
FASTFLOW: Flexible Adaptive Congestion Control for
High-Performance Datacenters

Tommaso Bonato

ETH Zürich

Microsoft

Abdul Kabbani

Microsoft

Daniele De Sensi

Sapienza University of Rome

Rong Pan

AMD

Yanfang Le

AMD

Costin Raiciu

Broadcom Inc.

Mark Handley

Broadcom Inc.

Timo Schneider

ETH Zürich

Nils Blach

ETH Zürich

Ahmad Ghalayini

Microsoft

Daniel Alves

Microsoft

Michael Papamichael

Microsoft

Adrian Caulfield

Microsoft

Torsten Hoefler

ETH Zürich

Microsoft

ABSTRACT
The increasing demand of machine learning (ML) workloads

in datacenters places significant stress on current congestion

control (CC) algorithms, many of which struggle to main-

tain performance at scale. These workloads generate bursty,

synchronized traffic that requires both rapid response and

fairness across flows. Unfortunately, existing CC algorithms

that rely heavily on delay as a primary congestion signal

often fail to react quickly enough and do not consistently

ensure fairness. In this paper, we propose FASTFLOW, a

streamlined sender-based CC algorithm that integrates de-

lay, ECN signals, and optional packet trimming to achieve

precise, real-time adjustments to congestion windows. Cen-

tral to FASTFLOW is the QuickAdapt mechanism, which

provides accurate bandwidth estimation at the receiver, en-

abling faster reactions to network conditions. We also show

that FASTFLOW can effectively enhance receiver-based al-

gorithms such as EQDS by improving their ability to manage

in-network congestion. Our evaluation reveals that FAST-

FLOW outperforms cutting-edge solutions, including EQDS,

Swift, BBR, and MPRDMA, delivering up to 50% performance

improvements in modern datacenter networks.

1 INTRODUCTION
In the quickly-evolving landscape of AI-centric datacenters,

the demand for large-scale and high-performance computing

(HPC) capabilities has risen to unprecedented heights. This

paradigm shift is demonstrated by the exponential growth of

large-scale AI training [16, 52] and the proliferation of HPC

offerings in the cloud [17]. The demand for high throughput

at an affordable cost and low latency has become extremely

important, and a crucial component to achieving those tar-

gets lies in network infrastructure and protocols.

A notable manifestation of this demand is found in the

statistics - a staggering 70% of Azure’s traffic is carried by

Remote Direct Memory Access (RDMA) technology [7], and

all major cloud providers are relying on similar technolo-

gies [17, 24, 48]. Yet, as we witness this transformation, it is

worth acknowledging that existing protocols may not suit

the demands of large-scale high-bandwidth networking. For

example, RDMA over Converged Ethernet (RoCE) is affected
by issues like excessive switch buffer requirements for Pri-
ority Flow Control (PFC), PFC storms, and in-order delivery

requirements [29, 38].

1.1 Motivation
Similar limitations can be found in CC algorithms and to

drive our design choices, we identified the following require-

ments for a modern high-performance CC algorithm.

1.1.1 Fairness. In this paper, we refer with the term fair-
ness to the ability of a CC algorithm to allocate the available

bandwidth evenly between competing flows. Minimizing jit-

ter and keeping a low and consistent flow completion time

(FCT) is particularly important in the context of AI and HPC

workloads that exhibit tightly coordinated and synchronized

communication patterns. In such systems, performance is

often dictated by the slowest node in the system [19, 30, 47],

as "straggler" flows and growing variability in FCT can have

a disproportionately high impact on overall job progress.

1

ar
X

iv
:2

40
4.

01
63

0v
3

 [
cs

.N
I]

 2
0

Se
p

20
24

FASTFLOW

Ideal Completion
Time

EQDS

MPRDMA

SwiftBBR

EQDS +
FASTFLOW

(a) 2MiB Flows

EQDS

FASTFLOW

MPRDMA

BBR Swift

EQDS +
FASTFLOW

(b) 32 MiB Flows

Figure 1: Comparison of FASTFLOW with recent CC
algorithms on an 8:1 oversubscribed fat tree running a
permutation. The first number under each algorithm
indicates the overall completion time, while the second
the time difference between the fastest and slowest
flow. The vertical gray line represents the ideal case
where all flows terminate as fast as possible.

This is exacerbated by the presence of bursty traffic, which

is often common in datacenters. For example, 80% of RPCs in

Google datacenters fit in 1 bandwidth-delay product (BDP),
and 89% fit in 4 BDP [6]. This behavior is also common in

someAIworkloads where nodes need to frequently exchange

few KiB of data [28]. Algorithms relying on delay to detect

congestion often react too late to such transient bursts [6, 57],

leading to unfair treatment of concurrently running flows

and increasing the completion time.

We show this effect in Fig. 1a, where we report the Cu-
mulative Distribution Function (CDF) of the Flow Completion
Time (FCT) of 2MiB flows in a permutation scenario with

1,024 nodes, for a 8:1 oversubscribed network (more details

on the setup in Sec. 4). We can notice how, with Swift [33],

a delay-based algorithm, the FCT of the slowest flow is 18%

longer than the fastest flow. An even more pronounced effect

can be observed with BBR [12] (which we observed needs up

to seven round trip times (RTTs) to adjust its sending rate).

MPRDMA [36], a per-packet ECN based mechanism suffers

from its inherit unfairness which is more visible for small

messages. Last, as we discuss further in Sec. 1.1.2, vanilla

EQDS [42], although more fair, does not manage fabric con-

gestion as effectively as sender-based CC algorithms. On the

other hand, the algorithm we propose (FASTFLOW) quickly

and precisely reacts to congestion by relying on different con-

gestion signals (delay, ECN markings, and packet trimming),

improving fairness and overall performance.

1.1.2 Fabric Congestion Management. Many CC algo-

rithms have been optimized for managing congestion at

the final hop caused by incast [27, 42] due to its relevance

for traditional TCP-based workloads [14]. However, with

the emergence of new workloads, those algorithms provide

sub-optimal performance, since they might have limited vis-

ibility of congestion happening in the network fabric. This

type of congestion is often the result of oversubscription (i.e.,

traffic exceeding the capacity of the network), common at

upper tiers of datacenter networks [6, 24], but can also occur

in a non-oversubscribed setting as a result of ECMP colli-

sions [2, 11, 23]. This is shown in Fig. 1b, where we report

the CDF of the FCT of 32MiB flows in a permutation scenario

with 1,024 nodes, for an 8:1 oversubscribed network. In this

scenario, flows are big enough to allow Swift and MPRDMA

to react effectively to congestion. However, FCT with EQDS

is higher due to its inability to adapt to fabric congestion,

hence underutilizing network bandwidth due to trimmed

packets and re-transmissions. As we show in Sec. 5.1, this

can be improved by complementing EQDS with FASTFLOW.

1.1.3 Ease of Deployment. Last, the constant increase in
the number of nodes used by workloads and the number of

network flows per node [45] limits the amount of memory

that can be used to track the flow state. This is even more

critical when we consider that network bandwidth is rapidly

reaching the Tbit/s range and that, for performance reasons,

(part of) the CC algorithm would be implemented in Network
Interface Cards (NICs). This limits the amount of memory

the algorithm can use and the complexity of the algorithms

that can be executed (at 800Gbit/s, with 4KiB packets, the

NIC needs to process one packet every 40 nanoseconds).

The escalating bandwidth requirements for network

switches, currently at 51.2 Tbit/s and beyond, impose con-

straints on the complexity of features these switches can

support. Additionally, gradually deploying new switch gen-

erations or incorporating switches from diverse vendors

with varying features is common in datacenters [50]. Con-

sequently, CC algorithms relying on specific new features

demanding switch hardware support [25, 35, 51] might have

difficulties getting adopted by datacenter providers.

1.2 Contributions
To fulfill these requirements, we introduce a new CC al-

gorithm which we call FASTFLOW (Sender-based Marked
Rapidly-adapting Trimmed & Timed Transport). FASTFLOW
is a sender-based CC algorithm running over lossy Ethernet.

To be easily deployable, FASTFLOW does not rely on any ad-

vanced in-band network telemetry (INT). It instead leverages

a combination of ECN-marking and round-trip-time (RTT)

measurements, two signals that have been commonly used in

a mutually exclusive manner despite each of them possessing

distinctive valuable benefits that complement one another

(as we show in Sec. 3.1). Last, FASTFLOW efficiently uses

memory and compute resources, since it only needs to store

a few bytes per flow and does not require any pull queue or
specific control packets, as common in many receiver-driven

2

FASTFLOW , ,

algorithms. Specifically, FASTFLOW makes the following

key contributions:

Quick Adapt A novel mechanism that can quickly con-

verge to the achievable bandwidth capacity at any bottleneck,

typically within one RTT of receiving a severe congestion

signal (Sec. 3.3). QuickAdapt relies on packet trimming or,

in the case where it is not supported, on timeouts (with

minimal performance impact, Sec. 4.1). Using QuickAdapt,

FASTFLOW can react to severe congestion as quickly as

a receiver-based protocol but without requiring any spe-

cial support on the receiver side (e.g., pull queues). We also

argue that this feature can be retrofitted to any transport

mechanism operating within tight RTT bounds, thus signifi-

cantly reducing tail latencies. In particular, QuickAdapt can

reduce queue occupancy much earlier than other sender-

based mechanisms.

Fair Increase/Decrease A new congestion window man-

agement technique to improve bandwidth fairness (Sec. 3.2.1

and Sec. 3.2.3). In a nutshell, the congestion window is in-

creased or decreased more conservatively (and proportion-

ally to the currently acknowledged packet size) when the

ECN and delay congestion signal disagree on the presence

of congestion. To reduce any small degree of unfairness that

might be present, FASTFLOW rapidly increases the conges-

tion window of flows (Sec. 3.4) if no congestion is detected

for a period of time.

2 BACKGROUND
The behavior of CC algorithms is mostly determined by how

they detect (Sec. 2.1) and react (Sec. 2.2) to congestion.

2.1 Congestion Signals
Delay End-to-end delay accurately approximates conges-

tion. Delay can be computed either by the sender, measuring

the RTT (e.g., in Swift [33] and TCP [13]), or by the receiver,

annotating acknowledgment packets (ACK) packets with

one-way delay information (e.g., in TIMELY [37] or DX [34]).

We assume in the following that accurate delay measure-

ments are computed through NIC timestamping [7, 33].

ECN-marking With explicit congestion notification (ECN),

switches set a bit in the traffic class field of the IP header

when a packet experiences congestion. The receiver sends

the marked packet back to the sender, which adjusts its rate

accordingly [3, 56, 60]. Because ECN notifies congestion us-

ing a single bit, it provides less information than time-based

signals, which instead account for the exact queuing delay

along the path. Switches can use different policies to decide

if a packet must be marked. For example, in random early
detection (RED) [20], switches randomly mark packets with

a probability linear in the switch queue size, if that size is

within two thresholds (𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥). Although ECN was

designed to mark packets when they are enqueued [21], it

has been shown that doing that when dequeued allows CC

algorithms to react faster. Dequeue marking can be easily

implemented on most existing switches [55], and in the rest

of the paper, we assume that switches use RED and mark

ECN packets when dequeued. Although ECN-based CC algo-

rithms can react quicker than delay-based ones, they perform

poorly when dealing with incast and can be challenging to

tune [33].

Packet Losses Packet losses have extensively been used to

detect severe congestion [20, 40]. However, by relying on

losses only, the algorithm would react too late to congestion.

Also, losses are often detected through timeouts, which are

hard to tune and can cause unnecessary retransmissions.

Packet Trimming With packet trimming, a switch can re-

move parts of the packet (e.g., payload) rather than dropping

it. Packet trimming retains essential information (e.g., head-

ers), allowing the host to quickly detect and react to con-

gestion [15, 27, 42]. Researchers demonstrated that packet

trimming can be implemented on switches such as Intel

Tofino, the Broadcom Trident 4 and NVidia Spectrum 2 by

leveraging their ability to reroute packets to an alternative

port when the initial egress queue becomes saturated [1].

In-Network Telemetry Whereas ECN and packet trim-

ming can be seen as a simple form of in-network telemetry,

other protocols report more detailed information, like maxi-

mum queue occupancy [35, 46] or links load [54] along the

path.

FASTFLOW uses both ECN and delay as congestion sig-

nals to react quickly and accurately to congestion. To ef-

ficiently manage severe congestion scenarios, FASTFLOW

relies on trimming or, if it is not supported, on timeouts. To

enable FASTFLOW to be deployed easily on existing net-

works, FASTFLOW does not rely on complex in-network

telemetry.

2.2 Rate Control
The decision on how to react to congestion can be made

either by the receiver [22, 27, 31, 39, 42, 59], the sender [3,

33, 58, 60] or the switch [25, 51]. Whereas receiver-based

algorithms can precisely regulate the transmission of the

different senders (e.g., in incast scenarios), they require extra

control packets and data structures (e.g., pull queues) on the

receiver side. Also, some of these algorithms can fall short

when dealing with fabric congestion [33]. On the other hand,

sender-based schemes do not require such extra complexity

3

but cannot precisely regulate the transmission rate during

incast traffic due to lack of interaction with the other senders.

FASTFLOW is a sender-based mechanism that, thanks

to our novel QuickAdapt algorithm (Sec. 3.3), can precisely

regulate the transmission rate in incast scenarios. At the

same time, FASTFLOW is resource-efficient since it does

not require pull queues. As already discussed, to improve

deployability, FASTFLOW does not rely on any complex or

new feature to be implemented in switches.

3 FASTFLOW DESIGN
Overview FASTFLOW is a high-performance, easy-to-

deploy, and lightweight CC algorithm that can quickly react

to congestion happening both at the last hop (incast) and in

any other part of the network. FASTFLOW keeps a number

of in-flight bytes equal to the size of a congestion window
(cwnd). FASTFLOW updates the window depending on the

estimated network congestion, striving to keep packets RTT

lower than a pre-determined and constant target RTT. This

can be expressed relatively to the base RTT (i.e., the RTT on

an empty network). The base RTT be computed when the dat-

acenter network is set up (once for each possible hop count)

or recomputed dynamically like what is done by Swift [33].

In the rest of the paper, we assume a target RTT equal to 1.5x

the base RTT. Consequently, we can also easily compute a

specific target RTT for each hop count by setting it to 50%

more than the base RTT (details in Sec. 3.5).

Required Features FASTFLOW relies on widely available

features like ECMP, ECN marking, and packet trimming.

ECMP and ECN marking are available on most datacenter

switches [9, 29, 41], whereas packet trimming can be imple-

mented on existing switches [1]. If ECMP is not supported,

we can still run the CC algorithm. If packet trimming is not

supported, FASTFLOW falls back to timeouts, with limited

performance impact (Sec. 4.1). Similarly to EQDS [42], we

assume that each switch port has a high-priority queue to

forward control packets such as trims and ACKs, and a lower-

priority queue to forward data packets. By doing so, packets

carrying potential congestion information are prioritized so

that FASTFLOW can react quickly.

Assumptions This work mainly focuses on widely used fat

tree networks [17, 43]. However, FASTFLOW could be easily

adapted to work with other topologies such as torus, Dragon-

fly [18, 24, 32], BCube [26], SlimFly [8], HammingMesh [28]

and others. Moreover, we intentionally limit buffering to a

worst-case scenario, assuming that each per-port queue is

one bandwidth-delay product (BDP) in size.

Presentation In the following, we motivate the choice of

using both delay and ECN as congestion signal (Sec. 3.1),

and then describe the main control loop (Sec. 3.2). We then

present QuickAdapt (Sec. 3.3) and FastIncrease (Sec. 3.4), two
techniques we introduce to further improve FASTFLOW re-

activeness. Eventually, we discuss how to select FASTFLOW

parameters (Sec. 3.5).

3.1 FASTFLOW Congestion Signals
Choosing the congestion signal is critical for the whole de-

sign of the protocol, and FASTFLOW uses both ECN and

delay (RTT). FASTFLOW can also leverage packet trimming

to react to severe congestion, which we discuss in Sec. 3.3.

In Fig. 2, we compare the full version of FASTFLOW with

a simple CC using ECN and delay, by simulating 8:1 incast

traffic on 1,024 nodes fat tree with 800Gbps links. In all the

simulation results, we use the htsim packet-level network

simulator [27]. We use the same congestion control logic for

both ECN only and RTT only (we decrease the congestion

window by half an MTU per packet at most in response to

high delay or ECN marking). We observe that the congestion

windows decrease faster when using ECN since, when using

delay, the receiver gets the congestion signal only after the

packet crosses the entire queue. On the other hand, RTT only
is more fair. Finally we show FASTFLOW as reference. With

it, we take advantage of both signals and also use Quick-

Adapt (Sec /3.3) to immediately adjust its windows to the

right value.

However delay is
more fair

‘ECN only’ is ~10% faster in reducing
the windows compared to delay

However ‘RTT only’
is more fair

FASTFLOW uses QuickAdapt to
immediately adjust its windows

Figure 2: Comparing FASTFLOW, ECN and delay-based
congestion signals during an incast. The windows start
at 1.42MiB (not shown in the figure).

On the other hand, delay is a more precise and fine-grained

congestion signal due to its multi-bit nature and can thus

estimate congestion more accurately. Moreover, it improves

the algorithm’s fairness since it is not affected by the random-

ness inherently present with ECN. We show this in Fig. 3a,

where we report the distribution of FCTs of the previous

experiment. We can see how delay is more fair but ECN is

slightly faster to react. Combining the two allows us to get

4

FASTFLOW , ,

 0.688ms 0.690ms

 0.675ms

FASTFLOW

(a)

 0.675ms 0.679ms

 0.762ms

 0.686ms

FASTFLOW

(b)

Figure 3: Impact of congestion signals and reaction
granularity on FASTFLOW performance. Running a
8:1 Incast of 8MiB on 1024 nodes at 800Gbps with 4KiB
MTU.

some benefits from both, reducing the overall completion

time. This is important as the last finishing flow would delay

tightly coupled applications such as ML training workloads.

Last, it is important to determine how often to react to

congestion signals. Many algorithms like MPRDMA react

once per ACK to improve responsiveness. However, it might

be hard to keep up when increasing network bandwidth. For

this reason, other algorithms like Swift or DCQCN react once

per period of time (e.g., once per RTT). As shown in Fig. 3b,

reacting on a per-packet basis can result in slightly better

performance. Indeed, the congestion window size is adapted

more smoothly, improving reaction times and reducing un-

fairness. We also observe how, even reacting only once every

50 packets does not significantly impact FASTFLOW perfor-

mance, which is within the 5% of the per-packet reaction

scenario.

3.2 Main Control Loop
In FASTFLOW, the sender recomputes the congestion win-

dow size every time it receives an ACK. When an ACK is

received, four different scenarios can occur depending on

the severity of congestion (or lack thereof), as reported by

the two congestion signals: Fair Decrease (Sec. 3.2.1), Multi-
plicative Decrease (Sec. 3.2.2), Fair Increase (Sec. 3.2.3), Multi-
plicative Increase (Sec. 3.2.4).

3.2.1 Fair Decrease (FD). The ACK is ECN-marked, but
the reported RTT is smaller than the target one. In this

case, queues are building up, but congestion has not yet af-

fected the acknowledged packet. FASTFLOW proactively

reacts by gently decreasing the window regardless of the

packet’s RTT. To improve fairness (see Sec. 4.2), the conges-

tion window is decreased more aggressively for flows with

larger windows (and thus, likely, more in-flight bytes) as

follows:

cwnd −= cwnd
bdp

· fd · p.size (1)

where bdp is the bandwidth-delay product (computed consid-

ering the base RTT), fd is fair decrease constant, and p.size is
the size of the acknowledged packet. Intuitively, the higher

fd, the more aggressively the congestion window is reduced.

We discuss how to choose fd in Sec. 3.5.

3.2.2 Multiplicative Decrease (MD). The ACK is ECN-
marked and reports an RTT higher than the target. This
indicates a worst-case scenario and, as a consequence, FAST-

FLOW rapidly reduces the congestion window proportion-

ally to the difference between the target and measured RTT,

as follows:

cwnd −= min

(
size,

p.rtt − trtt
p.rtt

·md · p.size
)

(2)

where trtt and p.rtt are the target and measured RTT, re-

spectively. FASTFLOW additionally applies Fair Decrease to
improve fairness (Sec. 3.2.1, not shown explicitly in Eq. 2). In

any case, the multiplicative decrease reduces cwnd at most

by the acknowledged packet’s size. md is a multiplicative
decrease constant selected so that when the RTT is twice

the target RTT, the congestion window is decreased aggres-

sively by a packet for each ACK. Thus, we want to have

p.rtt−trtt
p.rtt ·md · p.size = p.size, which implies md = 2.

3.2.3 Fair Increase (FI). The ACK is not ECN-marked
but reports anRTT higher than the target one. This might

indicate that the delay signal is outdated and the queues are

not growing significantly. Consequently, FASTFLOW gently

increases the congestion window, ignoring the delay signal.

To improve fairness (see Sec. 4.2), the window is increased

more aggressively for flows with smaller windows as follows:

cwnd += p.size
cwnd

·mtu · fi (3)

where fi is a fair increase constant and mtu is the Maximum
Transmission Unit. The higher fi, the more aggressively the

congestion window is increased. fi impacts small flows more

than large ones, and we discuss how to choose fi in Sec. 3.5.

3.2.4 Multiplicative Increase (MI). The received ACK is

not ECN-marked and reports an RTT smaller than the
target one. In this case, FASTFLOW increases the congestion

window proportionally to the difference between the target

and measured RTTs, as follows:

cwnd += min

(
size,

trtt − p.rtt
p.rtt

· p.size
cwnd

·mtu ·mi
)

(4)

mi is amultiplicative increase constant selected to increase
the congestion window by at most one MTU per RTT. If

we assume cwnd/p.size ACKs are received in an RTT, FAST-

FLOW would increase the window size by
trtt−p.rtt

p.rtt ·mtu ·mi
per RTT. Because we want this quantity to be smaller than

5

an MTU, mi ≤ rtt
trtt−p.rtt . Since p.rtt ≥ brtt, where brtt is the

base RTT, we set mi = brtt
trtt−brtt . This multiplicative increase

is followed by a fair increase to improve fairness (Sec. 3.2.3,

not shown explicitly in Eq. 4).

3.2.5 Overall Picture. Algorithm 1 summarizes the main

FASTFLOW logic. So far, we discussed lines 19-27, while we

discuss the remaining parts in the next sections. It is worth

remarking that FASTFLOW has a low memory footprint (19

bytes per flow, and 28 bytes globally) to ensure scalability

and ease of hardware implementation on NICs.

Algorithm 1 FASTFLOW Pseudocode

1: acked, bytes_ignored = 0 ⊲ Sec. 3.3
2:

3: procedure congestion_loop_logic(p)
4: acked += p.size
5: bytes_ignored += p.size
6:

7: if p.is_ack then
8: if bytes_ignored < bytes_to_ignore then
9: return ⊲ Ignore ACKs after QuickAdapt (Sec. 3.3)
10: end if
11:

12: can_decrease = wait_to_decrease(p) ⊲ Sec. 3.5.1
13: adp = quick_adapt(p) ⊲ Sec. 3.3
14: finc = fast_increase(p) ⊲ Sec. 3.4
15: if adp or finc then
16: return ⊲ Exit if QuickAdapt or FastIncrease triggered
17: end if
18:

19: if p.ecn and p.rtt ≤ trtt and can_decrease then
20: fair_decrease(p) ⊲ Sec. 3.2.1
21: else if p.ecn and p.rtt > trtt and can_decrease then
22: multiplicative_decrease(p) ⊲ Sec. 3.2.2
23: else if !p.ecn and p.rtt > trtt then
24: fair_increase(p) ⊲ Sec. 3.2.3
25: else if !p.ecn and p.rtt ≤ trtt then
26: multiplicative_increase(p) ⊲ Sec. 3.2.4
27: end if
28: else if p.is_trimmed or p.timeout_triggered then ⊲ Sec. 3.3
29: cwnd −= p.size
30: trigger_qa = true
31: retransmit_packet(p)

32: if bytes_ignored >= bytes_to_ignore then
33: quick_adapt(p) ⊲ Sec. 3.3
34: end if
35: end if
36: cwnd =max(min(cwnd, bdp), mtu) ⊲ Sec. 3.5
37: end procedure

3.3 QuickAdapt
The four cases presented in Sec. 3.2 describe how FAST-

FLOW reacts when receiving an ACK. However, if packets

are dropped, FASTFLOW reacts to such heavy congestion

by quickly adjusting the congestion window using a novel

technique, which we call QuickAdapt. QuickAdapt behaves

similarly to receiver-based CC algorithms without needing

special support on the receiver side (e.g., pull queues) or

per-packet states like in BBR [12].

By default, FASTFLOW relies on packet trimming to detect

packet drops. Traditionally, when using packet trimming, the

switch removes the payload and forwards the header if the

queue size exceeds a threshold [27]. This allows congestion

information to be communicated to the receiver even on

congested networks. With FASTFLOW, we trim packets only

if they would otherwise be dropped because of a full buffer.

QuickAdapt counts how many bytes have been received

over the last trtt and, if a loss is detected, it sets the conges-

tion window to that value. It is possible to scale that value

by a constant (qa_scaling) depending on the desired queue

occupancy (see Sec. 3.5). Because the sudden change caused

by QuickAdapt already factors in the subsequent feedback,

the receiver ignores the congestion information carried by

all the unacked packets received from when QuickAdapt is

triggered. By doing so, QuickAdapt does not overreact to

congestion and, for the same reason, it is applied at most once

per target RTT. The QuickAdapt pseudocode is presented

in Algorithm 2, while the interaction with the rest of the

FASTFLOW logic is visible in the previously presented Algo-

rithm 1. Figure 4 shows a simplified example of QuickAdapt

in action with a 2:1 incast.

Algorithm 2 QuickAdapt Pseudocode

1: procedure qick_adapt(p)

2: adapted = false
3: if now ≥ end then ⊲ QuickAdapt at most once per target RTT
4: if trigger_qa and end ≠ 0 then
5: trigger_qa = false
6: adapted = true
7: cwnd =max(acked, mtu)· qa_scaling
8: bytes_to_ignore = unacked ⊲ Ignore next congestion signals
9: bytes_ignored = 0

10: end if
11: end = now + trtt
12: acked = 0

13: end if
14: return adapted
15: end procedure

QuickAdapt without trimming. Although packet trimming

can be implemented on many existing switches [1], we also

want FASTFLOW to be compatible with switches lacking

such support. If trimming is not supported, FASTFLOW falls

back to a simple timeout-based approach, requiring minimal

changes to the overall logic (it reacts to timeouts like it does

on the reception of a trimmed packet). We compare FAST-

FLOW performance with and without trimming in Sec. 4.1.

Because FASTFLOW strives to keep the RTT below the tar-

get one, it uses aggressive timeouts to detect packet losses.

When using timeouts instead of trimming, we also double

6

FASTFLOW , ,

the value of themd constant. By doing so, FASTFLOW reacts

more aggressively to congestion and reduces the probability

of packet drops, which can decrease performance and reduce

link efficiency.

Sender 1
cwnd = 4pkt

Receiver 1
Switch

buffer = 4pkt

QuickAdapt()
cwnd = 2pkt

QuickAdapt()
cwnd = 2pkt

Data

Data

Data

Data

Sender 2
cwnd = 4pkt

Data

Data

Data

Data

Data

Data

Data

Data1

2

2

2
ACK

ACK

ACK

ACK

Trim
Trim

1

tr
tt

2

1

tr
tt

2

Trigger
QuickAdapt

Buffer
occupancy

Figure 4: QuickAdapt behavior for a 2:1 incast. Senders
have a starting window of 4 packets. When a sender
gets a trimmed packet it sets trigger_qa to true. After
trtt, it changes its window size to the number of Bytes
acknowledged during this time window (2 packets in
this case).

3.4 FastIncrease
FastIncrease quickly reclaims available bandwidth after the

termination of some flows (e.g., in case of incast with uneven

sizes). FastIncrease is triggered when at least cwnd subse-

quent bytes did not experience any congestion (i.e., the RTT

is close to the base RTT, and the ACKs are not ECN marked).

In that case, as long as FastIncrease stays active, the con-

gestion window is increased by 𝑘 MTUs for each ACK. 𝑘

is a constant that we set equal to 2 (after proper tuning)

(see Sec. 3.5). We show the FastIncrease pseudocode in Algo-

rithm 3 and how it interacts with the rest of the FASTFLOW

logic in Algorithm 1.

Algorithm 3 FastIncrease Pseudocode

1: procedure fast_increase(p)
2: if rtt ≈ brtt and not p.ecn then
3: count += p.size
4: if count > cwnd or increase then
5: cwnd += 𝑘 · mtu
6: increase = true
7: return increase
8: end if
9: else
10: count = 0

11: increase = false
12: end if
13: return increase
14: end procedure

3.5 Parameter Selection
Window Size Bounds FASTFLOW enforces the conges-

tion window size within a predefined range. We assume a

maximumwindow size of 1.25 BDP (higher than 1 to manage

transient bursts) and aminimumwindow size of 1MTU.Mod-

ern link speeds and delays (with a BDP around 900KiB [29]

and 4KiB MTUs) allow incast with hundreds (200 in this

example) of senders targeting a single receiver to be easily

supported. Higher incast degrees can be gracefully handled

by FASTFLOW at reduced link efficiency due to the poten-

tially higher number of trimmed or dropped packets. Alter-

natively, FASTFLOW can integrate a pacer-based solution

similar to the one introduced by Swift for cases when the

window would drop below one MTU [33]. However, it is

worth remarking that such high-degree incast are unlikely

to appear in modern AI workloads where traffic is dominated

by highly optimized collective operations that limit or avoid

incast [28].

ECN Marking We test FASTFLOW using RED queueing

discipline, with 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 set to 20% and 80% of the

switch queue size respectively [20].

Target RTT trtt is selected to be equal to 1.5𝑥 the base RTT.

Because we assume a queue size equal to 1 BDP, this cor-

responds to having half-full switch queues, thus halfway

between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 . By doing so, FASTFLOW allows

the loead balancer to react by forwarding packets on dif-

ferent paths, before taking more drastic actions involving a

reduction of the congestion window.

QuickAdapt Scaling Selecting qa_scaling = 1 would let

the RTT stabilize around the target RTT, corresponding to

a switch queue size to roughly in-between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 .

We set it instead to 0.8, so that the RTT drops to 0.8 the

target RTT (i.e., 0.8 · 1.5brtt = 1.2brtt), corresponding to a

switch queue size around𝐾𝑚𝑖𝑛 , thus reducing the probability

of triggering ECN marking.

FastIncrease/Decrease We set the fi and fd parameters (see

Sec. 3.2) to 0.25 and 0.8 respectively for 100Gbps links 4096B

MTU. This selection comes from tuning over hundreds of

combinations in all test scenarios of Sec. 4.

Scaling Last, some values need to be scaled depending on

the network bandwidth and latency since changing these

would affect the BDP and, thus, the maximum for conges-

tion windows. Consequently, the congestion window can be

increased more aggressively on networks with higher bdp.
Namely, the fi and mi parameters need to be multiplied by

𝛾 =
bdp

𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑏𝑑𝑝
, where reference_bdp is the network bdp

for a 100Gbps network with 12us RTT. On the other hand,

7

to be more conservative, both fd andmd are fixed regardless

of link speed, as we always want to react strongly in case of

congestion.

3.5.1 Interaction between CC and load balancing. An
adaptive load balancer can reduce the impact of fabric conges-

tion (e.g., caused by ECMP hashing collisions) without reduc-

ing the congestion window size. This is especially relevant

in permutation workloads running on non-oversubscribed

networks where, in principle, the congestion can be avoided

by properly balancing the traffic. To allow adaptive load bal-

ancer algorithms to react to such congestion, FASTFLOW

does not react to ECN-marked packets unless several marked

packets are received. In a nutshell, FASTFLOW keeps an ex-

ponential moving average tracking ECN-marked packets by

updating, for each packet, a variable avg_wtd = 𝛼 · p.ecn +
(1−𝛼) · avg_wtd. FASTFLOW does not decrease the conges-

tion window as long as avg_wtd < 0.25 (i.e. 25 percent or

more of the acks indicate congestion, which is a sufficiently

large threshold to rule out congestion caused by transient

load imbalance). We call this featureWait to Decrease (WTD).

4 EVALUATION
Simulation Setup. We ran simulations using and extending

the htsim packet-level network simulator [27]. Our simula-

tions consider four different fat-tree topologies, two non-

blocking (one with 1,024 and the other with 128 nodes), and

three with 1,024 nodes and 2:1, 4:1, and 8:1 oversubscription

ratios, due to the relevance of such topologies in produc-

tion datacenters [49]. We set a 4KiB MTU size, a 800 Gbps

network bandwidth, and a 400ns switch traversal latency,

consistent with the latest generation of switches [10, 18]. For

the sake of simplicity, we assume that all links have the same

length and, hence, the same latency, equal to 600ns.

State-of-the-art Comparison. We evaluate FASTFLOW

against EQDS, Swift, MPRDMA, and BBR. To have a fair

comparison and focus on congestion control, we enable trim-

ming and multi-pathing for all the algorithms. Indeed, run-

ning Swift or BBR in their vanilla version using a single

path would result in bad performance, mostly due to routing

rather than congestion control.

Analyzed Workloads. We consider the following three traf-

fic patterns: (i) incast: relevant for traditional datacenter
workloads, that often send requests to a large number of

workers, and must then handle their near-simultaneous re-

sponses; (ii) permutation: simulates point to point connec-

tions between pairs of nodes, selected so that each packet

crosses the core switches, to emulate a worst case scenario

and stress the load balancer; (iii) alltoall: relevant for many

AI workloads such as Mixture of Experts models.

4.1 Trimming vs. Timeouts
As discussed in Sec. 3.3, FASTFLOW relies on timeouts to

detect packet drops when the switches do not support trim-

ming. We now evaluate the impact of the lack of trimming.

In Fig. 6, we report an incast scenario on small (512 KiB)

messages, showing that the lack of trimming increases the

FCT by slightly more than one base RTT (equal to 8.6 𝜇s in

our setup).

We investigate this further in Fig. 7, reporting the increase

in FCT due to the lack of trimming support, showing that

the additional delay is often smaller than one base RTT,

and always within two base RTTs on all the scenarios we

evaluated. We also observed that less than 0.2% packets were

unnecessarily re-transmitted (not shown in the plot).

4.2 Incast
Fig. 5 shows the relative performance of FASTFLOW in incast

scenarios ranging from an 8:1 incast to a 100:1 incast for vary-

ingmessage sizes.We note that EQDS, being a receiver-based

mechanism, can easily achieve good performance. Indeed, it

can precisely communicate the window size to each sender

and schedule them to be perfectly fair.

On the other hand, sender-based mechanisms like

MPRDMA, FASTFLOW, and Swift perform slightly worse,

particularly true for medium sized messages. Small messages

do not overrun switch buffers, whereas for large enough

messages all the algorithms have enough time to converge

to the correct rate. The zone in between, usually for mes-

sages slightly smaller than BDP, is subject to random drop

events that affect sender-based mechanisms more. More-

over, MPRDMA seems to have slightly worse performance

due to its lack of fairness features. Finally, BBR struggles for

medium-sized messages since it needs more time to converge

to the correct rate.

4.3 Permutation
In Fig. 1, we show the results for a 2 MiB and 32 MiB permu-

tation traffic pattern on an 8:1 oversubscribed fat tree with

1,024 nodes. It is worth noting that, when using a relatively

small message of 2 MiB, just slightly bigger than the BDP,

FASTFLOW outperforms all other algorithms while being

fair (it can quickly react thanks to ECN). In Fig. 8a and Fig. 8b,

we show what happens on 2:1 and 4:1 oversubscribed fat

trees respectively. In these cases, FASTFLOW still outper-

forms the other algorithms, but not as much as in other cases,

a smaller oversubscription ratio is easier to manage even for

simpler CC algorithm.

In Fig. 8c we report instead the results for a scenario where

multiple permutations run in parallel (which can be the case

with a Butterfly AllReduce or a windowed AllToAll). In this

8

FASTFLOW , ,

Swift

BBR
MPRDMA

EQDSFASTFLOW

(a)

FASTFLOW

MPRDMA
BBR

Swift
EQDS

(b)

EQDS

BBR

Swift
MPRDMA

FASTFLOW

(c)

Figure 5: Relative incast performance for different message sizes and incast degrees.

1.1x Base RTT

FASTFLOW with trimming

FASTFLOW with timeouts

Figure 6: Flow completion time in a 16:1 512KiB incast
with and without trimming.

8:1
512KiB

8:1
4MiB

8:1
32MiB

32:1
512KiB

32:1
4MiB

32:1
32MiB

100:1
512KiB

100:1
4MiB

100:1
32MiB

Perm.
4MiB

Perm.
16MiB

Experiment

0

5

10

15

20

25

Ex
tra

 ru
nt

im
e

du
e

to
 n

o
tri

m
m

in
g

(u
s)

Base RTT

2x Base RTT

Trimming vs Timeout, multiple scenarios
1024 Nodes - 800Gbps - 4KiB MTU

Figure 7: Increase in runtime due to the lack of packet
trimming support for different workloads on a 1,024-
node fat tree. Perm. stands for permutation with an
oversubscribed network. Incasts are run without over-
subscription.

case, the performance gap between FASTFLOWand EQDS in-

creases up to 50%, while all the other sender based-algorithms

perform better but are still about 10% slower than FAST-

FLOW. Finally, we show in Fig. 8d a scenario with 2MiB

flows, except for one that is bigger and sends 4MiB. This

scenario shows how FASTFLOW outperforms other sender-

based mechanisms by almost 30% thanks to its capacity to

reclaim bandwidth quickly (see Sec. 3.4). This is also the case

for EQDS, which outperforms MPRDMA, BBR, and Swift

since it can also reclaim unused bandwidth quickly.

Generally, we can notice that for high oversubscription

ratios, the performance of EQDS degrades even more due to

the high number of trimmed packets. To further emphasize

this point, we measure the number of trimmed packets for

EQDS and report that, in the worst case scenario just men-

tioned, it can generate up to 155x more trimmed packets than

FASTFLOW, resulting in wasted bandwidth and resources.

The EQDS authors state that in such cases a CC algorithm

on the sender side would benefit its performance, and we

explore that in Sec. 5.1.

4.4 Alltoall
We also evaluate performance for alltoall communication, a

collective operation commonly used in AI workloads [28].

Due to the large number of messages generated, we use the

smaller topology to reduce simulation times. We use a win-

dowed algorithm for the alltoall to have at least 𝑘 active flows

per node at any time. We show the results in an oversub-

scribed fat tree, as a non blocking tree topology can theoret-

ically handle alltoall traffic without problems for congestion

control. We report the results of our evaluation in Fig. 9.

We observe that EQDS performance drops as the number of

parallel connection increases, consistent with the multiple

permutation results in Fig. 8c. On the other hand, sender-

based mechanisms handle that case better, with FASTFLOW

taking the lead being only 6% behind the ideal time.

5 DISCUSSION
5.1 Augmenting EQDS with FASTFLOW
One of the main drawbacks of using a receiver-based mech-

anism like EQDS, as shown in the previous results, is its bad

9

FASTFLOW

BBR

Swift

EQDS

MPRDMA

(a)

FASTFLOW

BBR EQDS

SwiftMPRDMA

(b)

EQDS

BBR

MPRDMA

FASTFLOW

Swift

(c)

BBR

EQDS

FASTFLOW

MPRDMA

Swift

BBR

(d)

Figure 8: Flow completion time with for different permutations on fat trees with different oversubscription ratios.

FASTFLOW

Figure 9: The number on top of each bar indicates the
time distance to the ideal completion time (grey dotted
line). k indicates the number of active flows at any
given time for a sender.

management of fabric congestion. As suggested in the EQDS

paper, it should be possible to improve EQDS’ performance

by complementing it with a sender-based CC algorithm. To

do so, we explore using EQDS with FASTFLOW, as well as

with a DCTCP-style CC algorithm (MPRDMA). While run-

ning in combination with EQDS, the role of the sender-based

congestion control is to limit its sending rate by capping the

congestion window and adapting as needed.

In theory, this combination should give us the benefits

of both world: perfect incast management thanks to the

receiver-based CC and the ability to deal with the other forms

of congestion thanks to a solid sender-based CC. In this work,

we only show a simple scenario where such combinations

seem beneficial for EQDS. A more in-depth analysis of such a

combination is necessary but outside the scope of this paper.

In Fig. 10 we report a permutation scenario on an 8:1

oversubscribed fat tree, with 2 MiB and 32 MiB flows. We

can see that FASTFLOW improves EQDS performance. For

2MiB flows, the improvement introduced by FASTFLOW is

higher than that of MPRDMA, thanks to its better fairness.

When running with 32 MiB flows except for one being 64

EQDS +
MPRMDA
242us, 88us

EQDS +
FASTFLOW
193us, 11us

EQDS
221us, 9us

FASTFLOW
186us, 15us

(a) All flows 2MiB.

EQDS +
FASTFLOW
3.4ms, 0.7ms

EQDS +
MPRMDA
4.1ms, 1.3ms

EQDS
4.3s, 0.3ms

FASTFLOW
3.1ms, 0.5ms

(b) One longer flow at 64 MiB.

Figure 10: Augmenting EQDS with sender-based mech-
anisms.

MiB, we can also see how we do very well on our own but

also help EQDS. In this case having FastIncrease is key to

recover quickly the bandwidth for the larger flow.

6 RELATEDWORK
Researchers proposed several datacenter CC algorithms, and

we discuss in the following how FASTFLOW differs from

some of the most recently proposed ones. Receiver-based

algorithms such as NDP [27], EQDS [42], pHost [22], Express-

Pass [59], SMSRP [31], and Homa [39] maintain end-to-end

credits that are used to adjust sender flow rates. They can ef-

fectively manage incast scenarios by precisely regulating the

transmission rates of the different senders. We have shown,

however, that they can struggle when dealing with fabric

congestion unless they are complemented with a sender-

based mechanism. FASTFLOW can instead deal with fabric

congestion and incast but without requiring pull queues.

On the other hand, sender-based CC algorithms can deal

better with fabric congestion, but might not be as respon-

sive when confronted with sudden workload shift (e.g. incast

or dynamic job arrivals or departures). Some of those algo-

rithms like DCTCP [4], Hull [5], and D
2
TCP [53] rely on

ECN marking. For example, DCQCN [60] combines ECN

and Priority-based Flow Control (PFC) to avoid packet losses

and react to congestion quickly. However, PFC is hard to

tune and can cause PFC storms [29, 38]. Differently from

10

FASTFLOW , ,

DCQCN, FASTFLOW is designed for lossy networks and re-

lies on packet trimming to avoid switches dropping packets,

thus avoiding all the issues related to the use of PFC. Other

sender-based algorithms Swift [33] and TIMELY [37] detect

congestion using delay but, as we show in this paper, they

cannot react as fast as ECN-based algorithms.

Last, some works recently demonstrated that having an

unfair congestion control can improve performance of jobs

running ML training workloads [44]. These works are or-

thogonal to FASTFLOW, since they target fairness between

different jobs, whereas FASTFLOW improves fairness be-

tween flows belonging to the same job.

7 CONCLUSION
This paper proposes FASTFLOW, a sender- and window-

based CC algorithm using ECN and delay as congestion sig-

nals and packet trimming to detect packet losses. When trim-

ming is not supported FASTFLOW falls back to a timeout-

based mechanism, which we show adds at most two base

RTT of delay. We evaluate FASTFLOW on several workloads,

showing that it constantly either outperforms or matches

the performance of EQDS, Swift, BBR, and MPRDMA by up

to 50%. Eventually, we show how FASTFLOW could comple-

ment receiver-based CC algorithms such as EQDS.

REFERENCES
[1] Popa Adrian, Dumitrescu Dragos, Handley Mark, Nikolaidis Geor-

gios, Lee Jeongkeun, and Raiciu Costin. 2022. Implementing packet

trimming support in hardware. (2022). arXiv:cs.NI/2207.04967

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:

Distributed Congestion-Aware Load Balancing for Datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).
Association for Computing Machinery, New York, NY, USA, 503–514.

https://doi.org/10.1145/2619239.2626316

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. 2010. Data Center TCP (DCTCP). SIGCOMM Comput.
Commun. Rev. 40, 4 (aug 2010), 63–74. https://doi.org/10.1145/1851275.
1851192

[4] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Mu-

rari Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings
of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10). Associa-
tion for Computing Machinery, New York, NY, USA, 63–74. https:

//doi.org/10.1145/1851182.1851192

[5] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,

Amin Vahdat, and Masato Yasuda. 2012. Less Is More: Trading a Little

Bandwidth for Ultra-Low Latency in the Data Center. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). USENIX Association, San Jose, CA, 253–266. https://www.usenix.

org/conference/nsdi12/technical-sessions/presentation/alizadeh

[6] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati.

2023. Bolt: Sub-RTT Congestion Control for Ultra-Low Latency. In 20th
USENIX Symposium on Networked Systems Design and Implementation

(NSDI 23). USENIX Association, Boston, MA, 219–236. https://www.

usenix.org/conference/nsdi23/presentation/arslan

[7] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,

Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei

Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad,

Vivek Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya German,

Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy

Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia John-

stone, Tom Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,

Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan

Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,

David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup

Namdhari, Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas

Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee, An-

thony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh

Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian, Lukasz Tom-

czyk, Vamsi Vadlamuri, AlecWolman, Ying Xie, Joyce Yom, Lihua Yuan,

Yanzhao Zhang, and Brian Zill. 2023. Empowering Azure Storage with

RDMA. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 49–67.

https://www.usenix.org/conference/nsdi23/presentation/bai

[8] Maciej Besta and Torsten Hoefler. 2014. Slim Fly: A Cost Effective

Low-Diameter Network Topology. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’14). IEEE Press, 348–359. https://doi.org/10.1109/SC.2014.

34

[9] Broadcom. 2024. Deploying AI/ML training clusters with IP/Ethernet.

(2024). https://www.broadcom.com/blog/deploying-ai-ml-training-

clusters-with-ip-ethernet (accessed 01/24).

[10] Broadcom. 2024. Tomahawk 5 Switch. (2024).

https://www.broadcom.com/products/ethernet-

connectivity/switching/strataxgs/bcm78900-series (accessed

01/24).

[11] Jiaxin Cao, Rui Xia, Pengkun Yang, ChuanxiongGuo, Guohan Lu, Lihua

Yuan, Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave Maltz.

2013. Per-Packet Load-Balanced, Low-Latency Routing for Clos-Based

Data Center Networks. In Proceedings of the Ninth ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’13).
Association for Computing Machinery, New York, NY, USA, 49–60.

https://doi.org/10.1145/2535372.2535375

[12] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-

heil Hassas Yeganeh, and Van Jacobson. 2017. BBR:

Congestion-Based Congestion Control. Commun. ACM
60 (2017), 58–66. http://cacm.acm.org/magazines/2017/2/

212428-bbr-congestion-based-congestion-control/fulltext

[13] V. Cerf and R. Kahn. 1974. A Protocol for Packet Network Intercommu-

nication. IEEE Transactions on Communications 22, 5 (1974), 637–648.
https://doi.org/10.1109/TCOM.1974.1092259

[14] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.

Joseph. 2009. Understanding TCP Incast Throughput Collapse in Dat-

acenter Networks. In Proceedings of the 1st ACM Workshop on Research
on Enterprise Networking (WREN ’09). Association for Computing Ma-

chinery, New York, NY, USA, 73–82. https://doi.org/10.1145/1592681.

1592693

[15] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch

the Whole Lot in an Action: Rapid Precise Packet Loss Notification

in Data Center. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIXAssociation, Seattle,WA,

17–28. https://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/cheng

11

http://arxiv.org/abs/cs.NI/2207.04967
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1145/2535372.2535375
http://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext
http://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1145/1592681.1592693
https://doi.org/10.1145/1592681.1592693
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/cheng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/cheng

[16] D. Hernandez D. Amodei. 2018. The Computational Limits of Deep

Learning. (2018). https://openai.com/research/ai-and-compute (ac-

cessed 9/23).

[17] Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov, Salvatore

Di Girolamo, Tobias Rahn, and Torsten Hoefler. 2022. Noise in the

Clouds: Influence of Network Performance Variability on Application

Scalability. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 49 (Dec.
2022), 27 pages. https://doi.org/10.1145/3570609 arXiv:2210.15315

[18] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Dun-

can Roweth, and Torsten Hoefler. 2020. An In-Depth Analysis of the

Slingshot Interconnect. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis. 1–14. https:
//doi.org/10.1109/SC41405.2020.00039

[19] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (feb 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[20] S. Floyd and V. Jacobson. 1993. Random early detection gateways

for congestion avoidance. IEEE/ACM Transactions on Networking 1, 4

(1993), 397–413. https://doi.org/10.1109/90.251892

[21] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. 2001. The

Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168.

(Sept. 2001). https://doi.org/10.17487/RFC3168

[22] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal,

Sylvia Ratnasamy, and Scott Shenker. 2015. PHost: Distributed near-

Optimal Datacenter Transport over Commodity Network Fabric. In

Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’15). Association for Com-

puting Machinery, New York, NY, USA, Article 1, 12 pages. https:

//doi.org/10.1145/2716281.2836086

[23] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali,

and Amin Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-

Latency Data Center Networks. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 225–238.

https://doi.org/10.1145/3098822.3098839

[24] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam

Montazeri, Arjun Singh, Stephen Wang, Hassan M. G. Wassel, Zhehua

Wu, Sunghwan Yoo, Raghuraman Balasubramanian, Prashant Chandra,

Michael Cutforth, Peter Cuy, David Decotigny, Rakesh Gautam, Alex

Iriza, Milo M. K. Martin, Rick Roy, Zuowei Shen, Ming Tan, Ye Tang,

Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat. 2022. Aquila: A

unified, low-latency fabric for datacenter networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 1249–1266. https://www.usenix.

org/conference/nsdi22/presentation/gibson

[25] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Moham-

mad Alizadeh, and Thomas E. Anderson. 2022. Backpressure Flow

Control. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 779–805.

https://www.usenix.org/conference/nsdi22/presentation/goyal

[26] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,

Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009.

BCube: A High Performance, Server-Centric Network Architecture

for Modular Data Centers. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication (SIGCOMM ’09). Associa-
tion for Computing Machinery, New York, NY, USA, 63–74. https:

//doi.org/10.1145/1592568.1592577

[27] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,

Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-

Architecting Datacenter Networks and Stacks for Low Latency and

High Performance. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17). Association
for Computing Machinery, New York, NY, USA, 29–42. https://doi.

org/10.1145/3098822.3098825

[28] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di Giro-

lamo, Shigang Li, Marco Heddes, Jon Belk, Deepak Goel, Miguel Castro,

and Steve Scott. 2022. HammingMesh: A Network Topology for Large-

Scale Deep Learning. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC
’22). IEEE Press, Article 11, 18 pages.

[29] Torsten Hoefler, Duncan Roweth, Keith Underwood, Robert Alver-

son, Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra

Anubolu, Siyuan Shen, Moray McLaren, Abdul Kabbani, and Steve

Scott. 2023. Data Center Ethernet and Remote Direct Memory Ac-

cess: Issues at Hyperscale. Computer 56, 7 (2023), 67–77. https:

//doi.org/10.1109/MC.2023.3261184

[30] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2009. The

Effect of Network Noise on Large-Scale Collective Communications.

Parallel Processing Letters (PPL) 19, 4 (Aug. 2009), 573–593.
[31] Nan Jiang, Larry Dennison, and William J. Dally. 2015. Network

Endpoint Congestion Control for Fine-Grained Communication. In

Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’15). Association for

Computing Machinery, New York, NY, USA, Article 35, 12 pages.

https://doi.org/10.1145/2807591.2807600

[32] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008.

Technology-Driven, Highly-Scalable Dragonfly Topology. In 2008
International Symposium on Computer Architecture. 77–88. https:

//doi.org/10.1109/ISCA.2008.19

[33] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan Wassel, Xian

Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christo-

pher Alfeld, Mike Ryan, David J. Wetherall, and Amin Vahdat. 2020.

Swift: Delay is Simple and Effective for Congestion Control in the

Datacenter. https://dl.acm.org/doi/pdf/10.1145/3387514.3406591

[34] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu

Han. 2017. DX: Latency-Based Congestion Control for Datacenters.

IEEE/ACM Transactions on Networking 25, 1 (2017), 335–348. https:

//doi.org/10.1109/TNET.2016.2587286

[35] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,

Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-

izadeh, and Minlan Yu. 2019. HPCC: High Precision Congestion Con-

trol. In Proceedings of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’19). Association for Computing Machinery, New

York, NY, USA, 44–58. https://doi.org/10.1145/3341302.3342085

[36] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng

Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. 2018.

Multi-path transport for RDMA in datacenters. In Proceedings of the
15th USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI’18). USENIX Association, USA, 357–371.

[37] Radhika Mittal, Terry Lam, Nandita Dukkipati, Emily Blem, Hassan

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-

all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for

the Datacenter. In Sigcomm ’15.
[38] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,

Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.

Revisiting Network Support for RDMA. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY,

USA, 313–326. https://doi.org/10.1145/3230543.3230557

[39] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-

hout. 2018. Homa: A Receiver-Driven Low-Latency Transport Protocol

Using Network Priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 221–235.

https://doi.org/10.1145/3230543.3230564

12

https://doi.org/10.1145/3570609
http://arxiv.org/abs/2210.15315
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/90.251892
https://doi.org/10.17487/RFC3168
https://doi.org/10.1145/2716281.2836086
https://doi.org/10.1145/2716281.2836086
https://doi.org/10.1145/3098822.3098839
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1109/MC.2023.3261184
https://doi.org/10.1109/MC.2023.3261184
https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/ISCA.2008.19
https://dl.acm.org/doi/pdf/10.1145/3387514.3406591
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1109/TNET.2016.2587286
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230564

FASTFLOW , ,

[40] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay:

A modern AQM is just one piece of the solution to bufferbloat. Queue
10, 5 (may 2012), 20–34. https://doi.org/10.1145/2208917.2209336

[41] Nvidia. 2024. Networking for the Era of AI:

The Network Defines the Data Center. (2024).

https://nvdam.widen.net/s/bvpmlkbgzt/networking-overall-

whitepaper-networking-for-ai-2911204 (accessed 01/24).

[42] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa,

Cristi Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley, and

Costin Raiciu. 2022. An edge-queued datagram service for all datacen-

ter traffic. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 761–777.

https://www.usenix.org/conference/nsdi22/presentation/olteanu

[43] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukar-

ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Con-

ner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong

Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata,

Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and

Amin Vahdat. 2022. Jupiter Evolving: Transforming Google’s Data-

center Network via Optical Circuit Switches and Software-Defined

Networking. In Proceedings of ACM SIGCOMM 2022.
[44] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya

Akella. 2022. Congestion control in machine learning clusters. In

Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Hot-
Nets ’22). Association for Computing Machinery, New York, NY, USA,

235–242. https://doi.org/10.1145/3563766.3564115

[45] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.

Snoeren. 2015. Inside the Social Network’s (Datacenter) Network.

SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015), 123–137. https:

//doi.org/10.1145/2829988.2787472

[46] Alessio Sacco, Antonino Angi, Flavio Esposito, and Guido Marchetto.

2023. HINT: Supporting Congestion Control Decisions with P4-driven

In-Band Network Telemetry. In 2023 IEEE 24th International Conference
on High Performance Switching and Routing (HPSR). 83–88. https:

//doi.org/10.1109/HPSR57248.2023.10147977

[47] Daniele De Sensi, Salvatore Di Girolamo, and Torsten Hoefler.

2019. Mitigating Network Noise on Dragonfly Networks through

Application-Aware Routing. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC19).

[48] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A

Cloud-Optimized Transport Protocol for Elastic and Scalable HPC.

IEEE Micro 40, 6 (2020), 67–73. https://doi.org/10.1109/MM.2020.

3016891

[49] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,

Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.

Jupiter Rising: A Decade of Clos Topologies and Centralized Control

in Google’s Datacenter Network. In Sigcomm ’15.
[50] Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha Parkhi,

Jitendra Padhye, and David Maltz. 2021. Surviving switch failures in

cloud datacenters. SIGCOMM Comput. Commun. Rev. 51, 2 (may 2021),

2–9. https://doi.org/10.1145/3464994.3464996

[51] Parvin Taheri, Danushka Menikkumbura, Erico Vanini, Sonia Fahmy,

Patrick Eugster, and Tom Edsall. 2020. RoCC: Robust Congestion

Control for RDMA. In Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT ’20).
Association for Computing Machinery, New York, NY, USA, 17–30.

https://doi.org/10.1145/3386367.3431316

[52] Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F.

Manso. 2022. The Computational Limits of Deep Learning. (2022).

arXiv:cs.LG/2007.05558

[53] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.

Deadline-Aware Datacenter Tcp (D2TCP). In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM ’12). As-
sociation for Computing Machinery, New York, NY, USA, 115–126.

https://doi.org/10.1145/2342356.2342388

[54] Jin Wang, Dongzhi Yuan, Wangqing Luo, Shuying Rao, R. Simon Sher-

ratt, and Jinbin Hu. 2023. Congestion Control Using In-Network

Telemetry for Lossless Datacenters. Computers, Materials & Continua
75, 1 (2023), 1195–1212. https://doi.org/10.32604/cmc.2023.035932

[55] Haitao Wu, Chuanxiong Guo, Yongqiang Xiong, and Yongguang

Zhang. 2012. Tuning ECN for Data Center Networks. In ACM
CoNEXT’12. ACM. https://www.microsoft.com/en-us/research/

publication/tuning-ecn-for-data-center-networks/

[56] Jin Ye, Renzhang Liu, Ziqi Xie, Luting Feng, and Sen Liu. 2019. EMPTCP:

An ECN Based Approach to Detect Shared Bottleneck in MPTCP. In

2019 28th International Conference on Computer Communication and
Networks (ICCCN). 1–10. https://doi.org/10.1109/ICCCN.2019.8847013

[57] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.

2017. High-Resolution Measurement of Data Center Microbursts. In

Proceedings of the 2017 Internet Measurement Conference (IMC ’17).
Association for Computing Machinery, New York, NY, USA, 78–85.

https://doi.org/10.1145/3131365.3131375

[58] Xiaolong Zhong, Jiao Zhang, Yali Zhang, Zixuan Guan, and Zirui

Wan. 2022. PACC: Proactive and Accurate Congestion Feedback for

RDMA Congestion Control. In IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications. 2228–2237. https://doi.org/10.1109/

INFOCOM48880.2022.9796803

[59] Zejia Zhou, Dezun Dong, Shan Huang, and Zihao Wei. 2019. Ex-

pressPass++: Credit-Effecient Congestion Control for Data Cen-

ters. In 2019 IEEE Intl Conf on Parallel & Distributed Process-
ing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). 46–52. https://doi.org/10.1109/
ISPA-BDCloud-SustainCom-SocialCom48970.2019.00018

[60] Yibo Zhu, Yibo Zhu, Haggai Eran, Daniel Firestone, Daniel Firestone,

Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-

hye, Shachar Raindel, Mohamad Haj Yahia, Ming Zhang, and Jitu

Padhye. 2015. Congestion Control for Large-Scale RDMA Deploy-

ments. In SIGCOMM (sigcomm ed.). ACM - Association for Computing

Machinery. https://www.microsoft.com/en-us/research/publication/

congestion-control-for-large-scale-rdma-deployments/

13

https://doi.org/10.1145/2208917.2209336
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://doi.org/10.1145/3563766.3564115
https://doi.org/10.1145/2829988.2787472
https://doi.org/10.1145/2829988.2787472
https://doi.org/10.1109/HPSR57248.2023.10147977
https://doi.org/10.1109/HPSR57248.2023.10147977
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1145/3464994.3464996
https://doi.org/10.1145/3386367.3431316
http://arxiv.org/abs/cs.LG/2007.05558
https://doi.org/10.1145/2342356.2342388
https://doi.org/10.32604/cmc.2023.035932
https://www.microsoft.com/en-us/research/publication/tuning-ecn-for-data-center-networks/
https://www.microsoft.com/en-us/research/publication/tuning-ecn-for-data-center-networks/
https://doi.org/10.1109/ICCCN.2019.8847013
https://doi.org/10.1145/3131365.3131375
https://doi.org/10.1109/INFOCOM48880.2022.9796803
https://doi.org/10.1109/INFOCOM48880.2022.9796803
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00018
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00018
https://www.microsoft.com/en-us/research/publication/congestion-control-for-large-scale-rdma-deployments/
https://www.microsoft.com/en-us/research/publication/congestion-control-for-large-scale-rdma-deployments/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Congestion Signals
	2.2 Rate Control

	3 FASTFLOW Design
	3.1 FASTFLOW Congestion Signals
	3.2 Main Control Loop
	3.3 QuickAdapt
	3.4 FastIncrease
	3.5 Parameter Selection

	4 Evaluation
	4.1 Trimming vs. Timeouts
	4.2 Incast
	4.3 Permutation
	4.4 Alltoall

	5 Discussion
	5.1 Augmenting EQDS with FASTFLOW

	6 Related Work
	7 Conclusion
	References

