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Abstract—We introduce FatPaths: a simple, generic, and
robust routing architecture that enables state-of-the-art low-
diameter topologies such as Slim Fly to achieve unprecedented
performance. FatPaths targets Ethernet stacks in both HPC su-
percomputers as well as cloud data centers and clusters. FatPaths
exposes and exploits the rich (“fat”) diversity of both minimal
and non-minimal paths for high-performance multi-pathing.
Moreover, FatPaths uses a redesigned “purified” transport layer
that removes virtually all TCP performance issues (e.g., the
slow start), and incorporates flowlet switching, a technique used
to prevent packet reordering in TCP networks, to enable very
simple and effective load balancing. Our design enables recent
low-diameter topologies to outperform powerful Clos designs,
achieving 15% higher net throughput at 2× lower latency for
comparable cost. FatPaths will significantly accelerate Ethernet
clusters that form more than 50% of the Top500 list and it may
become a standard routing scheme for modern topologies.

Full paper version: https://arxiv.org/abs/1906.10885

I. INTRODUCTION

Ethernet continues to be important in the HPC landscape.
While the most powerful Top500 systems use vendor-specific
or Infiniband (IB) interconnects, more than half of the Top500
(cf. the Nov. 2019 issue) machines [1] are based on Ethernet,
see Figure 1 (the left plot). For example, Mellanox connects
156 Ethernet systems (25 GiB and faster), which is 20% more
than in Nov. 2018. The Green500 list is similar [2]. The
importance of Ethernet is increased by the “convergence of
HPC and Big Data”, with cloud providers and data center
operators aggressively aiming for high-bandwidth and low-
latency fabric [3]–[5]. An example is the growing popularity
of RDMA over Converged Ethernet (RoCE) [6] that facilitates
deploying Remote Direct Memory Access (RDMA) [7] appli-
cations and protocols – traditionally associated with HPC and
IB interconnects – on top of Ethernet.

Yet, Ethernet systems are scarce in the highest 100 positions
of Top500. For example, in November 2019, only six such
systems were among the highest 100. Ethernet systems are
also less efficient than Infiniband, custom, OmniPath, and
proprietary systems, see Figure 1 (on the right). This is also
the case for systems with similar sizes, injection bandwidth,
and topologies, indicating overheads caused by routing. Thus,
enhancing routing in HPC Ethernet clusters would improve
the overall performance of ≈50% of Top500 systems and
accelerate cloud infrastructure, mostly based on Ethernet [8].

Clos dominates the landscape of data centers and supercom-
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Fig. 1: The percentage of Ethernet systems in the Top500 list (on the left) and the
LINPACK efficiency of Top500 systems with various networks (on the right).

puters [3], [4], [9]. Yet, many recent low-diameter topologies
claim to outperform Clos in the cost-performance tradeoff.
For example, Slim Fly can be ≈2× more cost- and power-
efficient while having ≈25% lower latency. Similar numbers
were reported for Jellyfish [10] and Xpander [3]. Thus, modern
low-diameter networks could significantly enhance compute
capabilities of Ethernet clusters.

However, to the best of our knowledge, no high-
performance routing architecture has been proposed for low-
diameter networks based on Ethernet stacks. The key issue
here is that traditional routing schemes (e.g., Equal-Cost
Multipath (ECMP) [11]) cannot be directly used in networks
such as Slim Fly, because (as we will show) there is almost
always only one shortest path between endpoint pairs (i.e.,
shortest paths fall short). Restricting traffic to these paths does
not utilize such topologies’ path diversity, and it is unclear how
to split traffic across non-shortest paths of unequal lengths.

To answer this, we propose FatPaths, the first high-
performance, simple, and robust routing architecture for low-
diameter networks, to accelerate both HPC systems and cloud
infrastructure that use Ethernet. FatPaths uses our key research
outcome: although low-diameter networks fall short of shortest
paths, they have enough “almost” shortest paths. This insight
comes from our in-depth analysis of path diversity in five
low-diameter topologies (contribution #1). Then, in our key
design outcome, we show how to encode this rich diversity of
non-minimal paths in low-diameter networks in commodity
hardware (HW) using a novel routing approach called layered
routing (contribution #2). Here, we divide network links into
subsets called layers. One layer contains at least one “almost”
shortest path between any two endpoints. Non-minimal mul-
tipath routing is then enabled by using more than one layer.

For higher performance in TCP environments, FatPaths uses
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Routing Scheme
(Name, Abbreviation, Reference)

Stack
Layer

Supported path diversity aspect

SP NP SM MP DP ALB AT

(1) SIMPLE ROUTING PROTOCOLS (often used as building blocks):

Valiant load balancing (VLB) [13] L2–L3 � - � � � � -
Simple Spanning Tree (ST) [14] L2 �S �S � � � � -
Simple routing, e.g., OSPF [15]–[18] L2, L3 - � � � � � -
UGAL [19] L2–L3 - - � � � - -
ECMP [11], OMP [20], Pkt. Spraying [21] L2, L3 - � � - � � -

(2) ROUTING ARCHITECTURES:

DCell [22] L2–L3 � - � � � � �
Monsoon [23] L2, L3 � � � � � � �
PortLand [9] L2 - � � - � � �
DRILL [24], LocalFlow [25], DRB [26] L2 - � � - � - �
VL2 [27] L3 - � � - � � �
Architecture by Al-Fares et al. [28] L2–L3 - � � - - - �
BCube [29] L2–L3 - � � - - � �
SEATTLE [30], others∗ [31]–[34] L2 - � � � � � -
VIRO [35] L2–L3 �S �S � � � � -
Ethernet on Air [36] L2 �S �S � �R � � -
PAST [37] L2 �S �S � � - � -
MLAG, MC-LAG, others [38] L2 � � � �R � � -
MOOSE [39] L2 - � � � � � -
MPA [40] L3 - - � - � � -
AMP [41] L3 - � � - � - -
MSTP [42], GOE [43], Viking [44] L2 �S �S � - � � -
SPB [45], TRILL [46], Shadow MACs [47] L2 - �R � - � � -

SPAIN [48] L2 �S �S �S - - � -

(3) FatPaths [This work] L2–L3 - - - - - - -

TABLE I: Comparison of routing schemes, focusing on their support for path
diversity. SP, NP: support for arbitrary shortest and non-minimal paths, respectively.
SM: A given scheme simultaneously enables minimal and non-minimal paths. MP:
support for multi-pathing (between two hosts). DP: support for disjoint paths. ALB:
support for adaptive load balancing. AT: compatible with an arbitrary topology. -,
�, �: A given scheme, respectively, offers a given feature, offers it in a limited way
(e.g., Monsoon [23] uses multi-pathing (ECMP) only between border and access routers),
and does not offer it. RA given feature is offered only for resilience (not performance).
SMinimal or non-minimal paths are offered only within spanning trees.

a high-performance transport design. We seamlessly combine
layered routing with several TCP enhancements [4] (such as
shallow buffers) and we use flowlet switching [12], a scheme
that enables very simple but powerful load balancing by send-
ing batches of packets over multiple layers (contribution #3).

We exhaustively compare FatPaths to other routing schemes
in Table I (contribution #4). FatPaths is the only scheme
that simultaneously (1) enables multi-pathing using both (2)
shortest and (3) non-shortest paths, (4) explicitly considers
disjoint paths, (5) offers adaptive load balancing, and (6) is
applicable across topologies. Table I focuses on path diversity,
because, as topologies lower their diameter and reduce link
count, path diversity – key to high-performance routing –
becomes a scarce resource demanding careful examination.

We conduct extensive, large-scale packet-level simulations
(contribution #5), and a comprehensive theoretical analysis
(contribution #6). We simulate topologies with up to ≈1
million endpoints. We motivate FatPaths in Figure 2. Slim
Fly and Xpander equipped with FatPaths ensure ≈15% higher
throughput and ≈2× lower latency than similar-cost fat trees.

We stress that FatPaths outperforms the bleeding-edge Clos
proposals based on per-packet load balancing (these schemes
account for packet-reordering) and novel transport mecha-
nisms, that achieve 3-4× smaller tail flow1 completion time
(FCT) than Clos based on ECMP [4], [49]. Consequently, our
work illustrates that low-diameter networks can continue to
claim an improvement in the cost-performance tradeoff against
the new, superior Clos baselines (contribution #7).

1In performance analyses, we use the term “flow”, which is equivalent to a “message”.
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Fig. 2: Example performance advantages of low-diameter topologies that use
FatPaths over fat trees equipped with NDP (very recent routing architecture by Handley
et al. [4]). Evaluation methodology is discussed in detail in § VII.

Towards the above goals, we contribute:

• A high-performance, simple, and robust routing architec-
ture, FatPaths, that enables modern low-diameter topolo-
gies such as Slim Fly to achieve unprecedented performance.

• A novel routing approach called layered routing that is a
key ingredient of FatPaths and facilitates using diversity of
non-minimal paths in modern low-diameter networks.

• The first detailed analysis of path diversity in five modern
low-diameter network topologies, and the identification of
the diversity of non-minimal paths as a key resource for
their high performance.

• A novel path diversity metric, Path Interference, that
captures bandwidth loss between specific pairs of routers.

• A comprehensive analysis of existing routing schemes in
terms of their support for path diversity.

• A theoretical analysis showing FatPaths’ advantages.
• Extensive, large-scale packet-level simulations (up to ≈one

million endpoints) to demonstrate the advantages of low-
diameter network topologies equipped with FatPaths over
very recent Clos designs, achieving 15% higher net through-
put at 2× lower latency for comparable cost.

II. NOTATION, BACKGROUND, CONCEPTS

We first outline basic concepts; Table II compiles the notation.

N
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w
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V,E Sets of vertices/edges (routers/links, V = {0, . . . , Nr − 1}).
N,Nr #endpoints and #routers in the network (Nr = |V |).
p, k′ #endpoints attached to a router, #channels to other routers.
D, d Network diameter and the average path length.

P
at

hs
(§

IV
) x ∈ V Different routers used in § IV (x ∈ {s, t, a, b, c, d}).

cl(A,B) Count of (at most l-hop) disjoint paths between router sets A, B.
cmin(s, t), lmin(s, t) Diversity and lenghts of minimal paths between routers s and t.
Iac,bd Path interference between pairs of routers a, b and c, d.

La
ye

rs
(§

V
) n The total number of layers in FatPaths routing.

σi A layer, defined by its forwarding function, i ∈ {1, . . . , n}.
ρ Fraction of edges used in routing.

TABLE II: The most important symbols used in this work.

A. Network Model
We model an interconnection network as an undirected graph
G = (V,E); V and E are sets of routers2 (|V | = Nr) and full-
duplex inter-router physical links. Endpoints are not modeled
explicitly. There are N endpoints, p endpoints are attached to
each router (concentration) and k′ channels from each router

2We abstract away HW details and use a term “router” for L2 switches and L3 routers.
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summarizes our work on the path diversity of low-diameter topologies. “Path diversity” intuitively means the number of edge-disjoint paths between router pairs (details in § IV).

to other routers (network radix). The total router radix is k =
p+ k′. The diameter is D while the average path length is d.

B. Topologies and Fair Topology Setup

We consider all recent low-diameter networks: Slim Fly
(SF) [50] (a variant with D = 2), Dragonfly (DF) [19] (the
“balanced” variant with D = 3), Jellyfish (JF) [10] (with
D = 3), Xpander (XP) [3] (with D ≤ 3), HyperX (Ham-
ming graph) (HX) [51] that generalizes Flattened Butterflies
(FBF) [52] with D = 3. We also use established three-stage
fat trees (FT3) [53] that are a variant of Clos [54]. Note that
we do not detail the considered topologies. This is because our
design does not rely on any specifics of these networks (i.e.,
FatPaths can be used in any topology, but from performance
perspective, it is most beneficial for low-diameter networks).

We use four classes of sizes N : small (N ≈ 1, 000), medium
(N ≈ 10, 000), large (N ≈ 100, 000), and huge (N ≈
1, 000, 000). We set p = k′

d (in the technical report, we show
that, assuming random uniform traffic, p = k′

d maximizes
throughput while minimizing congestion and network cost).
Third, we select network radix k′ and router count Nr so that,
for a fixed N , the compared topologies use similar amounts of
networking hardware and thus have similar construction costs.

Jellyfish – unlike other topologies – is “fully flexible”: There
is a JF instance for each combination of Nr and k′. Thus, to
fully test JF, for each other network X, we use an equivalent
JF (denoted as X-JF) with identical Nr, k′.

C. Traffic Patterns

We analyze recent works [50], [55]–[66] to select traffic pat-
terns that represent important HPC and datacenter workloads.
Denote a set of endpoint IDs {1, ..., N} as Ve. Formally, a
traffic pattern is a mapping from source endpoint IDs s ∈ Ve
to destination endpoints t(s) ∈ Ve. First, we select random
uniform (t(s) ∈ Ve u.a.r.,) and random permutation (t(s)
= πN (s), where πN is a permutation selected u.a.r.,) that
represent irregular workloads such as graph computations,
sparse linear algebra solvers, and adaptive mesh refinement
methods [67]. Second, we pick off-diagonals (t(s) = (s+ c)
mod N , for fixed c) and shuffle (t(s) = rotli(s) mod N ,
where the bitwise left rotation on i bits is denoted as rotli and
2i < N < 2i+1). They represent collective operations such as
MPI-all-to-all or MPI-all-gather [50], [67]. We also use sten-
cils, realistic traffic patterns common in HPC. We model
2D stencils as four off-diagonals at fixed offsets c ∈ {±1,
±1,±42, ±42}. For large simulations (N > 10, 000) we also
use offsets c ∈ {±1, ±1,±1337, ±1337} to reduce counts of
communicating endpoint pairs that sit on the same switches.
Finally, we use adversarial and worst-case traffic patterns. In
the former, we use a skewed off-diagonal with large offsets
(we make sure that it has many colliding paths). For the latter,
we use a pattern (detailed in § VI) that maximizes stress on
the interconnect individually for each topology.



III. FATPATHS ARCHITECTURE: OVERVIEW

We outline the FatPaths architecture in Figure 3. The key part,
layered routing, is summarized here and detailed in Section V.
For higher performance in TCP settings, FatPaths uses simple
and robust flowlet load balancing, “purified” high-performance
transport, and randomized workload mapping.

A. Layered Routing ¶
To encode minimal and non-minimal paths with commodity
HW, FatPaths divides all links into (not necessarily disjoint)
subsets called layers3. Routing within each layer uses shortest
paths; these paths are usually not shortest when considering all
network links. Different layers encode different paths between
each endpoint pair. The number of layers is minimized to
reduce hardware resources needed to deploy layers. Layers can
easily be implemented with commodity schemes, e.g., VLANs
or a simple partitioning of the address space.

B. Simple and Effective Load Balancing ·
For simple but robust load balancing, we use flowlet switch-
ing [12], [69], originally used to alleviate packet reordering
in TCP. A flowlet is a sequence of packets within one flow,
separated from other flowlets by sufficient time gaps, which
prevents packet reordering at the receiver. Flowlet switching
can provide a very simple load balancing: a router simply picks
a random path for each flowlet, without any probing for con-
gestion [5]. Such load balancing is powerful because flowlets
are elastic: their size changes automatically based on network
conditions. On high-latency and low-bandwidth paths, flowlets
are usually shorter as time gaps large enough to separate
two flowlets are more frequent. Then, low-latency and high-
bandwidth paths host longer flowlets as such time gaps appear
less often. Now, we propose to use flowlets in low-diameter
networks, to load balance FatPaths. We combine flowlets with
layered routing: flowlets are sent using different layers. The
key observation is that elasticity of flowlets automatically
ensures that such load balancing considers both static and
dynamic network properties (e.g., longer vs. shorter paths and
more vs. less congestion). Consider a pair of communicating
routers. As we show in § IV, virtually all router pairs in a low-
diameter network are connected with exactly one shortest part
but multiple non-minimal paths, possibly of different lengths.
A shortest path often has smallest congestion while longer
paths are more likely to be congested. Here, flowlet elasticity
ensures that larger flowlets are sent over shorter and less
congested paths. Shorter flowlets are then transmitted over
longer and usually more congested paths.

C. Purified Transport ¸
FatPaths’ transport layer incorporates the NDP [4] Clos
schemes to remove TCP/Ethernet performance issues in the
context of low-diameter non-Clos networks. First, if router
queues fill up, only packet payload is dropped; headers with
all the metadata are preserved and the receiver has full
information on the congestion in the network and can pull the

3In FatPaths, a “layer” is formally a subset of links. We use the term “layer” as our
concept is similar to “virtual layers” known from works on deadlock-freedom [68]

data from the sender at a rate dictated by the evolving network
conditions. Specifically, the receiver can request to change
a layer, if packets transmitted over this layer arrive without
payload, indicating congestion. Second, routers can prioritize
headers of packets that lost payload, and retransmitted packets.
Thus, congested flows finish quickly and head-of-line-blocking
is reduced. Third, senders transmit the first RTT at line rate
(no probing for available bandwidth). Finally, router queues
are shallow. The resulting transport layer has low latency and
high throughput, it meets demands of various traffic patterns,
and it can be implemented with existing network technology.

D. Randomized Workload Mapping ¹
We optionally assign communicating endpoints to routers
randomly. This is often done in HPC; details are in the report.
We stress that this scheme is even more beneficial in FatPaths
due to the low diameter of targeted networks.

IV. PATH DIVERSITY IN LOW-DIAMETER TOPOLOGIES

To develop FatPaths, we first need to understand the “nature”
of path diversity that FatPaths benefits from. For this, we first
show that low-diameter topologies exhibit congestion due to
conflicting flows even in mild traffic scenarios, and we derive
the minimum number of disjoint paths that eliminate flow
conflicts (§ IV-A). We then formalize the “path diversity”
notion (§ IV-B) to show that all low-diameter topologies have
few shortest but enough non-minimal paths to accommodate
flow collisions, an important type of flow conflicts (§ IV-C).
To the best of our knowledge, we provide the most extensive
analysis of path diversity in low-diameter networks so far (con-
sidering the number of path diversity metrics and topologies),
cf. Related Work. We summarize key insights; full data is in
the report (the link is on page 1).

A. How Much Path Diversity Do We Need?
FatPaths uses path diversity to avoid congestion due to con-
flicting flows. Consider two communicating pairs of endpoints.
The generated flows conflict when their paths collide (flows
use an identical path) or overlap (flows share some links),
see Figure 5. Collisions are caused by workload mapping,
when communicating endpoint pairs occupy the same router
pairs. Thus, collisions only depend on concentration p and
#routers Nr. Contrarily, overlaps depend on topology details
(i.e., connections between routers). Thus, overlaps capture how
well a topology can sustain a given workload.

To understand how much path diversity is needed to allevi-
ate flow conflicts, we analyze the impact of topology properties
(D, p, N ) and a traffic pattern on the number of colliding
paths, see Figure 4. For D > 1, the number of collisions
is at most three in most cases, especially when lowering D
(while increasing p). Importantly, this holds for the adversarial
4× oversubscribed patterns that stress the interconnect. For
D = 1, at least nine collisions occur for more than 1% of
router pairs, even in mild traffic patterns. While we do not
consider D = 1 in practical applications, we indicate that
global DF links form a complete graph, demanding high path
diversity at least with respect to the global links.
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Takeaway We need at least three disjoint paths per router pair
to handle colliding paths in considered workloads, assuming
random mapping. Now, we observe that there are at least as
many overlapping paths as colliding paths (as seen from a
simple counting argument: for each pair of colliding flows x
and y, any other flow in the network may potentially overlap
with x and y). Thus, the same holds for overlaps.
B. How Should We Measure Path Diversity?
To analyze if low-diameter topologies provide at least three
disjoint paths per router pair, we need to first formalize the
notion of “disjoint paths” and ”path diversity” in general. For
example, we must be able to distinguish between partially or
fully disjoint paths that may have different lengths. Thus, we
first define the count of disjoint paths (CDP), minimal and non-
minimal, between routers (§ IV-B1). These measures address
path collisions. Moreover, to analyze path overlaps, we define
two further measures: path interference (PI, § IV-B2) and total
network load (TNL, § IV-B3). We summarize each measure
and we provide all formal details for reproducibility; these
details can be omitted by readers only interested in intuition.
We use several measures because any single measure that we
tested cannot fully capture the rich concept of path diversity.

1) Count of Disjoint Paths (CDP)
We define the count of disjoint paths (CDP) between router
sets A,B ⊆ V at length l as the smallest number cl(A,B)
of edges that must be removed so that no path of length at
most l exists from any router in A to any router in B. To
compute cl(A,B), first define the l-step neighborhood hl(A)
of a router set A as “a set of routers at l hops away from A”:

h(A) = {t ∈ V : ∃s∈A {s, t} ∈ E} (“routers attached to A”)

hl(A) = h(· · ·h(︸ ︷︷ ︸
l times

A) · · · ) (“l-step neighborhood of A”).

Now, the condition that no path of length at most l exists
between any router in A to any router in B is hl(A)∩B = ∅.
To derive the values of cl(A,B), we use a variant of the Ford-
Fulkerson algorithm [70] (with various pruning heuristics) that
removes edges in paths between designated routers in A and
B (at various distances l) and verifies whether hl(A)∩B = ∅.
We are most often interested in pairs of designated routers s
and t, and we use A = {s}, B = {t}.

Minimal paths are vital in congestion reduction as they
use fewest resources for each flow. We derive the distribution
of minimal path lengths lmin and counts cmin. Intuitively, lmin

describes (statistically) distances between any router pairs
while cmin provides their respective diversities. We have:

lmin(s, t) = argmin
i∈N

{t ∈ hi({s})} (“minimal path lengths”)

cmin(s, t) = cl({s}, {t}) with l = lmin(s, t) (“minimal path counts”)

Note that the diameter D equals maxs,t lmin(s, t).
To analyze non-minimal paths, we reuse the count of dis-

joint paths CDP cl(A,B) of random router pairs s ∈ A, t ∈ B,
but with path lengths l larger than lmin(s, t) (l > lmin(s, t)).
Here, we are interested in distributions of counts of non-
minimal paths for fixed non-minimal distances l.

2) Path Interference (PI)
With Path Interference (PI), we want to quantify path overlaps.
This is challenging because overlaps depend on the details
of the structure of each topology as well as on workload
mappings. Thus, a PI definition must be local in that it should
consider all router pairs that may possibly communicate. Con-
sider two router pairs a, b and c, d where a communicates with
b and c communicates with d. Now, paths between these two
pairs interfere if their total count of disjoint paths (at a given
distance l), cl({a, c}, {b, d}), is lower than the sum of individ-
ual counts of disjoint paths (at l): cl({a}, {b})+ cl({c}, {d}).
We denote path interference with I lac,bd and define it as

I lac,bd = cl({a, c}, {b}) + cl({a, c}, {d})− cl({a, c}, {b, d})

Path interference captures and quantifies the fact that, if a
and b communicate and c and d communicate and the flows
between these two pairs use paths that are not fully disjoint
(due to, e.g., not ideal routing), then the available bandwidth
between any of these two pairs of routers is reduced.

3) Total Network Load (TNL)
TNL is a simple upper bound on the number of flows that a
network can maintain without congestion (i.e., without flow
conflicts). There are k′Nr links in a topology. Now, a flow
occupying a path of length l “consumes” l links. Thus, with
the average path length of d, TNL is defined as k′Nr

d , because
#flows ≤ k′Nr

d . Thus, TNL constitutes the maximum supply
of path diversity offered by a specific topology.
Takeaway We suggest to use several measures to analyze
the rich nature of path diversity, e.g., the count of minimal
and non-minimal paths (for collisions), and path interference
as well as the total network load (for overlaps).
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Topology parameters

d′ D k′ Nr N

clique 2 1 100 101 10100
SF 3 2 29 722 10108
XP 3 3 32 1056 16896
HX 3 3 30 1331 13310
DF 4 3 23 2064 16512
FT3 4 4 18 1620 11664

Default topology variant
d′ CDP (mean) CDP (1% tail) PI (mean) PI (99.9% tail)

clique 2 100% 100% 2% 2%
SF 3 89% 10% 26% 79%
XP 3 49% 34% 20% 41%
HX 3 25% 10% 9% 67%
DF 4 25% 13% 8% 74%
FT3 4 100% 100% 0 0

Equivalent Jellyfish
d′ CDP (mean) CDP (1% tail) PI (mean) PI (99.9% tail)

SF-JF 3 56% 38% 23% 45%
XP-JF 3 51% 34% 21% 41%
HX-JF 3 50% 23% 17% 37%
DF-JF 4 87% 78% 13% 26%
FT3-JF 4 96% 90% 5% 14%

TABLE III: Counts of disjoint non-minimal paths CDP
(cd′ (A,B)) and path interference PI
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C. Do We Have Enough Path Diversity?
We now use our measures for path diversity analysis.

1) Analysis of Minimal Paths
Selected results for minimal paths are in Figure 6. In DF and
SF, most routers are connected with one minimal path. In XP,
more than 30% of routers are connected with one minimal
path. In JF, the results are more leveled out, but pairs of routers
with one shortest part in-between still form large fractions.
FT3 and HX show the highest diversity, with very few unique
minimal paths, while the matching JFs have lower diversities.
The results match the structure of each topology (e.g., one can
distinguish intra- and inter-pod paths in FT3).
Takeaway In all the considered low-diameter topologies,
shortest paths fall short: at least a large fraction of router pairs
are connected with only one shortest path.

2) Analysis of Non-Minimal Paths
For non-minimal paths, we first summarize the results in
Table III. We report counts of disjoint paths as fractions
of router radix k′ to make these counts radix-invariant. For
example, the mean CDP of 89% in SF means that 89% of
router links host disjoint paths. In general, all deterministic
topologies provide higher disjoint path diversity than their
corresponding JFs, but there are specific router pairs with
lower diversity that lead to undesired tail behavior. JFs have
more predictable tail behavior due to the Gaussian distribution
of cl(A,B). A closer analysis of this distribution (Figure 7)
reveals details about each topology. For example, for HX,
router pairs can clearly be separated into classes sharing zero,
one, or two coordinate values, corresponding to the HX array
structure. Another example is SF, where lower cl(A,B) are
related to pairs connected with an edge while higher cl(A,B)
in DF are related to pairs in the same group or pairs connected
with specific sequences of local and global links. We describe
all remaining data in the extended report.
Takeaway Overall, considered topologies have 3 disjoint
“almost”-minimal (one hop longer) paths per router pair.

3) Analysis of Path Interference
Next, we sample router pairs u.a.r. and derive full path inter-
ference distributions; they all follow the Gaussian distribution.
Selected results are in Figure 8 (we omit XP and XP-JF; both
are nearly identical to SF-JF) As the combination space is
very large, most samples fall into a common case, where PI
is small. We thus provide full data in the report and focus on
the extreme tail of the distribution (we show both mean and
tail), see Table III. We use radix-invariant PI values (as for
CDP) at a distance d′ selected to ensure that the 99.9% tail
of collisions cd′(A,B) is at least 3. Thus, we analyze PI in
cases where demand from a workload outgrows the “supply
of path diversity” from a network (three disjoint paths per
router pair). All topologies except for DF achieve negligible
PI for d′ = 4, but the diameter-2 topologies do experience PI



at d′ = 3. SF shows the lowest PI in general, but has (few)
high-interference outliers. In general, random JFs have higher
average PI but less PI in tails, while deterministic topologies
tend to perform better on average with worse tails.
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D. Final Takeaways on Path Diversity
We show a fundamental tradeoff between path length and
diversity. High-diameter topologies (e.g., FT) have high path
diversity, even on minimal paths. Yet, due to longer paths,
they need more links for an equivalent N and performance.
Low-diameter topologies fall short of shortest paths, but do
provide enough diversity of non-minimal paths, requiring non-
minimal routing. Yet, this may reduce the cost advantage
of low-diameter networks with adversarial workloads that
use many non-minimal paths, consuming additional links.
Workload randomization in FatPaths suffices to avoid this
effect. Overall, low-diameter topologies host enough path
diversity for alleviating flow conflicts. We now show how
to effectively use this diversity in FatPaths.

V. FATPATHS: DESIGN AND IMPLEMENTATION

FatPaths is a high-performance, simple, and robust routing
architecture that uses rich path diversity in low-diameter
topologies to enhance Ethernet stacks in data centers and
supercomputers. FatPaths aims to accelerate both datacenter
and HPC workloads. We outlined FatPaths in § III. Here, we
detail the layered routing scheme that is capable of encoding
the rich diversity of both minimal and non-minimal paths, and
can be implemented with commodity Ethernet hardware.
A. Routing Model
We assume simple destination-based routing, compatible with
any relevant technology, including source-based systems like
NDP. To compute the output port j ∈ {1, . . . , k′} in a
router s ∈ V for a packet addressed to a router t ∈ V , and
simultaneously the ID of the next-hop router s′ ∈ V , a routing
function (j, s′) = σ(s, t) is evaluated. By iteratively applying
σ with fixed t we eventually reach s′ = t and finish. The
function σ must ensure no loops on any path.

B. Layered Routing in FatPaths
We use n routing functions σ1, . . . , σn for n layers. Each
router uses σi for a packet with a layer tag i attached.
The layer tags are chosen on the endpoint by the adaptivity
algorithm. All layers but one accommodate a fraction of links,
maintaining non-minimal paths. One layer (associated with σ1)
uses all links to host minimal paths. The fraction of links
in one layer is controlled by ρ ∈ [0; 1]. Now, the interplay
between ρ and n is important. More layers (higher n) that are
sparse (lower ρ) give more paths that are long, giving more
path diversity, but also more wasted bandwidth (as paths are
long). More layers that are dense reduce wasted bandwidth
but also give fewer disjoint paths. Still, this may be enough as
we need three paths per router pair. One ideally needs more
dense layers or fewer sparse layers. Thus, an important part
of deploying FatPaths is selecting the best ρ and n for a given
network. To facilitate implementation of FatPaths, the project
repository contains layer configurations (ρ, n) that ensure
high-performance routing for used topologies. We analyze
performance of different ρ and n in § VI and § VII.

An overview of layer construction is in Listing 1. We start
with one layer with all links, maintaining shortest paths. We
use n− 1 random permutations of vertices to generate n− 1
random layers. Each such layer is a subset E′ ⊂ E with bρ ·
|E|c edges sampled u.a.r.. E′ may disconnect the network, but
for the used values of ρ, this is unlikely and a small number of
attempts delivers a connected network. Note that the algorithm
for constructing layers is general and can be used with any
topology; cf. § II-B and Section VIII.

1 L = {E} //Init a set of layers L; we start with E that corresponds to σ1
2 P = {π1(V ), ..., πn−1(V )} //Generate n− 1 random permutations of vertices
3 foreach π ∈ P do: //One iteration derives one layer associated with some σi
4 E′ = {}; foreach (u, v) ∈ E do:
5 //Below, a condition "π(u) <π(v)" ensures layer’s acyclicity
6 //Below, a call to rnd(0,1) returns a random number ∈ [0; 1)
7 if(π(u) < π(v) and rnd(0,1) < ρ) then:
8 E′=E′ ∪ (u, v) //Add a sampled edge to the layer
9 L = L ∪ {E′}

Listing 1: Overview of the algorithm for constructing routing layers.

We also use a variant of the above scheme in which, instead
of randomized edge picking while creating paths within layers,
we use a simple heuristic that minimizes path interference.
For each router pair, we pick a set of paths with minimized
overlap with paths already placed in any of the layers. Most
importantly, while computing paths, we prefer paths that are
one hop longer than minimal ones, using the insights from the
path diversity analysis (§ IV).

The σi functions are deployed using forwarding tables with
minimum paths between every two routers s, t within layer σi.
For each router s, we populate the entry for s, t in σi with a
port that corresponds to the router si that is the first step on
a path from s to t. We compute all such paths and choose a
random first step port, if there are multiple options.

We propose two schemes to implement layers. First, a
simple way to achieve separation is partitioning of the ad-
dress space. This requires no hardware support, except for
sufficiently long addresses. One inserts the layer tag anywhere
in the address, the resulting forwarding tables are then simply



concatenated. The software stack must support multiple ad-
dresses per interface (deployed in Linux since v2.6.12, 2005).
Next, similarly to schemes like SPAIN [48] or PAST [37],
one can use VLANs [71] that are a part of the L2 forwarding
tuple and provide full separation. Still, the number of available
VLANs is hardware limited, and FatPaths does not require
separated queues per layer. Finally, L2/Ethernet addressing
can be done with exact match tables; they should only support
masking out a fixed field in the address before lookup, which
could be achieved with, for example, P4 [72].

C. Fault-Tolerance
Fault-tolerance in FatPaths is based on preprovisioning mul-
tiple paths within different layers. For major (infrequent)
topology updates, we recompute layers [48]. Contrarily, when
a failure in some layer is detected, FatPaths redirects the
affected flows to a different layer. We rely on established
fault tolerance schemes [4], [5], [35], [48], [73] for the exact
mechanisms of failure detection. Traffic redirection relies on
flowlets [5], as with congestion: the elasticity of flowlets
automatically prevents data from using an unavailable path.

VI. THEORETICAL ANALYSIS

We first conduct a theoretical analysis. The main goal is
to illustrate that layered routing in FatPaths enables higher
throughput than SPAIN [48], PAST [37], [73], and k-shortest
paths [10], three recent schemes that support (1) multi-pathing
and (2) disjoint paths (as identified in Table I). SPAIN uses a
set of spanning trees, using greedy coloring to minimize their
number; one tree is one layer. Then, paths between endpoints
are mapped to the trees, maximizing path disjointness. PAST
uses one spanning tree per host, aiming at distributing the trees
uniformly over available physical links. k-shortest paths [10]
spreads traffic over multiple shortest paths (if available) be-
tween endpoints.

A. Analysis of Number of Layers
Both SPAIN and PAST use trees as layers. This brings many
drawbacks, as each SPAIN layer can use at most Nr−1 links,
while the topology contains Nrk

′

2 links. Thus, at least O(k′)
layers are required to cover all minimal paths, and SPAIN
requires even O(Nr) on many topologies. Moreover, PAST
always needs O(N) trees by its design. By using layers that
are arbitrary DAGs and contain a large, constant fraction of
links, FatPaths provides sufficient path diversity with a low,
O(1) number of layers.

B. Analysis of Throughput
We also analyze maximum achievable throughput (MAT) in
routing schemes. MAT is defined as the maximum value T for
which there exists a feasible multicommodity flow (MCF) that
routes a flow T (s, t) ·T between all router pairs s and t, satis-
fying link capacity and flow conservation constraints. T (s, t)
specifies traffic demand; it is an amount of requested flow from
s to t (more details are provided by Jyothi et al. [74]). We
test all considered topologies, topology sizes, traffic patterns
and intensities (fraction of communicating endpoint pairs).
We consider two FatPaths variants from § V-B. We use

TopoBench, a throughput evaluation tool [74] that uses linear
programming (LP) to derive T . We extended TopoBench’s
LP formulation of MCF to include layered routing. Most
importantly, instead of one network for accommodating MCF,
we use n networks (that represent layers) to allocate flows.
We also introduce constraints that prevent one flow from being
allocated over multiple layers.

Selected results are in Figure 9. We focus on a recently
proposed worst-case traffic pattern which maximizes stress on
the interconnect while hampering effective routing [74]. This
pattern is generated individually for each topology; it uses
maximum weighted matching algorithms to find a pairing of
endpoints that maximizes average flow path length, using both
elephant and small flows. As expected, SPAIN – a scheme
developed specifically for Clos – delivers more performance
on fat trees. Yet, it uses up to O(Nr) layers. The layered
routing that minimizes path interference generally outperforms
SPAIN on other networks (we tuned SPAIN to perform as
well as possible on low-diameter topologies). Finally, also as
expected, our heuristic that minimizes path overlap delivers
more speedup than simple random edge picking (we only plot
the former for more clarity).

Tested schemes use equally many layers (n) to fix the
amount of HW resources. Increasing n accelerates all com-
parison targets but also increases counts of forwarding entries
in routing tables. Here, SPAIN and PAST become faster on
fat trees and approach FatPaths, but they use up to O(Nr)
layers. FatPaths maintains its advantages for different traffic
intensities. As expected, our heuristic that minimizes path
overlap outperforms a simple random edge picking.
Takeaway FatPaths layered routing outperforms competitive
schemes in the used count of layers (and thus the amount of
needed hardware resources) and achieved throughput.

VII. SIMULATIONS

We now illustrate how low-diameter topologies equipped with
FatPaths outperform novel high-performance fat tree designs.

A. Methodology, Parameters, and Baselines
We first discuss parameters, methodology, and baselines.

1) Topologies and Traffic Patterns
We use all topologies specified in § II-B: SF, XP, JF, HX, DF,
and FT, in their most beneficial variants (e.g., the “balanced”
Dragonfly [19]). We fix the network size N (N varies by
up to ≈10% as there are limited numbers of configurations
of each network). SF represents a recent family of diameter-2
topologies such as Multi-Layer Full-Mesh [60] and Two-Level
Orthogonal Fat-Trees [13], [75]. To achieve similar costs and
N we use 2× oversubscribed fat trees.

We use the traffic patterns discussed in § II, in both
randomized and skewed non-randomized variants.

2) Cost Model for Using Topologies of Comparable Cost
We select specific topologies such that they have comparable
construction cost. For this, we use the established cost models
from past works [19], [50], [52]. Overall, for a selected
“network size category” (N ∈ {≈ 1k,≈ 10k,≈ 100k,≈ 1M},
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cf. § II-B), we search for specific topology configurations with
minimal differences in their sizes N . The total cost of such
configurations is derived based on existing router and cable
cost models [19], [50], [52]. These models use linear cost
functions for both cables and routers parametrized with prices
of modern equipment (e.g., Mellanox switches and cables
listed on ColfaxDirect http://www.colfaxdirect.com). In
the following analysis, we focus on N ≈ 10, 000. The model
distinguishes between fiber and copper cables, with the former
being used for longer router-router links (e.g., links between
groups in DF or SF) and the latter forming short router-router
connections (e.g., intra-group links in DF or SF) and endpoint
connections. As used specific topology configurations vary
in their sizes (because there is always a limited number of
configurations of each used topology), to maximize fairness,
the final prices are normalized per single endpoint. An example
cost model is in Figure 10. One can distinguish effects caused
by details of each specific topology, for example lower cable
costs in DF because of relatively few expensive global inter-
group connections. Variations in final costs are caused by
a limited number of topology configurations combined with
limited counts of ports in available switches.

3) Routing and Transport Schemes

We use flow-based non-adaptive ECMP as the routing per-
formance lower bound. Low-diameter topologies use FatPaths
while fat trees use NDP with all optimizations [4], additionally
enhanced with LetFlow [5], a recent scheme that uses flowlet
switching for load balancing in fat trees. We also compare
to a fat tree system using NDP with per-packet congestion-
oblivious load balancing as introduced by Handley et al. [4].
For FatPaths, we vary ρ and n to account for different
layer configurations, including ρ = 1 (minimal paths only).
Finally, we consider simple TCP, MPTCP, and DCTCP with
ECN [76]–[78], showing that FatPaths can accelerate not only
bare Ethernet systems but also cloud environments that usually
use full TCP stacks [8], [79].

4) Flows, Messages, Metrics

We vary flow sizes (and thus message sizes as a flow is
equivalent to a message) from 32 KiB to 2 MiB. We use a
Poisson distributed flow arrival rate.

We use (1) flow completion time (FCT), which also repre-
sents (2) throughput per flow TPF = flow size

FCT . We also consider
(3) total time to complete a tested workload 4.

5) Simulation Infrastructure and Methodology

We use the OMNeT++ [80], [81] parallel discrete event simu-
lator with the INET model package [82] and the htsim packet-
level simulator with the NDP reference implementation [4].
OMNeT++ enables detailed simulations of full Ethernet/TCP
networking stack, with all overheads coming from protocols
such as ARP. We use htsim as its simplified structure enables
simulations of networks of much larger scales. We extend both
simulators with any required schemes, such as flowlets, ECMP,
layered routing, workload randomization. In LetFlow, we use
precise timestamps to detect flowlets, with a low gap time of
50µs to reflect the low-latency network. As INET does not
model hardware or software latency, we add a 1µs fixed delay
to each link. All our code is available online.

6) Gathering Results and Shown Data

We evaluate each combination of topology and routing
method. As each such simulation contains thousands of flows
with randomized source, destination, size, and start time, we
only record per-flow quantities; this suffices for statistical
significance. We simulate a fixed number of flows starting in a
fixed time window, and drop the results from the first window
half for warmup. We summarize the resulting distributions
with arithmetic means of the underlying time measurements,
or percentiles of distributions.

When some variants or parameters are omitted (e.g., we only
show SF-JF to cover Jellyfish), this means that the shown data
is representative; the rest is in the full report.

B. Performance Analysis: HPC Systems

First, we analyze FatPaths with Ethernet but without the
TCP transport. This setting represents HPC systems that use
Ethernet for its low cost, but avoid TCP due to its performance
issues. We use htsim that can deliver such a setting.

4When reporting some runtimes (cf. Figures 14-17), we use a relative speedup over the
plain ECMP baseline for clarity of presentation (as each plot contains runtimes for
flows of different sizes, some absolute runtime data becomes hard to read).



1) Low-Diameter Networks + FatPaths Beat Fat Trees
We analyze Figure 2 (page 2, randomized workload) and Fig-
ure 11 (skewed non-randomized workload). In each case, low-
diameter topologies outperform similar-cost fat trees, with up
to 2× and 4× improvement in throughput for non-randomized
and randomized workload, respectively. Both fat tree and low-
diameter networks use similar load balancing based on flowlet
switching and purified transport. Thus, the advantage of low-
diameter networks is their low diameter combined with the
ability of FatPaths to effectively use the diversity of “almost”
minimal paths. Answering one of two main questions from § I,
we conclude that FatPaths enables low-diameter topologies to
outperform state-of-the-art fat trees.

2) FatPaths Uses “Fat” Non-Minimal Path Diversity Well
We now focus on skewed non-randomized workloads, see
Figure 11. Non-minimal balanced routing over FatPaths layers,
in each low-diameter topology, leads to an up to 30× FCT
improvement over minimal routing (i.e., “circles on topology X
outperform triangles on X”). The exception is HyperX, due to
its higher minimal path diversity (cf. Figure 6). Thus, FatPaths
effectively leverages the non-minimal path diversity.
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Fig. 11: Performance analysis of a skewed adversarial traffic for similar-cost networks.

3) What Layer Setup Is Best?
We also study the impact of the number n and the sparsity ρ of
layers in FatPaths on performance and collision resolution; see
Figure 12 (layers are computed with random edge sampling,
cf. Listing 1). Nine layers (one complete and eight sparsified)
suffice for three disjoint paths per router pair, resolving most
collisions for SF and DF (other networks behave similarly). To
understand which n resolves collisions on global channels in
DF, we use a complete graph. Here, more layers are needed,
since higher-multiplicity path collisions appear (cf. the 99%
tail). Moreover, when more layers can be used, a higher ρ
is better (cf. FCT for n = 64). This reduces the maximum
achievable path diversity, but also keeps more links available
for alternative routes within each layer, increasing chances of
choosing disjoint paths. It also increases the count of minimal
paths in use across all entries, reducing total network load.

4) FatPaths Scales to Large Networks
We also simulate large-scale SF, DF, and JF for N = 80, 000
and N = 1, 000, 000 (other topologies lead to excessive mem-
ory use in the simulator). Figure 13 shows example results.
A slight mean throughput decrease compared to the smaller
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Fig. 12: Effects of the number of layers n and the amount of remaining edges ρ on
FatPaths, on long flows (size 1MiB); N ≈ 10, 000 (htsim).

instances is noticeable, but latency and tail FCTs remain
tightly bounded. The comparatively bad tail performance of
DF is due to path overlap on the global links, where the
adaptivity mechanism must handle many overlapping flows.
Our analysis also indicates that flows on SF tend to finish
later that on SF-JF.
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Fig. 13: FatPaths on large networks; FCT histograms for flow size 1MiB (htsim).

C. Performance Analysis: Cloud Systems
We also analyze FatPaths on networks with Ethernet and full
TCP stack. This represents TCP data centers often used as
cloud infrastructure [79]. Here, we use OMNeT++/INET.

We compare FatPaths to ECMP (traditional static load
balancing) and LetFlow (recent adaptive load balancing), see
Figure 14. The number of layers was limited to n = 4
to keep routing tables small; as they are precomputed for
all routers and loaded into the simulation in a configuration
file (this turned out to be a major performance and memory
concern). Most observations follow those from § VII-B, we
only summarize TCP-related insights.

LetFlow improves tail and short flow FCTs at the cost of
long flow throughput, compared to ECMP. Both are ineffective
on SF and DF which have little minimal-path diversity. Non-
minimal routing in FatPaths and ρ = 0.6 fixes it, even with
only n = 4 layers. On other topologies, even with minimal
paths (ρ = 1), FatPaths adaptivity outperforms ECMP and
LetFlow. A detailed analysis into the FCT distributions in
Figure 15 shows that with minimal routing and low minimal-
path diversity, there are many flows with low performance
due to path collisions and overlap, although they do not
vastly affect the mean throughput. FatPaths fully resolves this
problem. Short-flow FCTs are dominated by TCP flow control
effects, which are not affected much by routing changes.

We also analyze in detail performance effects in flows of
different sizes vs. different layer configurations. The findings
match those in the “bare Ethernet” simulations in § VII-B.
For example, for large flows (1MiB), with n = 4, the higher ρ
is, the faster flows finish. The largest impact of non-minimal
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routing is for DF and SF, with a 2× improvement in tail FCT;
small improvements on tail FCT are seen in all topologies.

We also observe a cost in long flow throughput due to
the higher total network load with non-minimal paths. To
understand this effect better, Figure 16 shows the impact of
the fraction of remaining edges ρ in each layer, and therefore
the amount of non-minimal paths, on FCT for long flows. The
optimum choice of ρ matches the findings from the Ethernet
simulations in § VII-B for SF and DF.
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The largest impact of non-minimal routing is for DF and SF, with a 2× improvement
in tail FCT; small improvements on tail FCT are seen in all topologies, but there are no
throughput improvements on networks with higher minimal-path diversity.

Besides FCT means/tails, we also consider a full completion
time of a stencil workload that is representative of an HPC
application, in which processes conduct local computation,
communicate, and synchronize with a barrier; see Figure 17.
Results follow the same performance patterns as others. An
interesting outcome is JF: high values for LetFlow are caused
by packet loss and do not affect the mean/99% tail (cf. Fig-
ure 14), only the total completion runtime. Overall, FatPaths
ensures high speedups of completion times, e.g., more than
2.5× and nearly 2× faster completion times on SF and XP,
for flows of the sizes of 200K and 2M bytes, respectively.

FatPaths also enables influencing communication latency:
Specifically, whenever lowest latency is prioritized, one can
solely use a layer that provides all shortest paths. This en-
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Fig. 17: FatPaths on TCP compared to ECMP and LetFlow (stencil + barrier).

sures low latencies matching those achieved with shortest-path
routing in respective networks [50]. For more throughput, one
can use any layer configuration offering diversity of almost-
minimal paths. Here, any (marginal) latency overheads from
the additional router-router hop are caused by the properties
of the underlying topology, not the routing protocol.

D. Performance Analysis: Routing vs. Topology

How much performance gains in FatPaths come from its rout-
ing vs. from simply the benefits of low diameter [50]? Here,
we extensively analyzed various design choices in FatPaths;
full description is in the extended report. The takeaway is that
simple past routing schemes make low-diameter topologies
worse (≈2× and more in FCT) than recent fat tree designs.
This is because low diameter must be enhanced with effective
tacking of flow conflicts and other detrimental effects, which
is addressed by multipathing in FatPaths.

E. Performance Analysis: Impact from Partial Design Choices

We also analyze speedups from specific parts of FatPaths,
e.g., only the purified transport, flowlet load balancing, layered
routing, or non-minimal paths. While many of these elements
can solely accelerate workloads in low-diameter networks, it
is the combination of effective non-minimal multipath routing,
load balancing, and transport that gives superior performance.
For example, Figure 11 shows that fat trees with NDP out-
perform low-diameter networks that do not use multipathing
based on non-minimal paths (the “NDP” baseline).

F. Final Takeaway on Performance

A high-performance routing architecture for low-diameter net-
works should expose and use diversity of almost minimal
paths (because they are numerous, as opposed to minimal
paths). FatPaths enables this, achieving speedups on both HPC
systems or cloud infrastructure.

VIII. DISCUSSION

A. Integration with Other Protocols for Wide Applicability

We also integrate FatPaths with Data Center TCP
(DCTCP) [76] and we discuss integration with RDMA [7]
(iWARP [83], RoCE [6]), Infiniband [84], MPTCP [85], and
we discuss non-minimal ECMP on FatPaths. Details are in
the full report.
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B. Integration with Performance Measures and Bounds
For deeper understanding, we intuitively connect our path di-
versity measures to established network performance measures
and bounds (e.g., bisection bandwidth (BB) or throughput
proportionality [66]). Figure 18 shows how various measures
vary when increasing the network load expressed by count
of communicating router pairs x. Values of measures are
expressed with numbers of disjoint paths P . In this expression,
bandwidth measures are counts of disjoint paths between two
router sets; these numbers must match corresponding counts
in the original measure definitions (e.g., path count associated
with BB must equal the BB cut size).

C. FatPaths Limitations
To facilitate applicability of our work in real-world installa-
tions, we discuss its limitations. First, FatPaths addresses low-
diameter topologies, being less beneficial on high-diameter
older interconnects such as torus, because such networks
provide multiple (almost or completely disjoint) shortest paths
between most router pairs. FatPaths also inherits some NDP’s
limitations, namely interrupt throttling. As in NDP, this is fixed
by dedicating one CPU core to polling for incoming packets.

IX. RELATED WORK

FatPaths touches on various areas. We now briefly discuss
related works, excluding the ones covered in past sections.

Our work targets modern low-diameter topologies such as
Slim Fly [3], [10], [19], [50], [51]. FatPaths enables these
networks to achieve low latency and high throughput with
various workloads, outperforming similar-cost fat trees.

We survey routing schemes in Table I and in § VI. FatPaths
is the first to offer generic and adaptive multi-pathing using
both shortest and non-shortest disjoint paths.

Adaptive load balancing can be implemented using
flows [11], [25], [86]–[92], flowcells (fixed-sized packet se-
ries) [93], and packets [4], [21], [24], [26], [85], [94], [94],
[95]. We choose an intermediate level, flowlets (variable-
size packet series) [5], [12], [96]–[98]. FatPaths is the first
architecture to use load balancing based on flowlets for low-
diameter networks.

We do not compete with congestion or flow control
schemes; we use them for more performance. FatPaths can
use such schemes in its design [4], [76], [85], [99]–[111].

Many works on multi-pathing exist [25]–[27], [48], [66],
[90], [95], [112], [112]–[121]. Our work differs from them all:
it focuses on path diversity in low-diameter topologies and it
uses both minimal and non-minimal paths.

Some works analyze various properties of low-diameter
topologies, for example path length, throughput, and band-
width [3], [10], [60], [66], [74], [122]–[132]. FatPaths offers
the most extensive analysis on path diversity so far.

Some schemes complement FatPaths. For example,
XPath [73] and source routing [133] deliver means to encode
different paths. They could be used together with FatPaths
by encoding the rich path diversity exposed by FatPaths.

Finally, FatPaths could be used to accelerate
communication-efficient workloads that benefit from
low-diameter properties of Slim Fly and other modern
topologies, including deep learning [134]–[139], linear
algebra computations [140]–[143], graph processing [122],
[144]–[153], and other distributed workloads [7], [154]–[158]
and algorithms [159]–[162]. One could possibly use some
elements of the FatPaths routing for the associated problems
in the on-chip networking [122], [163].

X. CONCLUSION

We introduce FatPaths: a simple, high-performance, and
robust routing architecture for a modern family of low-
diameter topologies. FatPaths enables such networks to
achieve unprecedented performance by exposing the rich
(“fat”) diversity of minimal and non-minimal paths. We for-
malize and extensively analyze this path diversity and show
that, even though the considered topologies fall short of
shortest paths, they can accommodate three “almost” minimal
disjoint paths, which is enough to avoid congestion in many
traffic scenarios. Our path diversity metrics and methodology
can be used to analyze other properties of networks.

The key part of FatPaths, layered routing, enables har-
nessing diversity of both shortest and non-minimal paths.
Supported with simple yet effective flowlet load balancing, and
high-performance transport in TCP settings, FatPaths achieves
low-latency and high-bandwidth, outperforming very recent
fat tree architectures [4] by 15% in net throughput at 2×
in latency, for comparable cost. Even though we focus on
Ethernet, most of these schemes – for example adaptive flowlet
load balancing and layers – are generic and they could enhance
technologies such as RDMA (RoCE, iWARP) and Infiniband.

We deliver simulations with up to one million endpoints.
Our code is online and can be used to foster novel research
on next-generation large-scale compute centers.

FatPaths uses Ethernet for maximum versatility. We argue
that it can accelerate both HPC clusters or supercomputers as
well as data centers and other types of cloud infrastructure.
FatPaths will help to bring the areas of HPC networks and
cloud computing closer, fostering technology transfer and
facilitating exchange of ideas.
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