
Thoughts Dependencies
between thoughts

Legend Abandon
thought Prompt Thought Score Thought state

+ scoreThought stateExternal entityGray block Module of the
framework

Blue block Thought state
+ operations

Evaluation

.....

.....

.....

1 4 ... 4 3
16 numbers

8 2 ... 1 3
16 numbers

1 1 ... 4 2
16 numbers

Sort

Partial Partial Partial

k = 3
Generate(k)

Score

Sort
Generate(k)

1 2 ... 7 8
16 numbers

1 1 ... 5 7
16 numbers

Partial Partial

1 2 ... 4 8
16 numbers
Partial

1 2 ... 7 8
16 numbers

1 1 ... 5 7
16 numbers

Partial Partial

1 2 ... 4 8
16 numbers
Partial

78% 86%

KeepBest(N)
Keep the best
scored thoughts

N = 1

Merge 32 elements
Aggregate(k)

k = 10

k = 3

Assess how well each sequence is sorted

64 numbers

1 4 6 2 4 ... 9 8 7 5 4
Splitting into four
16-element chunks

Generate(k) k = 1Input

Sort
Generate(k)

k = 3

100%

1 2 ... 4 8
16 numbers
Partial

100%

1 3 ... 4 6
16 numbers
Partial

97%

.....

Details of the Highlighted Part of the GoO

Here, N=1 means
that we maintain

a single best sorting
outcome out of the

three input ones.

Here, k=10 means
that we try 10 different
aggregations of the two
input 16-element subarrays.

Example Prompts for Sorting

A prompt used by
Aggregate(t1,t2)+Repeat(k=3)+KeepBest(N=1)

<Instruction> Merge the following 2 sorted lists of length {length1} each, into
one sorted list of length {length2} using a merge sort style approach. Only output
the final merged list without any additional text or thoughts!
</Instruction>

<Approach>
To merge the two lists in a merge-sort style approach, follow these steps:
1. Compare the first element of both lists.
2. Append the smaller element to the merged list and move to the next element in
the list from which the smaller element came.
3. Repeat steps 1 and 2 until one of the lists is empty.
4. Append the remaining elements of the non-empty list to the merged list.
</Approach>

Merge the following two lists into one sorted list:
1: {input1}
2: {input2}

Merged list:

The input
thoughts t1, t2

3

OperationKeepBestKAggregateASortSGenerateG

Input

Output

Input

Output Output

Input

Output

Input

Input-Output (IO) CoT-SC Tree of Thoughts (ToT) Graph of Thoughts (GoT)

Selecting
a chain with

the best score
Selecting a

path with the
best final score

Abandon a chain Key novelty (beyond ToT):
Arbitrary graph-based thought
transformations

Refining

Aggregating
thoughts

Aggregating
chains

Graph of Thoughts in the Prompting Landscape

Output

Input

CoT

Generate(t,k=1)+Repeat(k=4)A prompt used by

<Instruction> Sort the following list of numbers in ascending order. Output
only the sorted list of numbers, no additional text.
</Instruction>

<Example>
Input: [3, 7, 0, 2, 8, 1, 2, 2, 2, 4, 7, 8, 5, 5, 3, 9, 4, 3, 5, 6,
6, 4, 4, 5, 2, 0, 9, 3, 3, 9, 2, 1]
Output: [0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9]
</Example>

Input: {input}
The input
thought t

2

A prompt used by Generate(t,k=4)

<Instruction> Split the following list of 64 numbers into 4 lists of 16 numbers
each, the first list should contain the first 16 numbers, the second list the
second 16 numbers, the third list the third 16 numbers and the fourth list the
fourth 16 numbers. Only output the final 4 lists in the following format
without any additional text or thoughts!
{{
 "List 1": [3, 4, 3, 5, 7, 8, 1, ...],
 "List 2": [2, 9, 2, 4, 7, 1, 5, ...],
 "List 3": [6, 9, 8, 1, 9, 2, 4, ...],
 "List 4": [9, 0, 7, 6, 5, 6, 6, ...]
}} </Instruction>

<Example>
Input: [3, 1, 9, 3, 7, 5, 5, 4, 8, 1, 5, 3, 3, 2, 3, 0, 9, 7, 2, 2, 4, 4, 8, 5, 0,
8, 7, 3, 3, 8, 7, 0, 9, 5, 1, 6, 7, 6, 8, 9, 0, 3, 0, 6, 3, 4, 8, 0, 6, 9, 8, 4, 1,
2, 9, 0, 4, 8, 8, 9, 9, 8, 5, 9]
Output:
{{
 "List 1": [3, 1, 9, 3, 7, 5, 5, 4, 8, 1, 5, 3, 3, 2, 3, 0],
 "List 2": [9, 7, 2, 2, 4, 4, 8, 5, 0, 8, 7, 3, 3, 8, 7, 0],
 "List 3": [9, 5, 1, 6, 7, 6, 8, 9, 0, 3, 0, 6, 3, 4, 8, 0],
 "List 4": [6, 9, 8, 4, 1, 2, 9, 0, 4, 8, 8, 9, 9, 8, 5, 9]
}}
</Example>

Input: {input}

The input
thought t

1

...

Motivation
Large Language Models (LLMs) are taking over the world of AI, offering versatile solutions across a spectrum of
complex tasks. Despite advancements, current prompting paradigms like Chain-of-Thought (CoT) and Tree of Thoughts
(ToT) are restricted by their linear and tree-like structures, limiting the potential for modeling the multifaceted nature of
reasoning. Graph of Thoughts (GoT) introduces a novel framework that models LLM reasoning as an arbitrary graph,
enabling the integration of diverse thought patterns and transformations beyond the constraints of existing methods. This
approach enables the combination of arbitrary LLM thoughts into synergistic outcomes, distilling the essence of whole
networks of thoughts, or enhancing thoughts using feedback loops, thereby bringing LLM reasoning closer to human
thinking and significantly improving LLM problem-solving capabilities.

Framework

Graph of Operations enables seamless specification of not only GoT, but also existing schemes such as CoT, CoT-SC, ToT.

Specifying the Structure of the Graph of Operations (GoO)

GoT:ToT:CoT / CoT-SC:

.

Goal: Build a prompt
to be sent to the LLM

Architecture Overview

Parser

Goal: Extract
information from

LLM thought Goal: Assess the
quality of the

LLM's solution

ControllerGoal: Initiate, coordinate, manage,
and progress the GoT execution

Graph of
OperationsGoal: Specify

LLM thought
transformations

Graph Reasoning State

Goal: Maintain
the ongoing LLM
reasoning process

User

Goal: Indicate the
top-scoring thoughts

RankingScoring &
validation

Prompter
LLM

Human
or LLM

Graph of Thoughts:
Solving Elaborate Problems with Large Langauge Models

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger,
Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann,

Hubert Niewiadomski, Piotr Nyczyk, Torsten Hoefler

Department of Computer Science, ETH Zurich
arXiv

extended

IO GoTx
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

e
rr

o
rs

;
th

e
 l
o
w

e
r

th
e
 b

e
tt

e
r

0 25

Keyword Counting

CoT

0

ToT

1

GoT4

8

GoT8

7

0

1

2

3

4

5

6

7

8

Solved
correctly

Splits the
input into
sentences
(each input
has 12-19
sentences)

As GoT4, but splits the
input text into 8 passages

Splits the input text into 4 passages, counts
keywords in each one, aggregates the sub-

results always 2 at a time

IO CoT ToT GoT GoT2
0

2

4

6

8

S
co

re
 (

o
u
t

o
f

1
0

);
 t

h
e
 h

ig
h
e
r

th
e
 b

e
tt

e
r Document Merging

0

3

6

9

12

15

T
o
ta

l
C

o
st

 (
$

);
 t

h
e
 l
o
w

e
r

th
e
 b

e
tt

e
rAggregation of fully

merged NDAs

Aggregation
of partially
 merged
 NDAs

Keyword Counting and Document Merging Results

Score Score Score Score

Score Score

Score

Details of the highlighted part of
the GoO are to the right

1

2

3

3

Graph of Operations (GoO) for Sorting 64 Numbers

G

S S SS

K K K K

K K

K

A A

A

Results for 64 Numbers

IO CoT ToT GoT
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64

#
in

co
rr

e
ct

 e
le

m
e
n
ts

;
th

e
 l
o
w

e
r

th
e
 b

e
tt

e
r

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8

T
o
ta

l
C

o
st

 (
$

);
 t

h
e
 l
o
w

e
r

th
e
 b

e
tt

e
r

clipped

