@
v) B O v ETH zUrICh

Graph of Thoughts:
Solving Elaborate Problems with Large Langauge Models

Architecture Overview

Framework

extended Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Goal: Initiate, coordinate, manage, Controller
Ok 10 Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, o and progress the GoT execution ~ /— Grapoh of
; Hubert Niewiadomski, Piotr Nyczyk, Torsten Hoefler = ooy s Goal: Specify O P ‘
=] . .) GLACIATION LLM thought peratlons
arXiv Department of Computer Science, ETH Zurich User transformations

Large Language Models (LLMs) are taking over the world of Al, offering versatile solutions across a spectrum of
complex tasks. Despite advancements, current prompting paradigms like Chain-of-Thought (CoT) and Tree of Thoughts >
(ToT) are restricted by their linear and tree-like structures, limiting the potential for modeling the multifaceted nature of
reasoning. Graph of Thoughts (GoT) introduces a novel framework that models LL.M reasoning as an arbitrary graph,
enabling the integration of diverse thought patterns and transformations beyond the constraints of existing methods. This
approach enables the combination of arbitrary LL.M thoughts into synergistic outcomes, distilling the essence of whole
networks of thoughts, or enhancing thoughts using feedback loops, thereby bringing ..M reasoning closer to human
thinking and significantly improving LL.M problem-solving capabilities.

Goal: Build a prompt
to be sent to the LL

Goal: Extract

information from

LLM thought Goal: Assess the

Graph of Thoughts in the Prompting Landscape

Graph Reasoning State

Goal: Maintain
the ongoing LLM
reasoning process

%lahty of the
Tree of Thoughts (oD : M's solution
Input | : Refinin ’ . < — ' Y Y 2 N
ni)u nput : gﬁ Input Human ~————— Scoring & Ranking Goal: Indicate the
0 ° ° \ _/ _ 1
/ Y \ . 0 / { \ validation £\ top-scoring thoughts
Output i : i ——
'
e ‘ ; ; / ‘ / ; \ : / ‘ \ / ;)))
. Specifying the Structure of the Graph of Operations (GoO)
Input Y \ A | Y \ v pa. v
‘ . i : ; \ ; \ ; \ * Graph of Operations enables seamless specification of not only GoT, but also existing schemes such as CoT, CoT-SC, ToT.
0
PP P PR Nt O—0—0
‘ []] w W W : Aggregatmg Aggregating
} /N G o CoT / CoT-SC: L3—O—L ToT: -C} Ci' GoT: {303
; Abandon a chain OUtpU_t aiﬁleﬁflﬂlel/igth OU-tPUt Selecting a : Key novelty (beyond ToT): O
Output the best score blf)résl’td}lgaﬁhs t[:}(;ie : ﬁ;g;tfrgrrr};l agéecl)%tsl-based thought utput 0_» 0
'
Legend Dependencies Abandon : Module of the -, : ™ Thought state 7~ Thought state
- Thoughts ‘betwgen thoughts thought Generate Sort Aggregate KeepBest Gray block External entity Blue block framework Prompt ’ Thought #°Q Score -Q-Operatlon Thought state E i opegrations n sgcore

Evaluation

Graph of Operations (GoO) for Sorting 64 Numbers Results for 64 Numbers Details of the Highlighted Part of the GoO

_ e - Input K Generate(k) k=1
Details of the hlﬁ lighted part of v gg 1 oo ({Clo g 64 numbers Solitting i(n tz) - 0,
the GoO are to the right § e 45 L 14624 ... 98754 16-element chunks

7 @
4.2
Q 52 - O
= 48 - O - 3.9 2 (XX
g 44- =
% 40 - - 3.3 b Partial ’ Partial ’ Partial ’
o | T - 3.0 % 16 numbers 16 numbers 16 numbers
B 8 2.7 % 14 .. 43 82 ... 13 11 .. 42
7 — I R
*2] 2.4 = Generate(k) 'Q‘ Generate(k) 'Q‘ Generate(k) 'Q'
o 28 L5 9 £5
E 54 - 1'8@ Sort k=3 Sort k=3 Sort k=3
3 - 1.6
 20- -1.5 G
o 167 l ° _1'2% XX XX XXXX
= 12 A .09 =
§ g - l T 06 I9 Partial ’ Partial ’ Partial ’
44 L 0.3 16 numbers 16 numbers 16 numbers
o o I I BN 12 .48 12..78 11 ..57
IO CoT TolT GoT
Score Assess how well each sequence is sorted Q
Keyword Counting and Document Merging Results
. . Partial & Partial & Partial &»
Solved :
= correctly Keyword COuntmg qh, Document Merglng 16 numbers 16 numbers 16 numbers
1“5’35_ 0 O 1 8 7 25| B Aggregation of Tully = 12 .48 12 .78 11 .57
(o), O Splits the input text into 4 passages, counts <), merged NDAs — . o -, 789/ -, 86% 4™\
L0 keywords in each one, aggregates thesub- [8 K O T Q 100% £\ o £ 0 -
O 30 O results always 2 at a time Q 3 — —— - 15 KeepBest(N) 'Q'
£ 1 As GoT4, but splits the SO T _
o+ input text into 8%gssages -/ - L ‘ g Keep the best N =1
E o it the qh_) 1 - cecoo scored thoughts
S 25 - o mpput into [6 = Aggrega_tion' 12 dh)
(o) —_ Sentences .96 — ' ;
— (each input = of partially o : :
Q | has 12-19 - § 1 merged S Partial * Partial . _
= 20 sentences) v Here, N=1 means
= S — NDAs L Q g 16 numbers 16 numbers that we maintain
. N T 13 ... 46 12 ... 48 a single best sorting
0 15 - —~ 4 - o .- - - outcome out of the
O o 3 CHD " Py 97% £ 100% #°A three input ones.
o 10 - o g8 8 4 - Aggregate(k) {3
‘5 et - 5 8 Merge 32 elements
£ 32 2- O k=10
GL) 5 _ — 8 3 — 3 (_U \
O - 1l @ i Here, k=10 means
& O S IS XXX that we try 10 (%hfgerent
> aggregations of the two
= 0 ! ! ! 0RO ! ! ! ! ! input 16-element subarrays.
IO Col ToT GoT4 GoT8 GoTx IO CoT ToT GoT GoT2 : y

Example Prompts for Sorting

a A prompt used by Generate(t, k=4) ‘ ’

<Instruction> Split the following list of 64 numbers into 4 lists of 16 numbers
each, the first list should contain the first 16 numbers, the second list the
second 16 numbers, the third list the third 16 numbers and the fourth list the
fourth 16 numbers. Only output the final 4 lists in the following format
without any additional text or thoughts!

{{
"List1": [3,4,3,5,7,8,1, ...],
"List 2": [2,9, 2,4, 7, 1, 5 .1,
"List3": [6,9, 8,1, 9, 2 4, ...],
"List4": [9,0, 7,6,5,6,6, ...]
}} </Instruction>
<Example>
Input: [3,1,9,3,7,5,5,4,8,1,5,3,3,2,3,0,9,7,2,2,4,4,8, 5, 0,
87338,709>5,1,6,7,6,8,9,0,3,0,6, 3,4,8,0,6, 9, 8,4, 1,
2,9,0,4,8,8,909,8,5, 9]
Output
{{
"List1": [3,1,9,3,7,5,5,4,8,1,5, 3,3, 2, 3, 0],
"List2": [9,7,2,2,4,4,8,5,0,8,7,3,3,8, 7, 0],
List3": [9,5,1,6,7.6,8,9,0,3,0,6,3,4,8,0], G
"List4": [6,9,8,4,1,2,9,0,4,8,8,9,09,8,5, 9]
13 Y4
</Example> The input ’ —
thought t '} S

Input: {input}

a A prompt used by Generate(t, k=1)+Repeat(k=4) z;

<Instruction> Sort the following list of numbers in ascending order. Output
only the sorted list of numbers, no additional text.

</Instruction>

<Example>

Input: [3,7,0,2,8,1,2,2,2,4,7,8,5,5,3,9,4, 3,5, 6,
6,4,4,5,2,0,9,3,3,9,2, 1]

1
Output: [0,0,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4, 4,
5,5/55,6,6,7,7,8,8,9,9, 9]
</Example>

Input: {input}

A prompt used by
Aggregate(tl, t2)+Repeat(k=3)+KeepBest(N=1)

<Instruction> Merge the following 2 sorted lists of length {length1} each, into
one sorted list of length {length2} using a merge sort style approach. Only output
the final merged list without any additional text or thoughts!

</Instruction>

<Approach>

To merge the two lists in a merge-sort style approach, follow these steps:

1. Compare the first element of both lists.

2. Append the smaller element to the merged list and move to the next element in
the list from which the smaller element came.

3. Repeat steps 1 and 2 until one of the lists is empty.

4. Append the remaining elements of the non-empty list to the merged list.

</Approach> Q

Merge the following two lists into one sorted list:

1: {inputl} /gé: \
>

~O /

2: {input2} The input

thoughts t1, t2 ’ .

Merged list:

