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Abstract—We develop the first parallel graph coloring heuris-
tics with strong theoretical guarantees on work and depth and
coloring quality. The key idea is to design a relaxation of the
vertex degeneracy order, a well-known graph theory concept, and
to color vertices in the order dictated by this relaxation. This
introduces a tunable amount of parallelism into the degeneracy
ordering that is otherwise hard to parallelize. This simple idea
enables significant benefits in several key aspects of graph color-
ing. For example, one of our algorithms ensures polylogarithmic
depth and a bound on the number of used colors that is superior
to all other parallelizable schemes, while maintaining work-
efficiency. In addition to provable guarantees, the developed
algorithms have competitive run-times for several real-world
graphs, while almost always providing superior coloring quality.
Our degeneracy ordering relaxation is of separate interest for
algorithms outside the context of coloring.
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I. INTRODUCTION

Graph coloring, more specifically vertex coloring, is a well
studied problem in computer science, with many practical
applications in domains such as sparse linear algebra com-
putations [1]–[3] or conflicting task scheduling [4]–[6]. A
vertex coloring of a graph G is an assignment of colors to
vertices, such that no two neighboring vertices share the same
color. A k-coloring is a vertex coloring of G which uses k
distinct colors. The minimal amount of colors k for which a
k-coloring can be found for G is referred to as the chromatic
number χ(G). An optimal coloring, also sometimes referred
to as the coloring problem or a χ-coloring, is the problem of
coloring G with χ(G) colors. Unfortunately, finding such and
optimal coloring was shown to be NP-complete [7].

Nonetheless, colorings with a reasonably low number of
colors can in practice be computed quite efficiently in the
sequential setting using heuristics. One of the most important
is the Greedy heuristic [8], which sequentially colors vertices
by choosing, for each selected vertex v, the smallest color
not already taken by v’s neighbors. This gives a guarantee
for a coloring of G with at most ∆ + 1 colors, where
∆ is the maximum degree in G. To further improve the
coloring quality (i.e., #colors used), Greedy is in practice
often used with a certain vertex ordering heuristic, which
decides the order in which Greedy colors the vertices. Example
heuristics include: first-fit (FF) [8] which uses the natural
(default) order of the vertices in G, largest-degree-first (LF) [8]
which orders vertices according to their degrees, random
(R) [9] which chooses vertices in a uniformly random manner,

incidence-degree (ID) [1] which always picks vertices with
the largest number of uncolored neighbors first, saturation-
degree (SD) [10], where a vertex whose neighbors use the
largest number of distinct colors is chosen first, and smallest-
degree-last (SL) [11] that removes lowest degree vertices,
recursively colors the resulting graph, and then colors the
removed vertices. All these ordering heuristics, combined with
Greedy, have the inherent problem of no parallelism.

Jones and Plassmann combined this line of work with earlier
parallel schemes for deriving maximum independent sets [12],
[13] and obtained a parallel graph coloring algorithm (JP) that
colors a vertex v once all of v’s neighbors that come later in
the provided ordering have been colored. They showed that
JP, combined with a random vertex ordering (JP-R), runs in
expected depth O(log n/ log log n) and O(n + m) work for
constant-degree graphs (n and m are #vertices and #edges
in G, respectively). Recently, Hasenplaugh et al. [14] extended
JP with the largest-log-degree first (LLF) and smallest-log-
degree-last (SLL) orderings with better bounds on depth; these
orderings approximate the LF and SL orderings, respectively.
There is also another (earlier) work [15] that – similarly to
JP-SLL – approximates SL with the “ASL” ordering. The
resulting coloring combines JP with ASL, we denote it as JP-
ASL [15]. However, it offers no bounds for work or depth.

Overall, there is no parallel algorithm with strong theoreti-
cal guarantees on work and depth and quality. Whilst having
a reasonable theoretical run-time, JP-R may offer colorings
of poor quality [14], [16]. On the other hand, JP-LF and JP-
SL, which provide a better coloring quality, run in Ω(n) or
Ω(∆2) for some graphs [14]. This was addressed by the recent
JP-LLF and JP-SLL algorithms [14] that produce colorings
of similarly good quality to their counterparts JP-LF and JP-
SL, and run in an expected depth that is within a logarithmic
factor of JP-R. However, no guaranteed upper bounds on the
coloring quality (#colors), better than the trivial ∆ + 1 bound
from Greedy, exist for JP-LLF, JP-SLL, or JP-ASL.

To alleviate these issues, we present the first graph coloring
algorithms with provably good bounds on work and depth
and quality, simultaneously ensuring high performance and
competitive quality in practice. The key idea is to use a
novel vertex ordering, the provably approximate degeneracy
ordering (ADG, contribution #1) when selecting which vertex
is the next to be colored. The exact degeneracy ordering is –
intuitively – an ordering obtained by iteratively removing ver-
tices of smallest degrees. Using the degeneracy ordering with
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JP leads to the best possible Greedy coloring quality [11]. Still,
computing the exact degeneracy ordering is hard to parallelize:
for some graphs, it leads to Ω(n) coloring run-time [14]. To
tackle this, we (provably) relax the strict degeneracy order by
assigning the same rank (in the ADG ordering) to a batch
of vertices that – intuitively – have similarly small degrees.
This approach also results in provably higher parallelization
because each batch of vertices can be processed in parallel.

This simple idea, when applied to graph coloring, gives
surprisingly rich outcome. We use it to develop three novel
graph coloring algorithms that enhance two relevant lines
of research. We first combine ADG with JP, obtaining JP-
ADG (contribution #2), a coloring algorithm that is paral-
lelizable: vertices with the same ADG rank are colored in
parallel. It has the expected worst-case depth of O(log2 n +
log ∆(d log n+ log d log2 n/ log logn)). Here, d is the degen-
eracy of a graph G: an upper bound on the minimal degree
of every induced subgraph of G (detailed in § II-B) [11]. JP-
ADG is also work-efficient (O(n + m) work) and has good
coloring quality: it uses at most 2(1 + ε)d+ 1 colors, for any
ε > 0. Moreover, we also combine ADG with another impor-
tant line of graph coloring algorithms that are not based on
JP but instead use speculation [15], [17]–[29]. Here, vertices
are colored independently (“speculative coloring”). Potential
coloring conflicts (adjacent vertices assigned the same colors)
are resolved by repeating coloring attempts. Combining ADG
with this design gives DEC-ADG (contribution #3), the first
scheme based on speculative coloring with provable strong
guarantees on all key aspects of parallel graph coloring: work
O(n+m), depth O(log d log2 n), and quality (2+ε)d. Finally,
we combine key design ideas in DEC-ADG with an existing
recent ITR algorithm [23] also based on speculative coloring.
We derive an algorithm called DEC-ADG-ITR that improves
coloring quality of ITR both in theory and practice.

We conduct the most extensive theoretical analysis of graph
coloring algorithms so far, considering 20 parallel graph
coloring routines with provable guarantees (contribution #5).
All our algorithms offer substantially better bounds than past
work. We also perform a broad empirical evaluation. For com-
parison, we use the most competitive variants of all classes of
considered coloring algorithms, from four existing repositories
(ColPack [30], [31], Zoltan [18], [32]–[35], original code by
Hasenplaugh et al. (HP) [14], and Graph Based Benchmark
Suite (GBBS) with Ligra [36]–[38]), giving in total more
than 25 evaluated, analyzed, and compared specific baselines.
Our algorithms (1) are competitive in run-times for several
real-world graphs, while (2) offering superior coloring quality
for almost all datasets. Our algorithms offer the best coloring
quality at the smallest required runtime overhead.

In a brief summary, we offer the following:

• The first parallel algorithm for deriving the (approximate)
graph degeneracy ordering (ADG).

• The first parallel graph coloring algorithm (JP-ADG), in a
line of heuristics based on Jones and Plassman’s scheme,
with strong bounds on work, depth, and coloring quality.

• The first parallel graph coloring algorithm (DEC-ADG),
in a line of heuristics based on speculative coloring, with
strong bounds on work, depth, and coloring quality

• A use case of how ADG can seamlessly enhance an existing
state-of-the-art graph coloring scheme (DEC-ADG-ITR).

• The most extensive (so far) theoretical analysis of parallel
graph coloring algorithms, showing advantages of our
algorithms over state-of-the-art in several dimensions.

• Superior coloring quality offered by our algorithms over
tuned modern schemes for many real-world graphs.

We note that degeneracy ordering is used beyond graph color-
ing [39]–[42]; thus, our ADG scheme is of separate interest.

II. FUNDAMENTAL CONCEPTS

We start with background; Table I lists key symbols. Vertex
coloring was already described in Section I.

A. Graph Model and Representation
We model a graph G as a tuple (V,E); V is a set of vertices
and E ⊆ V × V is a set of edges; |V | = n and |E| = m. We
focus on graph coloring problems where edge directions are
not relevant. Thus, G is undirected. The maximum, minimum,
and average degree of a given graph G are ∆, δ, and δ̂,
respectively. The neighbors and the degree of a given vertex v
are N(v) and deg(v), respectively. G[U ] = (U,E[U ]) denotes
an induced subgraph of G: a graph where U ⊆ V and
E[U ] = {(v, u) | v ∈ U ∧ u ∈ U}, i.e., E[U ] contains
edges with both endpoints in U . NU (v) and degU (v) are
the neighborhood and the degree of v ∈ V in G[U ]. The
vertices are identified by integer IDs that define a total order:
V = {1, . . . , n}. We store G using CSR, the standard graph
representation that consists of n sorted arrays with neighbors
of each vertex (2m words) and offsets to each array (n words).

G A graph G = (V,E); V and E are sets of vertices and edges.
G[U ] G[U ] = (U,E[U ]) is a subgraph of G induced on U ⊆ V .
n,m Numbers of vertices and edges in G; |V | = n, |E| = m.
∆, δ, δ̂ Maximum degree, minimum degree, and average degree of G.
d The degeneracy of G.
deg(v), N(v) The degree and the neighborhood of a vertex v ∈ V .
degU (v) The degree of v in a subgraph induced by the vertex set U ⊆ V .
NU (v) The neighborhood of v in a subgraph induced by U ⊆ V .
ρX(v) A priority function V → R associated with vertex ordering X .
P The number of processors (in a given PRAM machine).

TABLE I: Selected symbols used in the paper. When we use a symbol in the context of a
specific loop iteration `, we add ` in brackets or as subscript (e.g., δ̂` is δ̂ in iteration `).

B. Degeneracy and Related Concepts
A graph G is s-degenerate [43] if, in each of its induced
subgraphs, there is a vertex with a degree of at most s. The
degeneracy d of G [44]–[47] is the smallest s, such that G
is still s-degenerate. The degeneracy ordering of G [11] is an
ordering, where each vertex v has at most d neighbors that
are ordered higher than v. Then, a k-approximate degeneracy
ordering differs from the exact one in that v has at most k · d
neighbors ranked higher in this order. A partial k-approximate
degeneracy ordering is a similar ordering, where multiple
vertices can be ranked equally, and we have that each vertex
has at most k·d neighbors with equal or higher rank. A partial
k-approximate degeneracy ordering can be trivially extended
into a k-approximate degeneracy ordering by imposing an



(arbitrary) order on vertices ranked equally. Both degeneracy
and a degeneracy ordering of G can be computed in linear time
by sequentially removing vertices of smallest degree [11].

C. Models for Algorithm Analysis

As a compute model, we use the DAG model of dynamic
multithreading [48], [49]. In this model, a specific computation
(resulting from running some parallel program) is modeled
as a directed acyclic graph (DAG). Each node in a DAG
corresponds to a constant time operation. In-edges of a node
model the data used for the operation. As operations run in
constant time, there are O(1) in-edges per node. The out-edges
of a node correspond to the computed output. A node can be
executed as soon as all predecessors finish executing.

Following related work [14], [36], we assume that a parallel
computation (modeled as a DAG) runs on the ideal parallel
computer (machine model). Each instruction executes in unit
time and there is support for concurrent reads, writes, and
read-modify-write atomics (any number of such instructions
finish in O(1) time). We develop algorithms based on these
assumptions but we also provide algorithms that use weaker
assumptions (algorithms that only rely on concurrent reads).

We use the work-depth (W–D) analysis for bounding run-
times of parallel algorithms in the DAG model. The work of
an algorithm is the total number of nodes and the depth is
defined as the longest directed path in the DAG [50], [51].

Our Analyses vs. PRAM In our W-D analysis, two used
machine model variants (1) only need concurrent reads and
(2) may also need concurrent writes. These variants are
analogous to those of the well-known PRAM model [51]–
[54]: CREW and CRCW, respectively. Thus, when describing
a W–D algorithm that only relies on concurrent reads, we use a
term “the CREW setting”. Similarly, for a W–D algorithm that
needs concurrent writes, we use a term “the CRCW setting”.

The well-known Brent’s result states that any deterministic
algorithm with work W and depth D can be executed on P
processors in time T such that max{W/P,D} ≤ T ≤W/P+
D [55]. Thus, all our results are applicable to a PRAM setting.

D. Compute Primitives

We use a Reduce operation. It takes as input a set S =
{s1, ..., sn} implemented as an array (or a bitmap). It uses a
function f : S → N called the operator; f(s) must be defined
for any s ∈ S. Reduce calculates the sum of elements in S
with respect to f : f(s1) + ... + f(sn). This takes O(log n)
depth and O(n) work in the CREW setting [56], [57], where
n is the array size. We use Reduce to implement Count(S),
which computes the size |S|. For this, the associated operator
f is defined as f(s) = 1 if s ∈ S, and f(s) = 0
otherwise. We also assume a DecrementAndFetch (DAF) to be
available; it atomically decrements its operand and returns a
new value [14]. We use DAF to implement Join to synchronize
processors (Join decrements its operand, returns the new value,
and releases a processor under a specified condition).

III. PARALLEL APPROXIMATE DEGENERACY ORDERING

We first describe ADG, a parallel algorithm for computing a
partial approximate degeneracy ordering. ADG outputs vertex
priorities ρADG, which are then used by our coloring algo-
rithms (Section IV). Specifically, these priorities produce an
order in which to color the vertices (ties are broken randomly).

ADG is shown in Algorithm 1. ADG is similar to SL [11],
which iteratively removes vertices of the smallest degree to
construct the exact degeneracy ordering. The key difference
and our core idea is to repeatedly remove in parallel all
vertices with degrees smaller than (1 + ε)δ̂. The parameter
ε ≥ 0 controls the approximation accuracy. We multiply 1 + ε
by the average degree δ̂ as it enables good bounds on quality
and run-time, as we show in Lemma 1 and 3. Compared to
SL (which has depth O(n)), ADG has depth O(log2 n) and
obtains a partial 2(1 + ε)-approximate degeneracy ordering.

1 /* Input: A graph G(V,E).
2 * Output: A priority (ordering) function ρ : V → R. */
3 D = [ deg(v1) deg(v2) ... deg(vn) ] //An array with vertex degrees
4 ` = 1; U = V //U is the induced subgraph used in each iteration `
5 while U 6= ∅ do:
6 |U| = Count(U); // Derive |U| using a primitive Count
7 cnt = Reduce(U); // Derive the sum of degrees in U :

∑
v∈U D[v]

8 δ̂ = cnt
|U| // Derive the average degree for vertices in U

9 //R contains vertices assigned priority in a given iteration:

10 R = {u ∈ U | D[u] ≤ (1 + ε)δ̂ }
11 UPDATE(U , R, D) // Update D to reflect removing R from U
12 U = U \ R // Remove selected low -degree vertices (that are in R)
13 for all v ∈ R do in parallel: //Set the priority of vertices
14 ρADG(v) = ` //The priority is the current iteration number `
15 ` = ` + 1
16 // Update D to reflect removing vertices in R from a set U :
17 UPDATE(U , R, D):
18 for all v ∈ R do in parallel:
19 for all u ∈ NU (v) do in parallel:
20 DecrementAndFetch(D[u])

Algorithm 1: ADG, our algorithm for computing the 2(1+ε)-approximate degeneracy
ordering; it runs in the CRCW setting.

In ADG, we maintain a set U ⊆ V of active vertices that
starts as V (Line 4). In each step (Lines 6–15), we use ε
and δ̂ to select vertices with small enough degrees (Line 10);
The average degree δ̂ is computed in Lines 6–8. The selected
vertices form a set R and receive a priority ρADG equal to the
step counter `. We then remove them from the set U (Line 12)
and update the degrees D accordingly (Line 11). We continue
until the set U is empty.

Design Details We implement D as an array and use n-
bit dense bitmaps for U and R. This enables updating vertex
degrees in O(1) and resolving v ∈ U and v ∈ R in O(1) time.
Constructing R in each step can be implemented in O(1) depth
and O(|U |) work. The operation U = U\R takes O(1) depth
and O(|R|) work by overwriting the bitmap U . To calculate the
average degree on Line 8, we derive |U | and sum all degrees
of vertices in U . The former is done with a Count over U . The
latter uses Reduce with the associated operator f(v) = D[v].
As both Reduce operations run in O(log n) depth and O(|U |)
work, the same holds for the average degree calculation.

Depth First, note that each line in the while loop runs
in O(log n) depth, as discussed above. We will now prove
that the while loop iterates O(log n) many times, giving the
total ADG depth of O(log2 n). The key notion is that, in each



iteration, we remove a constant fraction of vertices due to the
way that we construct R (based on the average degree δ̂).

Lemma 1. For a constant ε > 0, ADG does O(log n)
iterations and has O(log2 n) depth in the CRCW setting.

Proof. At each step ` of the algorithm we can have at most
n

1+ε vertices with a degree larger than (1 + ε)δ̂`. This can
be seen from the fact, that the sum of degrees in the current
subgraph can be at most n times the average degree δ̂`. For
vertices with a degree exactly (1+ε)δ̂` we get n

1+ε ·(1+ε)δ̂` =

nδ̂`, which would result in a contradiction if we had more
than n

1+ε vertices with larger degree. Thus, if we remove all
vertices with degree ≤ (1+ε)δ̂`, we remove a constant fraction
of vertices in each iteration (at least ε

1+εn vertices), which
implies that ADG performs O(log n) iterations in the worst
case, immediately giving the O(log2 n) depth.

Work The proof of work is similar and included in the
extended report due to space constraints; it also uses the fact
that a constant fraction of vertices is removed in each iteration.

Approximation ratio We now prove that the approxima-
tion ratio of ADG on the degeneracy order is 2(1 + ε). First,
we give a small lemma used throughout the analysis.

Lemma 2. Every induced subgraph of a graph G with
degeneracy d, has an average degree of at most 2d.

Proof. By the definition of a d-degenerate graph, in every
induced subgraph G[U ], there is a vertex v with degU (v) ≤ d.
If we remove v from G[U ], at most d edges are removed. Thus,
if we iteratively remove such vertices from G[U ], until only
one vertex is left, we remove at most d · (|U | − 1) edges. We
conclude that δ̂(G[U ]) = 1

|U |
∑
v∈U degU (v) ≤ 2d.

Lemma 3. ADG computes a partial 2(1 + ε)-approximate
degeneracy ordering of G.

Proof. By the definition of R (Line 10), all vertices removed
in step ` have a degree of at most (1 + ε)δ̂`, where δ̂` is
the average degree of vertices in subgraph U in step `. From
Lemma 2, we know that δ̂` ≤ 2d. Thus, each vertex has a
degree of at most 2(1+ε)d in the subgraph G[U ] (in the current
step). Hence, each vertex has at most 2(1+ε)d neighbors that
are ranked equal or higher. The result follows by the definition
of a partial 2(1 + ε)-approximate degeneracy order.

A. Comparison to Other Vertex Orderings
We analyze orderings in Table II. While SLL and ASL
heuristically approximate SL, which computes a degeneracy
ordering, they do not offer guaranteed approximation factors.
Only ADG comes with provable bounds on the accuracy of
the degeneracy order while being (provably) parallelizable.

IV. PARALLEL GRAPH COLORING

We now use our approximate degeneracy ordering to develop
new parallel graph coloring algorithms. We directly enhance
the recent line of works based on scheduling colors, i.e., as-
signing colors to vertices without generating coloring conflicts

Ordering heuristic Time / Depth Work F.? B., Approx.?

FF (first-fit) [8] O(1) O(1) n/a n/a
R (random) [9], [14] O(1) O(n) - n/a
ID (incidence-degree) [1] O(n+m) O(n+m) n/a n/a
SD (saturation-degree) [10], [14] O(n+m) O(n+m) n/a n/a
LF (largest-degree-first) [14] O(1) O(n) - n/a
LLF (largest-log-degree-first) [14] O(1) O(n) - n/a
SLL (smallest-log-degree-last) [14] O(log ∆ logn) O(n+m) - �
SL (smallest-degree-last) [11], [14] O(n) O(m) - - exact
ASL (approximate-SL) [15] O(n) O(m) - �

ADG [approx. degeneracy] O
(
log2 n

)
O(n+m) - - 2(1 + ε)

TABLE II: Ordering heuristics related to the degeneracy ordering. “F. (Free)?”: Is the scheme
free from concurrent writes? “B. (Bounds)?”: Are there provable bounds and approximation ratio on
degeneracy ordering? “-”: support, “�”: no support. Notation is explained in Table I and in Section II.

(§ IV-A). In two other algorithms, we allow conflicts but we
also provably resolve them fast (§ IV-B, § IV-C).

A. Graph Coloring by Color Scheduling (JP-ADG)
We directly enhance recent works of Hasenplaugh et al. [14]
by combining their Jones-Plassmann (JP) version of coloring
with our ADG, obtaining JP-ADG. For this, we first overview
JP and definitions used in JP. The JP algorithm uses the notion
of a computation DAG Gρ(V,Eρ), which is a directed version
of the input graph G. Specifically, the DAG Gρ is used by JP
to schedule the coloring of the vertices: The position of a
vertex v in the DAG Gρ determines the moment the vertex v
is colored. The DAG Gρ contains the edges of G directed from
the higher priority to lower priority vertices according to the
priority function ρ, i.e. , Eρ = {(u, v) ∈ E | ρ(u) > ρ(v)}.

JP is described in Algorithm 2. First, JP uses ρ to compute
a DAG Gρ(V,Eρ), where edges always go from vertices with
higher ρ to ones with lower ρ (Lines 6–9). Vertices can
then be safely assigned a color if all neighbors of higher ρ
(predecessors in the DAG) have been colored. JP does this by
calling JPColor with the set of vertices without predecessors
(Lines 13–15). JPColor then colors v by calling GetColor,
which chooses the smallest color not already taken by v’s
predecessors. Then, JPColor checks if any of v’s successors
can be colored, and if yes, it calls again JPColor on them.

Now, in JP-ADG, we first call ADG to derive ρADG. Then,
we run JP using ρADG. More precisely, we use ρ = 〈ρADG, ρR〉
where ρR randomly breaks ties of vertices that were removed
in the same iteration in Algorithm 1, and thus have the same
rank in ρADG. The obtained JP-ADG algorithm is similar to
past work based on JP in that it follows the same “skeleton”
in which coloring of vertices is guided by the pre-computed
order, on our case ρADG. However, as we prove later in this
section, using ADG is key to our novel bounds on depth,
work, and coloring quality. Intuitively, ADG gives an ordering
of vertices in which each vertex has a bounded number of
predecessors (by definition of s-degenerate graphs and graph
degeneracy d). We use this to bound coloring quality and sizes
of subgraphs in Gρ. The latter enables bounding the maximum
path in Gρ, which in turn gives depth and work bounds.

We first prove a general property of JP-ADG, which we will
use to derive bounds on coloring quality, depth, and work.

Lemma 4. JP, using a priority function ρ that defines a k-
approximate degeneracy ordering, colors a graph G with at
most kd+ 1 colors, for ε > 0.



1 /* Input: A graph G(V,E), a priority function ρ.
2 * Output: An array C, it assigns a color to each vertex. */
3
4 //Part 1: compute the DAG Gρ based on ρ
5 C = [0 0 ... 0] // Initialize colors
6 for all v ∈ V do in parallel:
7 // Predecessors and successors of each vertex v in Gρ:
8 pred[v] = {u ∈ N(v) | ρ(u) > ρ(v)}
9 succ[v] = {u ∈ N(v) | ρ(u) < ρ(v)}

10 // Number of uncolored predecessors of each vertex v in Gρ:
11 count[v] = |pred[v]|
12
13 //Part 2: color vertices using Gρ
14 for all v ∈ V do in parallel:
15 //Start by coloring all vertices without predecessors:
16 if pred[v] == ∅: JPColor(v)
17
18 JPColor(v) //JPColor , a routine used in JP
19 C[v] = GetColor(v)
20 for all u ∈ succ[v] in parallel:
21 // Decrement u's counter to reflect that v is now colored:
22 if Join(count[u]) == 0:
23 JPColor(u) //Color u if it has no uncolored predecessors
24
25 GetColor(v) //GetColor , a routine used in JPColor
26 C = {1, 2, . . . , |pred[v]| + 1}
27 for all u ∈ pred[v] do in parallel: C = C − {C[u]}
28 return min (C) // Output: the smallest color available.

Algorithm 2: JP, the Jones-Plassman coloring heuristic. When setting ρ =
〈ρADG, ρR〉, it gives our JP-ADG routine that provides (2(1 + ε)d+ 1)-coloring.

Proof. Since ρ defines a k-approximate degeneracy ordering,
any v ∈ V has at most kd neighbors v′ with ρ(v′) ≥ ρ(v)
and thus at most kd predecessors in the DAG. Now, we can
choose the smallest color available from {1, . . . , kd + 1} to
color v, when all of its predecessors have been colored.

Coloring Quality The coloring quality now follows from
the properties of the priority function obtained with ADG.

Corollary 1. With priorities ρ = 〈ρADG, ρR〉, JP-ADG colors
a graph with at most 2(1 + ε)d+ 1 colors, for ε > 0.

Depth, Work To bound the depth of JP-ADG, we follow
the approach by Hasenplaugh et al. [14]. We analyze the
expected length of the longest path in a DAG induced by JP-
ADG to bound its expected depth. Note that as ρ is a total
order on V , the DAG Gρ is strongly connected. Finally, we
denote ρ = maxv∈V {ρADG(v)}.

Lemma 5. For a priority function ρ = 〈ρADG, ρR〉, where ρADG

is a partial k-approximate degeneracy ordering for a constant
k > 1, ρR is a random priority function, the expected length of
the longest path in the DAG Gρ is O

(
d log n+ log d log2 n

log logn

)
.

Proof. Let Gρ(`) be the subgraph of Gρ induced by the vertex
set V (`) = {v ∈ V | ρADG = `}. Let ∆` be the maximal
degree and δ̂` be the average degree of the subgraph Gρ(`).

Since, by the definition of Gρ, there can be no edges in
Gρ that go from one subgraph Gρ(`) to another Gρ(`′) with
`′ > `, we can see that a longest (directed) path P in Gρ will
always go through the subgraph Gρ(`) in a monotonically
decreasing order with regards to `. Therefore, we can split P
into a sequence of (directed) sub-paths P1, . . . ,Pρ, where P`
is a path in G(`). We have |P| =

∑
i∈{ρADG(v)|v∈V } |Pi| and

by Corollary 6 from past work [14], the expected length of
a longest sub-path P` is in O(∆` + log ∆` log n/ log logn),
because Gρ(`) is induced by a random priority function. By
linearity of expectation, we have for the whole path P:

E [|P|] = O

 ρ∑
`=1

(
∆` + log ∆` ·

logn

log logn

) (1)

Next, since ρADG is a partial k-approximate degeneracy
ordering, all vertices in G(`) have at most kd neighbors
in G(`). Thus, ∆` ≤ kd holds. This and the fact that
ρ ∈ O(log n) gives:

ρ∑
i=1

∆i ≤
ρ∑
i=1

d · k ∈ O(d logn) (2)

ρ∑
i=1

log ∆i ∈ O(log d logn) (3)

Thus, for the expected length of a longest path in G:

E [|P|] = O

(
d logn +

log d log2 n

log logn

)
(4)

Our main result follows by combining our bounds on the
longest path P in the DAG Gρ and a result by Hasenplaugh et
al. [14], which shows that JP has O(log n+log ∆ · |P|) depth.

Theorem 1. JP-ADG colors a graph G with degeneracy d in
expected depth O(log2 n+ log ∆ · (d log n+ log d log2 n

log logn )) and
O(n+m) work in the CRCW setting.

B. Graph Coloring by Silent Conflict Resolution (DEC-ADG)
Our second coloring algorithm takes a radical step to move
away from the long line of heuristics based on JP. The key idea
is to use ADG to decompose the input graph into low-degree
partitions (thus “DEC-ADG”), shown in Algorithm 3. Here,
ADG is again crucial to our bounds. Specifically, vertices with
the same ADG rank form a partition that is “low-degree”: it
has a bounded number of edges to any other such partitions
(by the definition of ADG). Each such partition is then colored
separately, with a simple randomized scheme in Algorithm 4.
This may generate coloring conflicts, i.e., neighboring vertices
with identical colors. Such conflicts are resolved “silently” by
repeating the coloring on conflicting vertices as many times as
needed. As ADG bounds counts of edges between partitions, it
also bounds counts of conflicts, improving depth and quality.

We first detail Algorithm 3. A single low-degree partition
G(`) produced by the iteration ` of ADG is the induced
subgraph of G over the vertex set R removed in this iter-
ation (Line 10, Alg. 1). Formally, G(i) = G[R(i)] where
R(i) = {v ∈ V | ρ(v) = i} and ρ is the partial k-approximate
degeneracy order produced by ADG (cf. § II-B). Thus, in
DEC-ADG, we first run ADG to derive the ordering ρ and also
the number ρ of low-degree partitions (ρ ∈ O(log n)). Here,
we use ADG*, a slightly modified ADG that also records –
as an array G ≡ [G(1) ... G(ρ)] – each low-degree partition.
Then, we iterate over these partitions (starting from ρ) and
color each with SIM-COL (“SIMple coloring”, Alg. 4). We
discuss SIM-COL in more detail later in this section, its
semantics are that it colors a given arbitrary graph G (in
our context G is the `-th partition G(`)) using (1 + µ)∆
colors, where µ > 0 is an arbitrary value. To keep the
coloring consistent with respect to already colored partitions,



1 /* Input: G(V,E) (input graph).
2 * Output: An array C, it assigns a color to each vertex. */
3 C = [0 0 ... 0] // Initialize an array of colors
4 //Run ADG* to derive a 2(1 + ε/12)-approximate degeneracy ordering
5 //G ≡ [G(1) ... G(ρ)] contains ρ low -degree partitions
6 //We have G(i) = G[R(i)] where R(i) = {v ∈ V | ρ(v) = i}
7 (ρ,G) = ADG*(G)
8
9 // Initialize bitmaps Bv to track colors forbidden for each vertex

10 ∀v∈V Bv = [00...0] //A bitmap has size d2(1 + ε/4)(1 + µ)de + 1 bits
11 SIM -COL(G(ρ), {Bv | v ∈ R(ρ)}) //First , we color G(ρ)
12
13 for ` from ρ− 1 down to 1 do: //For all low -degree partitions
14 Q = R(ρ) ∪ · · · ∪ R(` + 1) //A union of already colored partitions
15 for all v ∈ R(`) do in parallel:
16 for all u ∈ NQ(v) do in parallel: // For v's colored neighbors
17 Bv = Bv ∪ C[u] // Update colors forbidden for v
18 SIM -COL(G(`), {Bv | v ∈ R(`)}) //Run Algorithm 4

Algorithm 3: DEC-ADG, the second proposed parallel coloring heuristic that
provides a (2(1 + ε)d)-coloring. Note that we use factors ε/4 and ε/12 for more
straightforward proofs (this is possible as ε can be an arbitrary non-negative value).

we maintain bitmaps Bv that indicate colors already taken by
v’s neighbors in already colored partitions: If v cannot use a
color c, the c-th bit in Bv is set to 1.

How large should Bv be to minimize storage overheads
but also ensure that each vertex has enough colors to choose
from? We observe that a single bitmap Bv should be able
to contain at most as many colors as neighbors of v in a
partition currently being colored (G(`)), and in all partitions
that have already been colored (G(`′), `′ > `). We denote this
neighbor count with deg`(v). Observe that any deg`(v) is at
most kd = d2(1 + ε)de, as partitions are created according to
a partial k-approximate degeneracy order where k = 2(1+ε).
Now, when coloring a partition G(`), we know that SIM-COL,
by its design, chooses colors for v only in the range of {1...(1+
µ)deg`(v) + 1} (Algorithm 4, Line 7; as we will show, using
such a range will enable the advantageous bounds for DEC-
ADG). Thus, it suffices to keep bitmaps of size d(1+µ)kde+1
for each vertex, where k = 2(1 + ε/4).

In SIM-COL, we color a single low-degree parti-
tion G(`) = (V (`), E(`)). SIM-COL takes two arguments: (1)
the partition to be colored (it can be an arbitrary graph G =
(V,E) but for clarity we explicitly use G(`) = (V (`), E(`))
that denotes a partition from a given iteration ` in DEC-
ADG) and (2) bitmaps associated with vertices in a given
partition R(i). By design, SIM-COL delivers a ((1 + µ)∆)-
coloring; µ > 0 can be an arbitrary value. However, in all the
following discussions, for concreteness, we set µ = ε/4; this
value will enable deriving our final bounds for DEC-ADG. U
are vertices still to be colored, initialized as U = V (`). In
each iteration, vertices in U are first colored randomly. Then,
each vertex v compares its color C[v] to the colors of its active
(not yet colored) neighbors in NU and checks if C[v] is not
already taken by other neighbors inside and outside of V (`)
(by checking Bv), see Lines 8–12. The goal is to identify
whether at least one such neighbor has the same color as
v. For this, we use Reduce over NU (v) with the operator
f defined as feq(u) = (C[v] == C[u]) (the “==” operator
works analogously to the same-name operator in C++) and
a simple lookup in Bv . If v and u have the same color,
feq(u) equals 1. Thus, if any of v’s neighbors in U have
the same color as v, Reduce(NU (v), feq) > 0. This enables

1 /* Input: G(V (`), E(`)) (input graph partition), Bv (a bitmap with
2 * colors forbidden for each v). Output: color C[v] > 0. */
3 U = V (`)
4 while U 6= ∅ do:
5 //Part 1: all vertices in U are colored randomly:
6 for all v ∈ U do in parallel:
7 choose C[v] u.a.r. from {1, ..., (1 + µ)deg`(v)}
8 //Part 2: each vertex compares its color to its active neighbors.
9 //If the color is non -unique , the vertex must be re-colored.

10 for all v ∈ U do in parallel:
11 //feq(v, u) = (C[v] == C[u]) is the operator in Reduce.
12 if Reduce(NU (v), feq) > 0 || C[v] ∈ Bv : C[v] = 0
13 //Part 3: Update Bv for all neighbors with fixed colors:
14 for all v ∈ U do in parallel:
15 for all u ∈ NU (v) do in parallel:
16 if C[u] > 0: Bv = Bv ∪ C[u]
17 U = U \ {v ∈ U | C[v] > 0} // Update vertices still to be colored

Algorithm 4: SIM-COL, our simple coloring routine used by DEC-ADG. It delivers
a ((1 + µ)∆)-coloring, where µ > 0 is an arbitrary value. When using SIM-COL
as a subroutine in DEC-ADG, we instantiate µ as µ = ε/4; we use this value in
the listing above for concreteness.

us to attempt to re-color v by setting C[v] = 0. If a vertex
gets colored, we remove it from U (Line 17) and update the
bitmaps of its neighbors (Line 16). We iterate until U is empty.

Depth, Work We now prove the time complexity of DEC-
ADG. The key observation is that the probability that a
particular vertex becomes inactive (permanently colored) is
constant regardless of the coloring status of its neighbors. The
key proof technique is to use Markov and Chernoff Bounds.
We provide full proofs in the report (the link on page 1) and
only sketch the intuition in the following.

Before we proceed with the analysis, we provide some
definitions. For each round ` of SIM-COL (Algorithm 4), we
define an indicator random variable Xv to refer to the event in
which a vertex v gets removed from U (i.e., becomes colored
and thus inactive) in this specific round `. The vertex v is
removed if and only if the color C[v], which is selected on
Line 7, is not used by some neighbor of v (i.e., this color
is not in Bv) and no active neighbor chose C[v] in this
round. The random variable Xv indicates the complement
of event Xv (i.e., a vertex v is not removed from U in a
given round). Next, let Z be a Bernoulli random variable with
probability Pr[Z = 1] ≡ p = 1 − 1

1+µ , and let Z be the
complement of Z. In the following, we show that the event
of an arbitrary vertex v becoming deactivated (Xv = 1) is
at least as probable as Z = 1. This will enable us to use
these mutually independent variables Z to analyze the time
complexity of SIM-COL and DEC-ADG.

Claim 1. In every iteration, for every vertex v, the probability
that the vertex v becomes inactive is at least 1− 1

1+µ .

Proof. The probability that v becomes inactive in any iteration
(Pr[Xv = 1]) is at least 1 − i

(1+µ)deg`(v) , where i is the
number of distinct colors in Bv and received from neighbors
in this round. This is because, in each iteration, while v
connects to vertices with a total of i distinct colors, the total
number of colors to be selected from is (1 +µ)deg`(v). Now,
as v can have at most deg`(v) colored neighbors, we get
1− i

(1+µ)deg`(v) ≥ 1− deg`(v)
(1+µ)deg`(v) = 1− 1

(1+µ) , which shows
that Pr[Xv = 1] ≥ Pr[Z = 1] holds for all active v.

Thus, in expectation, a constant fraction of the vertices be-



comes inactive in every iteration. Now, in the next step, we will
apply Markov and Chernoff bounds to an appropriately chosen
binomial random variable, showing that the number of vertices
that are removed is concentrated around its expectation. Hence,
the algorithm terminates after O(log n) iterations.

First, to proof the intuitive fact that Z can be used to
approximate the number of vertices removed in each round,
we use the technique of coupling together with a handy
equivalence between stochastic dominance and the coupling
of two random variables [58], all details are in the report.

Lemma 6. The random variable X =
∑
v∈U Xv stochasti-

cally dominates Y =
∑|U |
i=1 Z.

We also need an equivalent lemma for a complement event:

Lemma 7. A random variable X =
∑
v∈U Xv is stochasti-

cally dominated by a random variable Y =
∑|U |
i=1 Z.

With these two lemmas and the Markov inequality, we show
that with probability at least 1 − 1

µ , at least µ
1+µ |U | vertices

are permanently colored in each round, giving:

Lemma 8. SIM-COL performs O(log n) iterations w.h.p. (for
constant µ > 0).

To bound the work of SIM-COL, we can observe that
similarly to the number of vertices, the number of edges
incident to at least one active vertex also decreases by a
constant factor in each iteration with high probability. The
work in an iteration is bounded by this number of edges and
every iteration has depth O(∆) (in the CREW setting) and
O(log ∆) (in the CRCW setting). Hence, we conclude:

Lemma 9. SIM-COL takes O(∆ log n) depth (in the CREW
setting) or O(log ∆ log n) depth (in the CRCW setting), and
it has O(n+m) work w.h.p in the CREW setting.

Next, we turn our attention back to DEC-ADG. As DEC-
ADG decomposes the edges of the input graph into O(log n)
disjoint subgraphs of maximum degree O(d), we get:

Lemma 10. DEC-ADG takes O(log d log2 n) depth and
O(n+m) work w.h.p. in the CRCW setting.

Coloring Quality Finally, we prove the coloring quality.

Claim 2. DEC-ADG produces a (2+ε)d coloring 0 < ε < 2.

Proof. Since we use ADG to partition the graph into (ρ,G)
(G ≡ [G(1) ... G(ρ)]) on Line 7, we know that ρ is a partial
2(1 + ε/6)-approximate degeneracy ordering. Therefore, we
also know that each vertex v ∈ G(i) has at most 2(1 + ε/6)d
neighbors in partitions G(i′) with i′ ≥ i. This implies, that if
we run SIM-COL on each partition G(i), we will color each
partition with at most (1 + ε/4)2(1 + ε/6)d colors, which is
smaller or equal to (2 + ε)d for 0 ≤ ε ≤ 2, as (1 + ε/4)2(1 +

ε/6)d = 2 + 10ε+ε2

12 ≤ 2(1 + ε), for ε ≤ 2.

C. Enhancing Existing Coloring Algorithms
Finally, we illustrate that ADG does not only provide new
provably efficient algorithms, but also can be used to enhance

existing ones. For this, we seamlessly replace our default
SIM-COL routine with a recent speculative coloring heuristic,
ITR, by Çatalyürek et al. [23]. The result, DEC-ADG-ITR, is
similar to DEC-ADG, except that the used SIM-COL differs
in Line 7 from the default Algorithm 4: colors are not picked
randomly, but we choose the smallest color not in Bv .

Using ADG enables deriving similar bounds on coloring
quality (2(1 + ε)d + 1) as before. However, deriving good
bounds on work and depth is hard because the lack of
randomization (when picking colors) prevents us from using
techniques such as Chernoff bounds. We were still able to
provide new results, detailed in a full report (also cf. Table III).

D. Comparison to Other Coloring Algorithms
We exhaustively compare JP-ADG and DEC-ADG to other
algorithms in Table III. We consider: non-JP parallel schemes,
the best sequential greedy schemes, and parallel JP algorithms.
We consider depth (time), work, used model, quality, gen-
erality, randomized design, work-efficiency, and scalability.
We also use past empirical analyses [14], [16], [20] and our
results (§ VI) to summarize run-times and coloring qualities
of algorithms used in practice, focusing on modern real-world
graphs as input. Details are in the caption of Table III.

As explained in Section I, only our algorithms work for
arbitrary graphs, deliver strong bounds for depth and work
and quality, and are often competitive in practice. Now, JP-SL
may deliver a little higher quality colorings, as it uses the exact
degeneracy ordering (although without explicitly naming it)
and its quality is (provably) d+1. However, JP-SL comes with
much lower performance. On the other hand, most recent JP-
LLF and JP-SLL only provide the straightforward ∆+1 bound
for coloring quality. These two are however inherently parallel
as they depend linearly on log n, while JP-ADG depends on
log2 n. Yet, JP-ADG has a different advantage in depth: JP-
SLL and JP-LLF depend linearly on

√
m or ∆ while JP-ADG

on d. In today’s graphs, d is usually much (i.e., orders of
magnitude) smaller than

√
m and ∆ [36]. In the full report,

we also provide a small lemma showing that d/2 ≤
√
m. This

further illustrates that our bounds on depth in JP-ADG offer
an interesting tradeoff compared to JP-LF and JP-LLF.

We finally observe that the design of ADG combined with
the parametrization using ε enables a tunable parallelism-
quality tradeoff. When ε → 0, coloring quality in JP-ADG
approaches 2d+ 1, only ≈2× more than JP-SL. On the other
hand, for ε → ∞, ρADG becomes irrelevant and the derived
final ordering ρ = 〈ρADG, ρX〉 converges to ρX . Now, X
could be the random order R but also the low-depth LF and
LLF orders based on largest degrees. This enables JP-ADG to
increase parallelism tunably, depending on user’s needs.

We also compare JP-ADG to works based on speculation
and conflict resolution [21], [23], [26], [28], based on an
early scheme by Gebremedhin [20]. A direct comparison is
difficult because these schemes do no offer detailed theoretical
investigations. Simple bounds on coloring quality, depth, and
work are – respectively – ∆+1, O(∆I), and O(∆IP ), where
I is #iterations and P is #processors. Here, we illustrate



GC Algorithm Theory Practice Remarks
Time (in PRAM) or Depth (in W–D), Work Model Quality F G R W S Q Perf. Quality Code used

Class 1: Parallel coloring algorithms not based on JP [9]. Many are not used in practice (except for work by Gebremedhin [20] and related ones [21], [23], [26], [28]); we include them for completeness of our analysis.

(MIS) Alon [59] E O(∆ logn) O
(
m∆2 logn

)
CRCW ∆ + 1 � - - � �†� — — — †Depth depends on ∆, P = m∆

(MIS) Goldberg [60] O
(
∆ log4 n

)
O
(
(n+m) log4 n

)
EREW ∆ + 1 - - �� �†� — — —

†Depth depends on ∆,
P = (m+ n)/∆

(MIS) Goldberg [61], [62] O(log∗ n) O(n log∗ n) EREW ∆ + 1 - �† - �‡ - � — — — †Graphs with ∆ ∈ O(1). P = n.
(MIS) Goldberg [62] O(∆ log ∆(∆ + log∗ n)) O((n+m)∆ log ∆(∆ + log∗ n)) EREW ∆ + 1 - - �� �†� — — — †Depth depends on ∆. P = n+m.
Luby [63] O

(
log3 n log logn

)
O
(
(n+m)(log3 n log logn)

)
CREW ∆ + 1 - - �� - � — — — P = n+m

(MIS) Luby [13] (as
implemented in ColPack) E O(∆ logn) O(m∆ logn) CRCW ∆ + 1 � - - � �†� ��������ColPack †Depth depends on ∆, P = m

Gebremedhin [20] (as
implemented in ColPack) E O

(
∆n
P

)
O(∆n) CREW — - - - � � � ��������ColPack Assuming P ≤ n

2
√
m

.

Gebremedhin [20] (as
implemented in ColPack) E O

(
∆Pm
n

)
O
(

∆P2m
n

)
CREW — - - - �†� � ��������ColPack

Assuming P > n
2
√
m

. †Work
can be Ω(n+m) (for some P ).

ITRB (Boman et al. [21])
(as implemented in Zoltan) O (∆ · I) J O (∆ · I · P ) J ä — - - �ä† ä† � �������� Zoltan †No detailed bounds available

ITR (Çatalyürek et al. [23]
and others [26], [28]) O (∆ · I) J O (∆ · I · P ) J ä — - - �ä† ä† � ��������ColPack †No detailed bounds available

ITR-ASL (Patwary et al. [15])O(n · I) J O(n · I · P ) J ä — - - �ä† ä† � ��������ColPack †No detailed bounds available

Class 2: Coloring algorithms that are not parallel and based on the Greedy coloring scheme [8]. We include them as comparison baselines that deliver best-known coloring quality in practice.

Greedy-ID [1] O(n+m) O(n+m) Seq. ∆ + 1 - - �� � � ��������ColPack, GBBS —
Greedy-SD [10], [14] O(n+m) O(n+m) Seq. ∆ + 1 - - �� � � ��������ColPack, GBBS —

Class 3: Parallel heuristics that constitute the largest line of work into parallel graph coloring and are fast in theory and practice. Most are based on JP [9].

JP-FF [8], [14] No general bounds; Ω(n) for some graphs O(n+m) W–D ∆ + 1 � - �- �†� ��������ColPack, GBBS †No general bounds
JP-LF [14] No general bounds; Ω

(
∆2
)

for some graphs O(n+m) W–D ∆ + 1 � - - - �†� ��������Col., GBBS, HP †No general bounds
JP-SL [14] No general bounds; Ω(n) for some graphs O(n+m) W–D d+ 1 � - - - �† -‡��������Col., GBBS, HP †No general bounds. ‡Often, d� ∆.
JP-R [9] E O

(
logn

log logn

)
O(n+m) W–D ∆ + 1 � �† - - - � ��������Col., GBBS, HP †Graphs with ∆ ∈ O(1)

JP-R [14] E O
(

logn+ log ∆ ·min
{√

m,∆ + log ∆ logn
log logn

})
O(n+m) W–D ∆ + 1 � - - - �†� ��������Col., GBBS, HP †Depth depends on

√
m or ∆

JP-LLF [14] E O
(

logn+ log ∆ ·
(

min {∆,
√
m}+ log2 ∆ logn

log logn

))
O(n+m) W–D ∆ + 1 � - - - �†� ��������GBBS, HP †Depth depends on

√
m or ∆

JP-SLL [14] E O
(

log ∆ logn+ log ∆ ·
(

min {∆,
√
m}+ log2 ∆ logn

log logn

))
O(n+m) W–D ∆ + 1 � - - - �†� ��������GBBS, HP †Depth depends on

√
m or ∆

JP-ASL [15], [30] O(n · I) J O(n · I · P ) J W–D ∆ + 1 � - - ä† ä† � ��������ColPack †No detailed bounds available

JP-ADGJP-ADGJP-ADG [This Paper] E O
(

log2 n+ log ∆ ·
(
d logn+ log d·log2 n

log logn

))
O(n+m) W–D 2(1 + ε)d+ 1 � - - - -† -†�������� [This work] †Often, d� ∆

JP-ADG-MJP-ADG-MJP-ADG-M [This Paper]
(a variant described in § V) E O

(
log2 n+ log ∆ ·

(
d logn+ log d·log2 n

log logn

))
O(n+m) W–D 4d+ 1 � - - - -† -†�������� [This work] †Often, d� ∆

DEC-ADGDEC-ADGDEC-ADG [This Paper] O
(
log d log2 n

)
w.h.p. O(n+m)

(w.h.p.) W–D (2 + ε)d �∗ - - -† - - �������� [This work]
∗Using CREW gives EO(nd+m)
work. †Work efficient in expectation.

DEC-ADG-MDEC-ADG-MDEC-ADG-M [This Paper]
(a variant described in § V) O

(
log d log2 n

)
w.h.p. O(n+m)

(w.h.p.) W–D (4 + ε)d �∗ - - -† - - �������� [This work]
∗Using CREW gives EO(nd+m)
work. †Work efficient in expectation.

DEC-ADG-ITRDEC-ADG-ITRDEC-ADG-ITR [This Paper] O (I · d logn), [work bound is complex, details in text (§ IV-C)] W–D 2(1 + ε)d+ 1- - �� � - �������� [This work] I is the number of iterations in [23]

TABLE III: Comparison of parallel graph coloring algorithms. “Greedy-X” is a the Greedy sequential coloring scheme [8], with ordering X. “JP-X” is a Jones and Plassmann scheme [9], with ordering X.
“(MIS)” indicates that a given algorithm solves the Minimum Independent Set (MIS) problem, but it can be easily converted into a parallel GC algorithm. “EREW, CREW, and CRCW” are well-known variants of
the PRAM model. “Performance” and “Quality” summarize the run-times and coloring qualities, based on the extensive existing evaluations [14], [16], [20] and our analysis (§ VI), focusing on modern real-world
graphs as input sets (we exclude Class 1 as it is not relevant for practical purposes). “Seg.” is a simple sequential (RAM) model. “W–D” indicates work-depth. “F. (Free)?”: Is the heuristic provably free from using
concurrent writes? “G. (General)?”: Does the algorithm work for general graphs? “R. (Randomized)?”: Is the algorithm randomized? “W. (Work-efficient)?”: Is the algorithm provably work-efficient (i.e., does it
takeO(n+m) work)? “S. (Scalable)?”: Is the algorithm provably scalable (i.e., does it takeO(a logb n), where a� n and b ∈ N)? “Q. (Quality)?”: Does the algorithm provably ensure the coloring quality
better than the trivial ∆ + 1 bound? Code used: source code evaluated in this work; respective repositories are ColPack [30], [31], Zoltan [18], [32]–[35], original code by Hasenplaugh et al. (HP) [14], and Graph
Based Benchmark Suite with Ligra [36]–[38]. “-”: full support, “�”: partial support, “�”: no support, “ä”: unknown, “J”: bounds based on our best-effort derivation; I is the number of iterations. “w.h.p.”: with
high probability. All symbols are explained in Table I. ‡ log∗ n grows very slowly. The proposed schemes are the only ones with provably good work and depth and quality.

that using ADG in combination with these works simplifies
deriving better bounds for such algorithms, as seen by the
example of DEC-ADG-ITR, see § IV-B.

V. OPTIMIZATIONS AND IMPLEMENTATION

Here, the main driving question that we followed was how to
maximize the practical performance of the proposed coloring
algorithms while maintaining all the theoretical guarantees?
All theorems, proofs, and detailed listings are in the full report.

Representation of U and R The first key optimization
(ADG, Alg. 1) is to maintain set U (vertices still to be assigned
the rank ρ) and sets R(·) (vertices removed from U ) together
in the same contiguous array such that all elements in R(·)
precede all elements in U . In iteration i, this gives an array
[R(1) ... R(i) index U ], where index points to the first
element of U (initially, index is 0). Each R(i) is kept sorted by
(increasing) vertex degrees. On one hand, this requires sorting
R(i) at every iteration, which we tackle with linear time
integer sort. The benefit – among others – is that removing
R(i) from U (Line 12) only takes O(1) time by simply moving
the index pointer by |R| positions “to the right”.

Linear Sorting We additionally explored different schemes
for fast parallel integer sort used to maintain the above-
described representation of U ∪ R. We tried different algo-
rithms (radix sort [64], counting sort [65], and quicksort [66]).

Combining JP and ADG We observe that Part 1 of JP-
ADG (Lines 6–9, Algorithm 2), where one derives prede-
cessors and successors in a given ordering to construct the
DAG Gρ, can also be implemented as a part of UPDATE in
ADG, in Algorithm 1. To maintain the output semantics of
ADG, we calculate a new priority function ρ′ that simultane-
ously specifies the needed DAG structure. For each v ∈ V , ρ′

is defined as the number of neighbors u ∈ N(v), for which
ρ(u) > ρ(v) holds. There is no change in theory results.

Median We also use degree median instead of degree aver-
age in ADG, to derive R: R = {u ∈ U | D[u] ≤ (1 + ε)δm},
where δm is median of degrees of vertices in U . This enables
minor speedups for some graphs.

Push vs. Pull Computing ρ′ can be implemented either in
the push or the pull style (pushing updates to a shared state or
pulling updates to a private state) [19]. We analyzed with both
and found that, while pushing needs atomics, pulling incurs
more work. Both options ultimately give similar performance.

Infrastructure Details We integrated our algorithms with
GBBS [36], a recent platform for testing parallel graph algo-
rithms. We use OpenMP [67] for parallelization.

VI. EVALUATION

In evaluation, we found that empirical results follow theoreti-
cal predictions, already scrutinized in Table III and Section IV.
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online execution scheduling, ...)

SC JP

coloring_time

h−dsk
h−wdb

h−wit
l−act

m
−stk

s−frs
s−gm

c
s−gm

c2
s−ork

v−wbb

0

100

200

0

2

4

6

0.0

0.5

1.0

1.5

0

2

4

0.00

0.25

0.50

0.75

0

10

20

30

40

0

200

400

600

0.0

2.5

5.0

7.5

10.0

0

1

2

3

0

10

20

30

SC JP

M
em

or
y 

fa
ul

ts
 in

 IT
R

-A
SL

M
em

or
y 

fa
ul

ts
 in

IT
R

-A
SL

SC: speculative
coloring schemes

JP: Jones and
Plassman schemes

SC JP

SC: speculative coloring schemes
JP: Jones and Plassman schemes

SC JP

3535

5353
6161

4141
3333 3434 3636 3333 3535

5656

6969

1616
1818 1919

1616 1616 1616 1616 1616 1616
1818

2020

5959
7575

9090
7474

5656
7272 7272

5555 6262

8181

103103

191191

269269281281
257257

186186189189199199194194211211
250250

296296

3939

5656 5858 5454

4040
5050 5050

4141 4343

5656 5555

4040

6767 7272
6464

3939 4040 4141 4040 4141

6666 6565

3131

4444 4444
4040

3131 3131 3333
2929 3131

4040

5151

4040

5555
6767

5454

3838 4040 4343
3737 3838

6060
7171

7272 7676
8484

7676 7373 7171 7373 6969 7070
8383

101101

h−bai
h−hud

m
−w

ta
s−flc

s−flx
s−lib

s−pok
s−you

v−ew
k

v−skt

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

C
ol

or
in

g 
qu

al
ity

 [C
ol

or
 c

ou
nt

 re
la

tiv
e 

to
 J

P−
R

]

11
1

148

12
8

12
8

10
7

10
6

10
8

11
1

10
6

10
5 11

5

DE
C−

AD
G−

IT
R

IT
R

IT
R−

AS
L

JP
−A

DG
JP

−L
F

JP
−L

LF
JP

−R
JP

−F
F

JP
−S

LL
JP

−S
L

JP
−A

SL

DE
C−

AD
G−

IT
R IT
R

IT
R−

AS
L

IT
RB

JP
−A

DG
 

JP
−L

F 
JP

−L
LF

JP
−S

L
JP

−S
LL

JP
−R

JP
−F

F

[GBBS/Ligra]

[GBBS/Ligra] [Zoltan]
[ColPack][ColPack] [ColPack]

5050

6969

8787

5959
4848 4949 5151 4848 5151

7777

103103

8787

129129133133136136

8888 8888 9393 8585 8787

124124

163163

9494

136136

9595 9595 102102 9595 9494

127127137137

189189
219219

248248
212212

173173191191205205187187190190
241241

265265

8888

127127
140140

114114

8181 8888 9898
8484 8484

127127

172172

h−dsk
h−w

db
h−w

it
l−act

m
−stk

s−frs
s−gm

c
s−gm

c2
s−ork

v−w
bb

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

C
ol

or
in

g 
qu

al
ity

 [C
ol

or
 c

ou
nt

 re
la

tiv
e 

to
 J

P−
R

]

12
98

12
98

12
98

12
98

12
98

12
98

12
98

12
98

12
98

12
98

12
98

85
8

85
8

85
9

85
9

85
8

85
9

85
9

85
8

85
8

85
8

86
1

45
11

45
12

45
11

45
11

45
12

45
11

45
11

45
11

45
11

M
em

or
y 

fa
ul

ts
 in

 C
ol

Pa
ck

M
em

or
y 

fa
ul

ts
 in

 Z
ol

ta
n

M
em

or
y 

fa
ul

ts
 in

 C
ol

Pa
ck

M
em

or
y 

fa
ul

ts
 in

 Z
ol

ta
n

M
em

or
y 

fa
ul

ts
 in

 Z
ol

ta
n

56
6

57
3

59
8

56
4

52
1

53
9

55
2

53
2

55
8

57
3 64

5

15
07

15
07

15
07

15
07

15
07

15
07

15
07

15
07

15
07

15
12

DE
C−

AD
G−

IT
R

IT
R

IT
R−

AS
L

JP
−A

DG
JP

−L
F

JP
−L

LF
JP

−R
JP

−F
F

DE
C−

AD
G−

IT
R IT
R

IT
R−

AS
L

IT
RB

JP
−A

DG
JP

−L
F

JP
−L

LF
JP

−S
L

JP
−S

LL
JP

−R
JP

−F
F

[Zoltan]
[ColPack]

[ColPack]
[HP] [HP]

[GBBS/Ligra]
[HP]

[GBBS/Ligra]

reordering_time coloring_timereordering_time

Fig. 1: Run-times (1st and 3rd columns) and coloring quality (2nd and 4th columns). Two plots next to each other correspond to the same graph. Graphs are representative
(other results follow similar patterns). Parametrization: 32 cores (all available), ε = 0.01, sorting: Radix sort, direction-optimization: push, JP-ADG variant based on average degrees
δ̂. SL and SLL are excluded from run-times in the right column (for larger graphs) because they performed consistently worse than others. We exclude DEC-ADG for similar
reasons and because it is of mostly theoretical interest; instead, we focus on DEC-ADG-ITR, which is based on core design ideas in DEC-ADG. Numbers in bars for color counts
are numbers of used colors. “SC”: results for the class of algorithms based on speculative coloring (ITR, DEC-ADG-ITR). “JP”: results for the class of algorithms based on the
Jones and Plassman approach (color scheduling, JP-*). A vertical line in each plot helps to separate these two classes of algorithms. DEC-ADG-ITR uses dynamic scheduling.
JP-ADG uses linear time sorting of R. Any schemes that are always outperformed in a given respect (e.g., Zoltain in runtimes or ColPack in qualities) are excluded from the plots.
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JP-ADG variant based on average degrees δ̂. DEC-ADG-ITR uses dynamic scheduling. JP-ADG uses linear time sorting of R. In weak scaling, we use n = 1M vertices.

Thus, for brevity, we now summarize the most important
observations. A comprehensive comparison of run-times and
coloring qualities of different algorithms is in Table III (to-
gether with abbreviations of used comparison baselines).

Used Architectures In the first place, we use Einstein,
an in-house Dell PowerEdge R910 server with an Intel Xeon
X7550 CPUs @ 2.00GHz with 18MB L3 cache, 1TiB RAM,
and 32 cores per CPU (grouped in four sockets). We also
conducted experiments on Ault (a CSCS server with Intel
Xeon Gold 6140 CPU @ 2.30GHz, 768 GiB RAM, 18 cores,
and 24.75MB L3) and Fulen (a CSCS server with Intel
Skylake @ 2GHz, 1.8 TiB RAM, 52 cores, and 16MB L3).

Methodology We provide absolute runtimes when report-
ing speedups. In our measurements, we exclude the first mea-
sured 1% of performance data as warmup. We derive enough
data to obtain the mean and 95% non-parametric confidence
intervals. Data is summarized with arithmetic means.

Algorithms & Datasets We focus on modern heuris-
tics from Table III. For each scheme, we always pick the
most competitive implementation (i.e., fewest colors used
and smallest performance overheads), selecting from existing
repositories (ColPack [30], [31], Zoltan [18], [32]–[35],
original code by Hasenplaugh et al. (HP) [14], GBBS
with Ligra [36]–[38]), and our implementation. Detailed
parametrizations are in the reproducibility appendix. We use
real-world graphs from SNAP [68], KONECT [69], DI-
MACS [70], and WebGraph datasets [71]; see Table IV for
details. We analyze synthetic power-law graphs (generated
with the Kronecker model [72]). This gives a large evaluation
space; we only summarize selected findings.

The results are in Figure 1. Following past analyses [14],
we consider separately two distinctive families of algorithms:
those based on speculative coloring (SC), and the ones with
the Jones and Plassman structure (color scheduling). These
two classes of algorithms – especially for larger datasets –
are often complementary, i.e., whenever one class achieves
lower performance, the other thrives, and vice versa. This is
especially visible for larger graphs, such as h-dsk, h-wdb, or
s-gmc. The reason is that the structure of some graphs (e.g.,
with dense clusters) entails many coloring conflicts which may

need many re-coloring attempts, giving long tail run-times.
Summary Our algorithms almost always offer superior

coloring quality. Only JP-SL, JP-SLL (HP), and sometimes
ITRB by Boman et al. [21] (Zoltan) use comparably few
colors, but they are at least 1.5× and 2× slower, respectively.
Simultaneously, run-times of our algorithms are comparable
or marginally higher than the competition (in the class of
algorithms with speculative coloring) and within at most 1.3-
1.4× of the competition (in the class of JP baselines). Thus,
we offer the best coloring quality at the smallest required run-
time overhead. Finally, our routines are the only ones with
theoretical guarantees on work, depth, and quality.

Run-Times with Full Parallelism We analyze run-times
using all the available cores. Whenever applicable, we show
fractions due to reordering (preprocessing, e.g., the “ADG”
phase in JP-ADG) and the actual coloring (e.g., the “JP” phase
in JP-ADG). JP-SL, JP-SLL (HP), and JP-ASL (ColPack) are
the slowest as they offer least parallelism. JP-LF, JP-LLF,
and JP-R (GBBS/Ligra) are very fast, as their depth is in
O(log n). We also analyze speculative coloring from ColPack
and Zoltan; we summarize the most competitive variants. ITR
does not come with clear bounds on depth, but its simple and
parallelizable structure makes it very fast. ITRB schemes are
>2× slower than other baselines and are thus excluded from
run-time plots. We also consider an additional variant of ITR
based on ASL [30], ITR-ASL. In several cases, it approaches
the performance of ITR.

The coloring run-times of JP-ADG are comparable to JP-
LF, JP-LLF, and others. This is not surprising, as this phase

Friendships: Friendster (s-frs, 64M, 2.1B), Orkut (s-ork, 3.1M, 117M), LiveJournal (s-ljn, 5.3M, 49M),
Flickr (s-flc, 2.3M, 33M), Pokec (s-pok, 1.6M, 30M), Libimseti.cz (s-lib, 220k, 17M),
Catster/Dogster (s-cds, 623k, 15M), Youtube (s-you, 3.2M, 9.3M), Flixster (s-flx, 2.5M, 7.9M),
Hyperlink graphs: GSH domains (h-dgh, 988M, 33.8B), SK domains (h-dsk, 50M, 1.94B),
IT domains (h-dit, 41M, 1.15B), Arabic domains (h-dar, 22M, 639M),
Wikipedia/DBpedia (en) (h-wdb, 12M, 378M), Indochina domains (h-din, 7.4M, 194M),
Wikipedia (en) (h-wen, 18M, 172M), Wikipedia (it) (h-wit, 1.8M, 91.5M),
Hudong (h-hud, 2.4M, 18.8M), Baidu (h-bai, 2.1M, 17.7M), DBpedia (h-dbp, 3.9M, 13.8M),
Communication: Twitter follows (m-twt, 52.5M, 1.96B), Stack Overflow interactions
(m-stk, 2.6M, 63.4M), Wikipedia talk (en) (m-wta, 2.39M, 5.M),
Collaborations: Actor collaboration (l-act, 2.1M, 228M), DBLP co-authorship (l-dbl, 1.82M,
13.8M), Citation network (patents) (l-cit, 3.7M, 16.5M), Movie industry graph (l-acr, 500k, 1.5M)
Various: UK domains time-aware graph (v-euk, 133M, 5.5B), Webbase crawl
(v-wbb, 118M, 1.01B), Wikipedia evolution (de) (v-ewk, 2.1M, 43.2M),
USA road network (v-usa, 23.9M, 58.3M), Internet topology (Skitter) (v-skt, 1.69M, 11M),

TABLE IV: Considered real graphs from established datasets [68]–[71]. Graph are sorted
by m in each category. For each graph, we show its “(symbol used, n, m)”.



is dominated by the common JP skeleton (with some minor
differences from varying schedules of vertex coloring). How-
ever, the reordering run-time in JP-ADG comes with certain
overheads because it depends on log2 n. This is expected,
as JP-ADG – by its design – performs several sequential
iterations, the count of which is determined by ε (i.e., how
well the degeneracy order is approximated). Importantly, JP-
ADG is consistently faster (by more than 1.5×) than JP-SL
and JP-SLL that also focus on coloring quality.

DEC-ADG-ITR – similarly to JP-ADG – entails ordering
overheads because it precomputes the ADG low-degree de-
composition. However, total run-times are only marginally
higher, and in several cases lower than those in ITR. This is
because the low-degree decomposition that we employ, despite
enforcing some sequential steps in preprocessing, reduces
counts of coloring conflict, translating to performance gains.

Coloring Quality Coloring quality also follows the theo-
retical predictions: JP-SL outperforms JP-SLL, JP-LF, and JP-
LLF (by up to 15%), as it strictly follows the degeneracy order.
Overall, all four schemes (GBBS/Ligra, HP) are competitive.
As expected, JP-FF and JP-R come with much worse coloring
qualities because they do not focus on minimizing color
counts. As observed before [14], ITR (ColPack) outperforms
JP-FF and JP-R but falls behind JP-LF, JP-LLF, JP-SLL,
and JP-SL. JP-ASL and ITR-ASL (ColPack) offer low (often
the lowest) quality. ITRB (Zoltan) sometimes approaches the
quality of JP-SL, JP-SLL, DEC-ADG-ITR, and JP-ADG.

The coloring quality of our schemes outperforms others
in almost all cases. Only JP-SL, JP-SLL (GBBS/Ligra, HP),
and sometimes ITRB (Zoltan) are competitive, but they are
always much slower. In some cases, JP-ADG (e.g., in s-ork)
and DEC-ADG-ITR (e.g., in s-gmc) are better than JP-SL
and JP-SLL (by 3-10%). Hence, while the strict degeneracy
order is in general beneficial when scheduling vertex coloring,
it does not always give best qualities. JP-ADG consistently
outperforms others, reducing used color counts by even up to
23% compared to JP-LLF (for m-wta). Finally, DEC-ADG-
ITR always ensures much better quality than ITR, up to 40%
(for s-lib). Both DEC-ADG-ITR and JP-ADG offer similarly
high coloring qualities across all comparison targets.

Strong Scaling We also investigate strong scaling (i.e., run-
times for the increasing thread counts). Relative performance
differences between baselines do not change significantly, ex-
cept for SLL that becomes more competitive when the thread
count approaches 1, due to the tuned sequential implementa-
tion that we used [14]. Representative results are in Figure 2;
all other graphs result in analogous performance patterns. Most
variants from ColPack, Zoltan, GBBS/Ligra, and HP scale well
(we still exclude Zoltan due to high runtimes). Importantly,
scaling of our baselines is also advantageous and comparable
to others. This follows theoretical predictions, as the log2 n
factor in our depth bounds is alleviated by the presence of
the degeneracy d (or log d) instead of ∆, as opposed to the
competition; see § IV-D on page 7 for details.

Weak Scaling Weak scaling is also shown in Figure 2. We
use Kronecker graphs [72] of the increasing sizes by varying

the number of edges/vertex; this fixes the used graph model.
JP-ADG scales comparably to other JP baselines; DEC-ADG-
ITR scales comparably or better than ITR or ITR-ASL.

Impact of ε Representative results of the impact of ε are in
Fig. 3. As expected, larger ε offers more parallelism and thus
lower runtimes, but coloring qualities might decrease. Still,
the decrease is minor, and the qualities remain the highest or
competitive across almost the whole spectrum of ε.
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Fig. 3: Impact of ε on run-times and coloring quality. Parameters: 32 cores, sorting:
Radix sort, direction-optimization: push, JP-ADG variant based on average degrees δ̂.
DEC-ADG-ITR uses dynamic scheduling. JP-ADG uses linear time sorting of R.

Memory Pressure We also investigate the pressure on the
memory bus, see Figure 4. For this, we use PAPI [73] to
gather data about idle CPU cycles and L3 cache misses. Low
ratios of L3 misses or idle cycles indicate high locality and
low pressure on the memory bus. Overall, our routines have
comparable or best ratios of active cycles and L3 hits.

Fraction of L3 misses
Fraction of stalled cyclesOur routines (DEC-ADG-ITR & JP-ADG) are indicated with arrows .

In their respective classes of algorithms, have competitive (low) counts
of idle CPU cycles and L3 misses, indicating low memory pressure
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(out of all CPU cycles) in each algorithm execution. Parametrization: graph h-hud, 32
cores, sorting: Radix sort, direction-optimization: push, JP-ADG uses average degrees δ̂.
DEC-ADG-ITR uses dynamic scheduling. JP-ADG uses linear time sorting of R.

Performance Profiles We also summarize the results from
Figure 1 using performance profiles [74], see Figure 5 for
a representative profile for coloring quality. Details on using
performance profiles are in the extended report due to space
constraints; intuitively, such a profile shows cumulative distri-
butions for a selected performance metric (e.g., a color count).
The summary in Figure 5 confirms the previous insights: DEC-
ADG-ITR, JP-ADG, and JP-SL offer the best colorings.

Additional Analyses We also vary push vs. pull and other
parameters from Section V; this does not impact the previous
insights (details are in the extended report).

VII. RELATED WORK

We already exhaustively analyzed a large body of sequential
& parallel graph coloring heuristics [1]–[6], [8]–[14], [16],
[20], [59]–[63], [75] in Section I and in Table III. Almost all of
them have theoretical guarantees based on the work-depth [76]
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or the PRAM model [77]. We build on and improve on these
works in several dimensions, as explained in detail in Section I.

Many works exist in the theory of distributed graph
coloring based on models such as LOCAL or CONGESTED-
CLIQUE [78]–[92]. These algorithms are highly theoretical
and do not come with any implementations. Moreover, they
come with assumptions that are unrealistic in HPC settings, for
example distributed LOCAL and CONGEST algorithms do not
initially know the interconnection graph, or the message size
in LOCAL algorithms can be unbounded. Finally, they cannot
be directly compared to Work-Depth or PRAM algorithms.
Thus, they are of little relevance to our work.

Next, many practical parallel and distributed approaches
have recently been proposed. They often use different spec-
ulative schemes [17]–[29], where vertices are colored specu-
latively and potential conflicts are resolved in a second pass.
Some of these schemes were implemented within frameworks
or libraries [30], [93]–[95]. Another line of schemes incor-
porates GPUs and vectorization [24], [27], [28], [96]–[100].
Other schemes use recoloring [101], [102] in which one
improves an already existing coloring. Patidar and Chakrabarti
use Hadoop to implement graph coloring [103]. Alabandi et
al. [104] illustrate how to increase parallelism of coloring
heuristics. These works are orthogonal to this paper: they
do not provide theoretical analyses, but they usually offer
numerous architectural and design optimizations that can be
combined with our algorithms for further performance bene-
fits. As we focused on theoretical guarantees and its impact
on performance, and not on architecture-related optimizations,
we leave integration with these optimizations as future work.

There are works on coloring specific graph classes, such
as planar graphs [105]–[108]. Some works impose additional
restrictions, for example coloring balance, which limits differ-
ences between numbers of vertices with different colors [109]–
[111]. Other lines of related work also exist, for example on
edge coloring [112], dynamic or streaming coloring [113]–
[118], k-distance-coloring and other generalizations [119]–
[121], and sequential exact coloring [122]–[124]. There are
even works on solving graph coloring with evolutionary and
genetic algorithms [125]–[127] and with machine learning
methods [128]–[131]. All these works are unrelated as we
focus on unrestricted, parallel, and 1-distance vertex coloring
with provable guarantees on performance and quality, target-

ing general, static, and simple graphs.
The general structure of our ADG algorithm, based on

iteratively removing vertices with degrees in certain ranges
defined by the approximation parameter ε, was also used to
solve other problems, for example the (2 + ε)-approximate
maximal densest subgraph algorithms by Dhulipala et al. [36].
Finding more applications of ADG is left for future work.

We note that, while our ADG scheme is the first paral-
lel algorithm for deriving approximate degeneracy ordering
with a provable approximation factor, two algorithms in the
streaming setting exist [132], [133].

Graph coloring has been targeted in several recent works
related to broad graph processing paradigms, abstrac-
tions, and frameworks [19], [134]–[141]. Several HPC
works [142]–[144] consider distributed graph coloring in the
context of high-performance RDMA networks and RMA pro-
gramming [145]–[150]. Different coloring properties of graphs
were also analyzed in the context of graph compression and
summarization [151], [152].

VIII. CONCLUSION

We develop graph coloring algorithms with strong theoretical
guarantees on all three key aspects of parallel graph coloring:
work, depth, and coloring quality. No other existing algorithm
provides such guarantees.

One algorithm, JP-ADG, is often superior in coloring qual-
ity to all other baselines, even including the tuned SL and SLL
algorithms specifically designed to reduce counts of used col-
ors [14]. It also offers low run-times for different input graphs.
As we focus on algorithm design and analysis, one could
combine JP-ADG with many orthogonal optimizations, for
example in the GPU landscape, to achieve more performance
without sacrificing quality. Another algorithm, DEC-ADG, is
of theoretical interest as it is the first routine – in a line of
works based on speculative coloring – with strong theoretical
bounds. While being less advantageous in practice, we use its
underlying design to enhance a recent coloring heuristic [23]
obtaining DEC-ADG-ITR, an algorithm with (1) strong quality
bounds and (2) competitive performance, for example up to
40% fewer colors used then compared to the base design [23].

Our algorithms use a very simple (but rich in outcome)
idea of provably relaxing the strict vertex degeneracy order,
to maximize parallelism when deriving this order. This idea,
and our corresponding parallel ADG algorithm, are of separate
interest, and could enhance other algorithms that rely on vertex
ordering, for example in mining maximal cliques [39], [40].

We provide the most extensive theoretical study of parallel
graph coloring algorithms. This analysis can be used by other
researchers as help in identifying future work.
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[17] Ü. V. Çatalyürek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and
A. Pothen, “Distributed-memory parallel algorithms for matching and
coloring,” in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum. IEEE, 2011, pp.
1971–1980.
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