both are enabled, they
negligibly conflict with each other reducing bandwidth to
L3. Adjacent Cache Line Prefetcher additionally accelerates
atomics to L1/L2 (up to≈0.135 GB/s). Turbo Boost, EIST, and
C States impact the clock frequency and thus both introduce
irregularities in the results and improve the bandwidth of L3,
RAM, and remote L1/L2 accesses by ≈0.15 GB/s.

G. Unaligned Operations

Finally, we analyze the performance of reads and atomics
when accessing unaligned words that span two consecutive
cachelines. We present the results for CAS (M state, Haswell)
in Figure 10a; the results for reads, other atomics, and
the remaining testbeds are included in the technical report.
Unaligned reads suffer at most 20% of performance loss
compared to aligned operations. Contrarily, atomics suffer
from significant latency increases; CAS reaches up to 750ns.
This indicates that aligning data is crucial for performance in
parallel codes that use atomics.

VI. DISCUSSION

Our model and benchmarks provide insights into the latency
and bandwidth of atomics; they also identify various perfor-
mance issues. We now proceed to discuss how the insights
can simplify parallel programming. Then, we propose several
solutions to the identified performance issues.

A. Simplifying Parallel Programming

Our analysis illustrates that all atomics have comparable
latency and bandwidth. We argue that the only significant
difference between atomics that matters for performance is the
semantics (e.g., CAS introduces the notion of wasted work).
This conclusion reduces the complexity of designing parallel
lock-free algorithms.

As an example, consider a parallel synchronous Breadth
First Search (BFS) graph traversal included in the well-known

Graph500 benchmark [23]. A key part of this algorithm is a
concurrent array called bfs_tree that is constructed during
the traversal. Initially, each array cell equals −1. After the
traversal, given a graph with n vertices labeled from 0 to n−1,
bfs_tree[v] contains the label of the parent of vertex v
as determined by the traversal.

Now, concurrent accesses to the array cells can be per-
formed with CAS, SWP, or FAA. Our model and analysis
clearly indicate that the latency and bandwidth of these actions
are almost identical. Thus, the only significant factor is the
semantics. As FAA always succeeds, it might happen that
some threads updating the same cell would both increase the
value of the cell. This would require a complex scheme in
which the effects of some of the issued operations would be
reverted. On the contrary, CAS and SWP can be used to
design simpler protocols. However, as CAS introduces wasted
work, we expect it to generate some additional overheads. We
illustrate the results of a BFS traversal (4 concurrent threads)
using both of these actions in Figure 10b. A traversal is
performed on Kronecker graphs [16] that model heavy-tailed
real-world graphs. The largest graphs fill the whole available
memory. The results illustrate that SWP results in more edges
traversed per second.
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Fig. 10: The analysis of unaligned atomics and BFS.

B. Addressing the Shortages of the Tested Architectures

Designing feasible solutions to the identified issues would
require access to the details of the benchmarked architectures.
Unfortunately, such details are Intellectual Property (IP) of
AMD/Intel that are beyond our access. Thus, we exclude
microarchitectural details and we focus on general schemes
that we believe could be easily incorporated into current
architectures. The issue of insufficient information on microar-
chitectural features from hardware vendors has already been
indicated by Mytkowicz et al. [24].

On Bulldozer, atomics accessing O/S cachelines always
trigger invalidations to remote dies because the architecture
lacks a method to track which caches share a cacheline. We
now discuss two alterations to the Bulldozer design; each
would prevent unnecessary invalidations to remote dies.



1) Extending MOESI: We extend MOESI with two new
cache coherency states named Owned-Local (OL) and Shared-
Local (SL). When a cacheline in the E state is read from a
core on the same die it enters the SL state in both caches,
rather than the S state. Similarly, when a cacheline in the M
state is read by a core on the same die, it enters the OL/SL
state instead of O/S. The SL and OL states indicate that the
cacheline is only cached by the local die. Writing to an OL/SL
cacheline requires no invalidations to a remote die. However,
when an OL/SL cacheline is read by a core on a remote die,
all the copies of that cacheline will transition from SL to S
or from OL to O indicating that remote invalidations will be
necessary when modifying the cache line.

The introduced states prevent unnecessary invalidations
when writing to cachelines shared by cores on the same die. A
potential disadvantage is that reading an SL or OL cacheline
from a remote die might be slightly slower due to multiple
transitions. However, this could be addressed with a careful
overlap of the cacheline transfer and the transitions on a die.

2) Extending HT Assist: One could also eliminate unneces-
sary remote invalidations on AMD by using HT Assist to track
S and O cachelines that are only present on one die. For this,
a portion of L3 on each die would be dedicated to HT Assist
to track the cachelines that most recently changed to the S or
O state. Upon a read of an S/O cacheline (issued by a remote
core), the respective entry in HT Assist would be removed.
Upon a write (by a remote core), the HT Assist would be
probed to determine whether to issue remote invalidations.
Probing HT Assist does not increase the latency of local writes
as L3 is consulted in any case.

3) Enabling ILP for Atomics: Atomics act as barriers
and they require write buffers to be drained before they
are executed [12, 13]. To enable ILP, an additional set of
relaxed atomics could be introduced. For this, an instruction
prefix called FastLock could be added to the instruction set.
The FastLock prefix would enable reordering issued atomic
operations as long as non-overlapping memory regions are
affected. FastLock would be used with acquire and release
fences. The non-relaxed semantics would be available with
the original lock prefix.

VII. RELATED WORK

To the best of our knowledge, there exists no detailed
performance analysis of atomic operations. A brief discus-
sion that compares the contention of Compare-And-Swap and
Fetch-And-Add can be found in the first part of the work
by Morrison et al. [22]. This work uses the comparison to
motivate the proposed parallel queue that extensively utilizes
Fetch-And-Add. Other studies [28, 25] illustrate that algo-
rithmically the throughput of CAS is far lower than that of
FAA on a contended value. They differ from this work as
they only illustrate the lower performance of CAS caused by
the semantics that introduce wasted work. Another work by
David et al. [4] analyzes the performance of atomics. Yet, this
study targets a broad range of synchronization mechanisms
and does not provide an in-depth analysis of both the latency

and bandwidth of atomics in the context of complex multilevel
memory hierarchies.

A methodology for benchmarking the latency and band-
width of reads and writes accessing different levels of the
caching hierarchy in the NUMA systems was conducted by
Molka et al. [20]. A comparison of the performance of memory
accesses on Intel Nehalem and AMD Shanghai was performed
by Molka et al. [8]; a similar study targets the AMD Bulldozer
and Intel Sandy Bridge microarchitectures [21]. Other analyses
on the performance of the memory subsystems include the
work by Babka et al. [2], Pend et al. [26], and Hristea et
al. [11]. Our works differs from these studies as it specifically
targets atomic operations, providing several insights into the
performance relationships between atomics and the utilized
caching hierarchy.

There exist numerous works proposing concurrent codes and
data structures that use atomics for synchronization. Examples
include a queue by Morrison at el. [22], a hierarchical lock by
Luchangco et al. [18], and a queue by Michael and Scott [19].
Many fundamental structures and designs can be found in a
book by Herlihy and Shavit [10].

Finally, the considered architectures and cache coherency
protocols are extensively described in various manuals and
papers [14, 12, 13, 1, 7, 30]. Several performance models
targeting on-chip communication have been introduced, for
example a model by Ramos and Hoefler [27]. The model
proposed in this paper differs from that work because it
specifically targets latency and bandwidth of atomic operations
in the onnode environment.

VIII. CONCLUSION

Atomic operations are used in numerous parallel data struc-
tures, applications, and libraries. Yet, there exists no evaluation
that would illustrate tradeoffs and relationships between the
performance of atomics and various characteristics of multi-
and manycore environments.

In this work we propose a performance model and provide
a detailed evaluation of the latency and bandwidth of several
atomic operations (Compare-And-Swap, Fetch-And-Add,
Swap) that validates the model. The selected atomics are
widely utilized in various parallel codes such as graph traver-
sals, shared counters, spinlocks, and numerous data structures.
Our performance insights include the observation that CAS
and FAA have in principle identical latency and the only
difference is related to the number of operands to be fetched
and the semantics of CAS that introduce the notion of the
“wasted work”. Another insight is that the atomics prevent
any instruction level parallelism, significantly limiting the
bandwidth (up to 30x in comparison with simple writes),
even if there are no dependencies between the successive
operations. Our analysis can thus be used for designing more
efficient parallel systems.

The results also indicate several potential improvements in
the design of the caching hierarchy. For example, the AMD
Bulldozer architecture limits performance with invalidations
issued to remote CPUs even if the respective cache line is



stored only in local caches. Eliminating such invalidations
would significantly accelerate atomic operations accessing
cache lines in the shared state. Here, we discuss two general
solutions to this problem.

Finally, we illustrate that our analysis can be used for
making better algorithmic decisions in parallel programming.
Our study and data can be used by architects and engineers
to develop more performant memory subsystems that would
offer even higher speedups for parallel workloads.
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