
REPS: Recycled Entropy Packet Spraying
for Adaptive Load Balancing and Failure Mitigation

Tommaso Bonato
ETH Zürich
Microsoft

Abdul Kabbani
Microsoft

Ahmad Ghalayini
Microsoft

Michael Papamichael
Microsoft

Mohammad Dohadwala
Microsoft

Lukas Gianinazzi
ETH Zürich

Mikhail Khalilov
ETH Zürich

Elias Achermann
ETH Zürich

Daniele De Sensi
Sapienza University of Rome

Torsten Hoefler
ETH Zürich
Microsoft

ABSTRACT
Next-generation datacenters require highly efficient network
load balancing to manage the growing scale of artificial intel-
ligence (AI) training and general datacenter traffic. Existing
solutions designed for Ethernet, such as Equal Cost Multi-
Path (ECMP) and oblivious packet spraying (OPS), struggle to
maintain high network utilizations as datacenter topologies
(and network failures as a consequence) continue to grow.
To address these limitations, we propose REPS, a lightweight
decentralized per-packet adaptive load balancing algorithm
designed to optimize network utilization while ensuring
rapid recovery from link failures. REPS adapts to network
conditions by caching good-performing paths. In case of a
network failure, REPS re-routes traffic away from it in less
than 100 microseconds. REPS is designed to be deployed with
next-generation out-of-order transports, such as Ultra Ether-
net, and introduces less than 25 bytes of per-connection state.
We extensively evaluate REPS in large-scale simulations and
FPGA-based NICs.

1 INTRODUCTION
Network architecture of distributed AI clusters is inherited
from cloudworkload deployments:WebSearch, Hadoop, Stor-
age [25, 50]. It typically relies on Infiniband [1] and, more
recently, commodity in-order Ethernet (e.g., RoCEv2 [10])
for cost efficiency and ease of deployment. These solutions
will struggle to deliver peak network bandwidth when scaled
from ≈ 10K training endpoints (e.g., to train models of GPT-4,
Llama 3 size [3, 23]) to more than 100K (e.g., next-generation
model scales) due to:
(1) increased traffic volume and burstiness in collective

communication compared to traditional workloads [39,
66],

(2) management complexity and operational cost of loss-
less in-order network management at this scale due to
link failures and degradation [25].

Thus, the community recognized the need for network
stacks tailored to distributed training traffic while remaining
compatible with commodity datacenter Ethernet infrastruc-
ture [25]. Such proposals include SDR by Amazon [54], Fal-
con by Google [2], TTPoE by Tesla [42], and the upcoming
Ultra Ethernet (UE) [19], developed in collaboration between
major tech players. Key open questions in these proposals are
how to address load balancing andmitigate link failures.

Current-generation in-order Ethernet-based training sys-
tems (such as RoCEv2-based clusters) typically rely on ECMP
[32] or similar mechanisms for decentralized routing and
load balancing. ECMP load balancing logic applies a hashing
function to the 5-tuple header of each data packet to deter-
mine the next hop to take. The benefit of this scheme is that,
ignoring link failures, it is unlikely to receive out-of-order
packets at the destination NIC as the packets that belong
to the same connection will be routed through the same
network path.

However, ECMP routing is fragile when different connec-
tions get hashed to the same link [5, 6, 25]. In this scenario,
flows can get hashed to the same path even when other paths
are free, resulting in congestion and queue build up, which,
in turn, can result in drops and go-back-N retransmission
cycles [31].
Moreover, recent works have shown that link failures

drastically impact both training times and economic costs. A
single link failure can have ≈ 20× higher cost impact in dis-
tributed training workloads than in cloud workloads[25, 50].
This observation, along with the increasing scale these sys-
tems are growing at, highlights the need for a transport layer

1

ar
X

iv
:2

40
7.

21
62

5v
3

 [
cs

.N
I]

 3
0

Ja
n

20
25

Bonato et al.

with a load balancing scheme that can adapt near-instantly,
e.g., within a few round-trip times (RTTs), to network link
failures and, consequently, bandwidth asymmetries across
the topology.

Several solutions have been proposed to overcome ECMP’s
limitations. MPTCP, PLB, FlowBender, Flowlet Switching,
and Flowcell divide flows into subflows or flowlets and then
route each one individually [29, 35, 36, 53, 60]. However,
these solutions are still designed for in-order networks, mak-
ing them inherently sensitive to collisions, prone to handling
failures poorly, and requiring significant memory for each
connection [41]. Load balancers, such as Oblivious Packet
Spraying (OPS) and Multi-Path RDMA (MPRDMA), which
operate at a per-packet granularity, can mitigate ECMP-
based collisions [21, 41]. However, both approaches lack
effective mechanisms to load balance effectively in the pres-
ence of failed network paths. Additionally, MPRDMA is con-
strained by its limited support for receiving out-of-order
(OOO) packets and its requirement for per-packet acknowl-
edgments (ACKs).
Our key insight is that OPS problems can be addressed

by adaptive packet spraying, paired with a transport layer
that natively supports out-of-order packet delivery, as seen in
SDR, UE, and Falcon [19, 21, 25, 41, 46]. Based on this insight,
we design and contribute to the Ultra Ethernet Consortium
(UEC) our decentralized load-balancing scheme, Recycled
Entropy Packet Spraying aka REPS. REPS caches "good" net-
work paths in a circular buffer and quickly recovers (within
a few RTTs) from network failures by adaptively discovering
or freezing network paths.

REPS does not require any specific hardware support from
switches beyond ECMP-like header hashing and ECN, which
are standard features in modern switches [31, 45]. REPS
requires only ≈ 25 bytes of state per-connection, whereas
MPTCP requires 368 extra bytes for 8 sub-flows [41].

We extensively evaluate REPS in simulation and augment
the simulation findings with real hardware results in Sec-
tion 4. We deploy REPS in a cluster with modified FPGA-
based RDMA-capable NICs. In large-scale network simula-
tions, REPS consistently outperforms state-of-the-art load
balancing algorithms. REPS outperforms ECMP and OPS by
up to 6× and 1.25× in symmetric networks, and by up to
4.5× and 1.5× in asymmetric networks, outperforming OPS
by as much as 100× during short-term transient link failures.

2 BACKGROUND
In this section we introduce the different building blocks nec-
essary to understand REPS logic. We first describe different
congestion signals (ECN, loss). We then introduce key terms
and concepts related to load balancing (ECMP, EV).

2.1 Congestion Signals
Explicit Congestion Notification (ECN) marking allows
switches to notify congestion by setting a bit in the traffic
class field of the IP header. The receiver then sends back this
marked ECN bit to the sender in its ACK packet header. The
sender can choose to react to this congestion signal by adjust-
ing its sending rate [7, 62, 68]. Switches can employ various
strategies for marking packets. For instance, in Random Early
Detection (RED)[24], switches probabilistically mark packets
based on queue size, with the marking probability increasing
linearly between two thresholds (𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥).
In REPS, we use ECN as the congestion signal to detect path
congestion due to its simplicity and widespread adoption
[31, 45]. Since ECN is not marked for packets when the queue
is smaller than𝐾𝑚𝑖𝑛 , ECN effectively filters out cases ofminor
queuing due to packet collisions across multiple hops, while
identifying true congestion at a single bottleneck. In contrast,
delay-based signals struggle to differentiate between these
scenarios unless enhanced by advanced switch features, such
as in-network telemetry (INT) [61].
Packet loss has long been a key indicator of severe conges-
tion in networks [24, 44]. However, using packet losses as
the sole signal for congestion detection can result in delayed
responses, as losses typically indicate a point of significant
congestion. Packet loss detection, often based on timeouts,
can be challenging to calibrate and may lead to unnecessary
retransmissions. We categorize packet losses in two cate-
gories: losses because of severe congestion and losses due to
networking failures. To differentiate the two type of losses
and to improve reaction times, packet trimming, which only
triggers for congestion drops, can be employed [4, 16, 27, 47].
Trimming can be implemented onmany existing switches [4]
and is starting to be supported by some switch vendors. It is
also being pushed as a UE protocol feature [18]. REPS can
optionally use trimming, if supported, to distinguish con-
gestion losses from network failure, which are indicated by
timeouts (Appendix A).
Congestion Control (CC) algorithms rely on congestion
signals, such as ECN marks or packet loss, to adjust a flow’s
sending rate or window with the goal of maintaining high
network utilization while preventing queue build up. REPS is
designed to work well with any CC algorithm as long as they
support receiving and acknowledging packets out-of-order
for a given message. In particular we show later how REPS
works well with EQDS, a variant of DCTCP, and an internal
CC algorithm [8, 47].

2.2 Load Balancing
Equal Cost Multi-Path (ECMP) is one of the most com-
monly used and simple load balancing mechanisms. It works
by using a hashing function to randomly choose one of the

2

REPS

available paths for a given packet [32]. The hashing func-
tions usually takes as input 5 elements (aka five tuple) from
the packet header: the protocol number, source address, des-
tination address, source port, and destination port (some
variations utilize only the four tuple without the protocol
number). Recent approaches have proposed incorporating
additional fields, such as the Time-to-Live (TTL) or the Flow
Label (in IPv6), to further refine the hash calculation [35, 51].
Under normal circumstances, all packets belonging to the
same flow are assigned statically to a given path since the
hashing function will use the same values as input. This
assignment is done statically and ignores the current net-
work congestion and failure conditions. As a result, two or
more flows might be assigned to the same path even if there
are many more paths available. This will inevitably result
in heavy congestion and possibly packet drops as a conse-
quence. Such ECMP hash collisions are a well-documented
limitation of standard ECMP [6, 25, 65].
Entropy Value (EV) is a value in the packet header that
can be configured to be an input to the hashing function in
switches. Such a value, which is set by the sender, allows
it to alter a packet’s path in the network. Possible header
fields to be used as an EV are the Source Port field in the
packet header [41] or the Flow Label field in IPv6 [51]. We
leverage EVs in REPS to improve load balancing and address
the ECMP collision limitation, without needing to know the
exact mapping between a packet’s EV and its resulting path.
Entropy Values Set (EVS) is a fixed-size set of EVs, since
the number of possible values is constrained by the number
of bits they can occupy in the packet header. For example,
the source port field in a UDP header is assigned 16 bits,
giving the EVS a size of 65536 possible values (excluding
some reserved values) [41]. While different numbers of bits
could be allocated for the EVS, we analyze in Section 4.5.1 and
Appendix B howmany are required for optimal performance.
It is generally advantageous for an algorithm to achieve good
load balancing performance with a small EVS size since that
often reduces the algorithm’s memory overhead.
Oblivious Packet Spraying (OPS), also known as Random
Packet Spraying (RPS) [21], randomly distributes individual
packets across all available paths between a sender and a
receiver. This is done by selecting a random EV for every
packet at the sending host or by choosing a random output
port at the switches. OPS has the advantage of distributing
traffic evenly across multiple paths, addressing most ECMP
issues. However, it is unaware of asymmetries or failures
and can still be sub-optimal even in a perfectly symmetrical
network (Section 4.3.1).

3 REPS
Recycled Entropy Packet Spraying aka REPS is a load bal-
ancing algorithm that relies on simple and memory-efficient
endpoint logic. By design, REPS can be implemented in NIC
hardware or firmware with minimal memory/area footprint.
REPS does not need any switch support besides ECMP hash-
ing and ECN marking. The key idea behind REPS is straight-
forward: when congestion is detected on a certain path, we
explore alternative paths while caching and reusing paths
with little to no congestion. Specifically, REPS uses a circu-
lar buffer of a fixed size to cache EVs of uncongested paths.
Algorithm 1 details the pseudocode for a REPS sender when
receiving an ACK and when detecting a failure, and Algo-
rithm 2 describes the pseudocode for a REPS sender when
sending out a data packet.

3.1 Core Logic: Path Exploration and Reuse
During the first Bandwidth-Delay Product (BDP) packets of a
new flow, a REPS sender explores random entropies from the
EVS. This exploration is necessary because, initially, there
is no knowledge about the network’s state. In this warm up
phase, REPS operates similarly to OPS.
Upon receiving a data packet, the receiver copies the EV

from the received packet into the acknowledgement (ACK)
packet, forwarding it back to the sender. More specifically,
ACKs can use that same EV for their own header instead
of using a new header field, eliminating the need for extra
header space and for any changes to the packet wire format.
When an ACK arrives at the sender, if it is not ECN-

marked, the EV it carries is cached in the circular buffer,
and its validity bit is set to 1. Otherwise, if the ACK is ECN-
marked, REPS does not cache the EV and discards it. When
set, the validity bit indicates that an entropy has not been
used after it has been added to the the circular buffer. When
sending a data packet out, REPS first checks if there are any
valid EVs in its buffer. In case there is any valid EV, REPS
reuses the oldest valid EV from the circular buffer and resets
its validity bit. Otherwise, REPS explores a random EV from
the EVS.

The circular buffer in REPS ensures that bursts of back-to-
back ACKs with "good" entropies are correctly cached and
reused. Moreover, it guarantees stable load balancing in the
case of failures as shown in Section 3.2. We use a circular
buffer of 8 elements based on the bounds from Theorem 5.1.

3.2 Failure Mitigation: Freezing Mode
Once the network experiences any kind of transient (e.g. link
flap) or persistent unrecoverable failure (e.g., a link or switch
failure), it will take the system some time to recover from
it: ranging from several milliseconds to update the ECMP

3

Bonato et al.

routing group to several seconds if a reboot is needed, and
much more if a swap is needed [9, 34].
If we assume that it takes 10 ms to exclude a failed cable

from a routing group, packets will still be routed to this fail-
ing group during this transient period, resulting in packet
drops. Specifically, with a 4 KiB MTU and a 400 Gbps link,
this could potentially result in over 120,000 packets (approxi-
mately 0.5 GB) being lost (ignoring congestion control). This
becomes evenmore critical in the case of other failures where
it takes longer to update the routing.

REPS detects such failures via indirect feedback from the
network and enters freezing mode. REPS uses a simple time-
out heuristic (Section 2.1) that can be enhanced with packet
trimming (Appendix A) as a natural feedback from the net-
work to detect failures along a path.

When in freezing mode, REPS:
(1) avoids exploring new EVs at random since this could

result in the hashing function picking a failing path,
(2) reuses the elements that are currently in the circular

buffer even if they might be invalid.
While this strategy could result in slightly worse load

balancing (due to potentially reusing the same EV several
times), it comes with the major benefit of guaranteeing that
REPS will almost never pick the failing path again since the
recent received EVs point to healthy paths. Considering the
example above: by enabling freezing mode, the number of
packets dropped decreases from over 120K packets to only
about 1K.
To decide when to exit freezing mode, we set a timer

which can be configured by the operator. For instance, in
our internal testing with real hardware, we have found that
this can be equal to the maximum observed time that it takes
for a failure to recover plus a certain buffering period. Once
we exit freezing mode, we use random EVs to allow REPS to
explore new paths and assess whether we detect new packets
failing or not. This prevents REPS from getting stuck in a
suboptimal state if the EVs in the buffer were all pointing to a
dead path, a rare scenario that can theoretically happen with
properly timed back-to-back network failures. Moreover, if
REPS exits freezing mode before the issue is fully resolved, it
will simply re-enter themode shortly afterwardwithminimal
impact on performance (Figure 7 and Figure 8).
The intuition behind freezing mode is that once we sus-

pect there is a failure, we want to start avoiding it as soon
as possible. Interestingly, we observe that even if we enter
freezing mode unnecessarily (i.e., by mistaking a congestion
drop for a network failure), REPS would still load balance
well, as discussed in Section 4.5.1 and Appendix A. This ob-
servation means that even if there is doubt about whether
a real failure occurred, REPS can be conservative and can
safely enter freezing mode.

Algorithm 1 REPS logic upon ACK receive and failure detection.
1: repsBuffer = [] ⊲ State variables.
2: isFreezingMode = 𝑓 𝑎𝑙𝑠𝑒

3: head, numberValidEVs, exploreCounter = 0
4:
5: procedure onAck(ackPacket)
6: if ackPacket.ecn is set then
7: return
8: end if
9: if not repsBuffer[head].isValid then
10: numberValidEVs + +
11: end if
12: repsBuffer [head] .cachedEV = ackPacket .ev
13: repsBuffer [head] .isValid = true
14: head = (head + 1)%REPS_BUFFER_SIZE
15: if isFreezingMode and now() > exitFreezingMode then
16: isFreezingMode = false
17: exploreCounter = NUM_PKTS_BDP
18: end if
19: end procedure
20:
21: procedure onFailureDetection()
22: if not isFreezingMode and exploreCounter == 0 then
23: isFreezingMode = true
24: exitFreezingMode = now() + FREEZING_TIMEOUT
25: end if
26: end procedure

Algorithm 2 REPS logic on send datapath.
1: ⊲ Variables already listed in Algorithm 1
2: procedure getNextEntropy()
3: if numberValidEVs > 0 then
4: offset = (head − numberValidEVs)%REPS_BUFFER_SIZE
5: repsBuffer [offset] .isValid = false
6: numberValidEVs − −
7: else ⊲ Must be in freezing mode.
8: offset = head
9: head = (head + 1)%REPS_BUFFER_SIZE
10: end if
11: return repsBuffer [offset] .cachedEV
12: end procedure
13:
14: procedure onSend(dataPacket)
15: if repsBuffer.isEmpty() or (numberValidEVs == 0 and not isFreezing-

Mode) or exploreCounter then
16: 𝑑𝑎𝑡𝑎𝑃𝑎𝑐𝑘𝑒𝑡 .𝑒𝑣 = rand()% EVS_SIZE
17: exploreCounter = max(exploreCounter − 1, 0)
18: else
19: 𝑑𝑎𝑡𝑎𝑃𝑎𝑐𝑘𝑒𝑡 .𝑒𝑣 = getNextEntropy()
20: end if
21: end procedure

3.3 REPS Design Advantages
Simple and versatile algorithm: REPS is simple for cost-
efficient hardware support, as it does not require any change
of the packet headers format or existing network compo-
nents. Moreover, its code is short and simple to implement
and understand. REPS works best with per-packet ACKs, but

4

REPS

Component Footprint (bits)

Circular Buffer Element (× elements in buffer):
Entropy Value (cachedEV) 16
Entropy Validity Bit (isValid) 1

Global Variables:
Head Buffer (head) 8
Number Valid Entropies (numberValidEVs) 8
Exit Freezing Time (exitFreezingMode) 32
Is Freezing Mode (isFreezingMode) 1
Explore Counter (exploreCounter) 8

Total (1 elements in buffer) 74 ≈10 bytes
Total (8 elements in buffer) 193 ≈25 bytes

Table 1: Per-connection memory footprint of REPS.

we show in Section 4.5.2 that it still performs well even with
ACK coalescing.
Minimal NIC memory footprint: Akey advantage of REPS
is that it does not need to track per-EV metrics and statistics.
As will be discussed in Section 4.5.1, achieving good perfor-
mance with OPS requires a relatively large EVS. If OPS were
to maintain metrics for each EV, the memory overhead would
be excessive for a hardware NIC implementation, e.g., 8 KiB
to store 1 byte per entropy value for an EVS with 8K EVs.
However, REPS only needs a fixed number of bytes in mem-
ory regardless of the EVS size. More specifically, as detailed
in Table 1, REPS requires only around ≈ 25 bytes. Moreover,
even when constrained to a small EVS, REPS is still able to
perform well (Section 4.5.1), which can further reduce REPS’
memory footprint by 1 byte since Table 1 assumed 16 bits
per EV.
There is a subtle observation as to why REPS can achieve a
great performance without needing a lot of state: while the
REPS buffer is used to cache good entropies, it is really only
useful in certain scenarios like when receiving a burst of
ACKs or during freezing mode. In reality, most of REPS’ state
is on the wire, stored in the inflight data and ACK packets,
which will inform REPS about the good paths in the network.
Quick failure mitigation: The general approach of REPS
is that it only keeps track of good paths and avoids keeping
statistics on congested or failing paths. This approach enables
it to promptly load balance away from a congested link or
failing link as, especially for the latter, it is never going to
take a random guess once a link is failing. Any alternative
method that tries to avoid selecting a failing path by tracking
bad EVs would need to keep records of all the EVs that map
to that path for a given flow, which would involve tracking
not only the failing EVs but also all those still in flight.

4 EVALUATION
Our evaluation consists of simulations that stress test REPS
at large scale with a number of workloads. We also evaluate
REPS at a meaningful scale on real hardware. Our goal is to
answer the following research questions:

• Does REPS offer an advantage over OPS under base-
line conditions in a healthy network with symmetrical
topology? (Section 4.3.1 and 4.4.1)

• Does REPS performwell under network topology asym-
metries? (Section 4.3.2 and 4.4.2)

• Is REPS able to quickly recover from failures? (Sec-
tion 4.3.3 and 4.4.3)

• Can REPS work well even with different network pa-
rameters and settings? (Section 4.5)

4.1 Evaluation Setup
Baseline load balancers: We compare REPS with OPS. In
the large-scale simulations, we also compare REPS with
ECMP [32], PLB [51], MPRDMA [41], Flowlet Switching [60],
MPTCP [53], a bitmap approach where we keep per EV statis-
tics similarly to STrack [37], and adaptive RoCE by NVIDIA
[46]. We configure PLB to have more aggressive parameters
similarly to FlowBender to improve its performance [35]. For
Flowlet Switching we set an aggressive flowlet timeout at
half of the RTT. For MPTCP, we divide each message into 8
subflows and route each one with different EVs similarly to
what happens with multiple QPs (Queue Pairs) [25].
NIC congestion control: In all simulated baseline runs, we
use the same DCTCP [7] variant used in MPRDMA [41]. It
applies per-ACK congestion window updates, allows the
receiver to accept and acknowledge out-of-order packets,
and reduces the congestion window by one MTU in case
of packet drops. In the FPGA-based experimentation, we
use a similar but proprietary CC algorithm that relies on
ECN marking, congestion notification packets, and per-flow
congestion window adjustments.
Network setup: Regardless of the workloads that we dis-
cuss in Section 4.2, in the evaluation we simulate 3 different
scenarios: (1) healthy symmetric topology network condi-
tions, (2) asymmetric network conditions (e.g., due to failures,
in-order ECMP-hashed background traffic that increase load
on specific paths or incremental deployments), and (3) a net-
work encountering various failures. We focus on the most
relevant ones for real-world deployments [25] and we report
some of the remaining ones in Appendix D.
Simulation model: We implement REPS by extending the
htsim packet-level network simulator [27]. Our simulations
consider different fat-tree topologies with 1024 nodes and 128
nodes and with different levels of oversubscription ranging
from 1:1 (no oversubscription) to 4:1. We test 2- and 3-tier fat
trees (TOR or Top-of-rack as T0, Aggregate as T1 and Core
T2). Such topologies are commonly deployed in production
datacenters designed for distributed training [25, 55].
We reflect the specifications of current-generation switches
in simulation parameters: a 4 KiB MTU size, a bandwidth of
400 Gbps, and a switch traversal latency of 500 ns [14, 20].

5

Bonato et al.

We assume uniform link lengths and latencies, with each
link exhibiting a latency of 500 ns. We set the retransmission
timeout (RTO) to 70 𝜇s which is the amount of time it takes
to traverse every queue in the network if it was full plus the
network-wide RTT. For each queue 𝐾𝑚𝑖𝑛 is set to 20% of the
queue size (one BDP) and 𝐾𝑚𝑎𝑥 to 80% of it.
REPS-FPGA: To demonstrate the effectiveness and resilience
of entropy recycling in a real network environment, we
also evaluate REPS in an end-to-end setting using a modi-
fied production-grade FPGA-based RDMA-capable NIC. Our
testbed consists of a two-tier fat-tree Ethernet network with
100G NICs and 12.8T switches. The default MTU for our
FPGA NICs is 8KB and typical RTT incorporating NIC buffer
delay and ACK processing through T0 and T1 are in the order
of 10 and 15 us, respectively.

4.2 Workloads
We evaluate REPS on a mix of synthetic benchmarks, real
datacenter traces, and distributed training collectives.

Synthetic benchmarks set consists of (1) incast, (2) per-
mutation, and (3) tornado traffic patterns. Incast happens
when multiple senders simultaneously send to one receiver.
It is very common in storage workloads [15, 64] but also,
with a small incast degree, in distributed training [25]. In the
permutation pattern, each node sends to a random receiver,
and we ensure that each node is sending and receiving to
exactly one node [7]. The tornado pattern is a special case of
the permutation where each node sends to its "twin" node in
the other half of the tree. For example, with 128 nodes, node
0 would send to 64 and vice-versa, node 1 to 64 and so on.
Tornado is an important worst case for load balancing, as
each packet is required to traverse the full tree [49].
Datacenter traces: We use real datacenter traces from sim-
ilar previous work [7, 63]. We use a series of traces used for
web search in production clusters. In such distribution the
majority of flows are quite small (less than 100 KB) while
a small number of flows are large. For each node we select
randomly the receiver and run the simulation for 5 ms. More
details are available in Appendix E.
AI collectives: We show simulated results for two com-
monly used collectives in AI training: the AllReduce imple-
mented via the ring and butterfly algorithm [39], the AllToAll
implemented using an algorithm where we limit the number
of parallel connections per node (𝑛 connections) [30, 43].
Our baseline traffic for REPS-FPGA consists of 128 endpoints
under two T0 switches continuously performing 4 MB ring-
based AllReduce collective operations, with the logical ring
laid out such that all connections traverse the T1 spine to
maximize the pressure on the spine of the topology.

4.3 Simulation Results
We conduct a detailed analysis of REPS behavior for each
network condition (see Sec. 4). We first examine a specific
case in depth and then summarize key takeaways.

4.3.1 Healthy Symmetric Network Conditions. In this sec-
tion we evaluate the performance of REPS in a simple setting
where there is no oversubscription and there are no failures,
meaning the network is perfectly symmetrical. Intuitively,
this seems the best situation for oblivious packet spraying
since evenly splitting the packets acrossmultiple links should
result in the best performance. However, as we will see later
in this section and based on our simple theoretical model in
Section 5, this is not the case as REPS still offers an up to
25% advantage over OPS. This is because of ECMP collisions
that still happen with OPS. While over long period of time,
each link will be evenly used, there will still be short-term
collisions happening that will increase and decrease the link
utilization of certain links.

Ports Utilization (20μs buckets)

KMin

KMin

KMax

KMax

Queues

Queues

Ports Utilization (20μs buckets)

Figure 1: A tornado workload with 16 MiB messages
with CC disabled and using OPS and REPS as load bal-
ancers.

Microscopic analysis: We study this effect in a tornado
pattern, which, theoretically, can be managed entirely by
optimal load balancing. We study what happens at a TOR
switch and register the link utilization of the uplinks both
over the entire simulation and also at smaller time buckets.
For visualization purposes we limit these runs to a 2-tier
network where each switch has 8 uplinks. However, we note
that this problem is present, to an even bigger degree, when
using a larger number of uplinks as explained in Section 5.
In Figure 1 we visualize statistics for a single T0 switch
during the workload run. In particular we show two key
metrics over time: 1) on the left Y-axis we show the output
port utilization at fixed time intervals of 20 us. If it goes above

6

REPS

Synthetic Benchmarks DC Traces AI Collectives

Figure 2: REPS performance in synthetic benchmarks (I.=Incast, P.=Permutation, T.=Tornado), DC traces and AI
collectives.

KMin

KMin

KMax

KMax

Ports Utilization

Ports Utilization

Queues

Queues

Figure 3: REPS vs. OPS in a 32 MiB message send.

400 Gbps it means that during the studied time bucket some
queueing was created. If it goes below it means the output
port was slightly under-utilized. 2) On the right Y-axis we
show the queue size over time of the 8 output ports.
In the case of OPS, we can see that due to the random nature
of it, queues are created over time and that the link utilization
of each port, at small timeframes, sometimes goes signifi-
cantly above and below it (15% more or less). This shows that
while OPS does still a decent job at completing the workload
close to the ideal completion time, it does inevitably create
unpredictable queues (potentially even exceeding 𝐾𝑚𝑎𝑥 and
causing drops) over short time periods. Such queues will
cause the CC to kick in and slightly reduce the sending rate
and average output port utilization.
In the same configuration with REPS, we notice a major
difference in the bottom plot of Figure 1. In particular REPS
converge quickly to a configuration where each queue is
kept below 𝐾𝑚𝑖𝑛 (note that the only guarantee here is that
all queues will be below 𝐾𝑚𝑖𝑛 , not necessarily all at the same
value). At the same time, we can also notice that all the ports
converge to the perfect selection rate of 400 Gbps. While the

overall completion time is only about 4% better than OPS,
the smaller queues provide a better guarantees for system
low latency traffic. Moreover, as we can see in Figure 2, this
gap expands as we increase the message size.
Looking at the port selection rate over the entire run of the
workload for OPS vs. REPS, we observe that they are nearly
equivalent. This is again because the problem is with the
short-term collisions that OPS can experience at microscopic
scale. Finally, we note that, while the main advantages of
REPS are not experienced with these perfectly symmetric
scenarios, we consistently observe lower max out-of-order
distance thanks to its improved stability.
Macroscopic analysis: We now focus more on the overall
view comparing REPS with all the other state of the art
algorithms in a series of benchmarks.
In Figure 2, we visualize a summary of the performance
of the various algorithms by looking at the runtime of the
workloads (max FCT). As expected, in the case of incast, the
performance is driven almost exclusively by the CC and,
hence, we do not see any major difference between all the
load balancers and even ECMP performs well. However, once
we move to permutation and tornado workloads, ECMP col-
lisions start to drastically reduce the performance of ECMP.
In most cases REPS outperforms all the other algorithms.
In the tornado case, Adaptive RoCE is able to match REPS
since this is the ideal scenario for it: REPS, unlike Adaptive
RoCE, still needs to guess during its initial BDP worth of
packets. On the other hand, REPS outperforms Adaptive
RoCE in the permutation pattern where taking a local best
decision might not always lead to the best global outcome.
We also see the difference between algorithms that were de-
signed to reduce the number of out-of-order packets versus
algorithms that do not have such hard constraints. Addition-
ally, there is a distinction between algorithms that operate
at packet-level granularity, such as REPS, OPS, BitMap, and
MPRDMA, and those that operate at a coarser granularity,
such as Flowlet and PLB.

7

Bonato et al.

Synthetic Benchmarks DC Traces ML/AI Collectives

Figure 4: REPS performance in synthetic benchmarks (I.=Incast, P.=Permutation, T.=Tornado), DC traces and AI
collectives and an asymmetric network due to 2% of the TOR uplinks being offline.

For datacenter traces, we analyze the results for different
load levels, ranging from 40% to 100%. Here we observe again,
the clear difference between per-packet algorithms and less
granular options. Even at higher load REPS is able to work
well with a 5% advantage over OPS.

We also run distributed collectives and report their com-
pletion times. We observe how, by design, the ring AllReduce
has the same performance regardless of the load balancing al-
gorithm utilized. This is because, due to its ring design, there
is no opportunity for congestion to accumulate. In AllToAll,
REPS gets an up to 20% advantage over the alternatives.

4.3.2 Asymmetric Network Conditions. We evaluate REPS
under different scenarios where some degree of asymmetry
is created. We focus on two scenarios: 1) the network is not
perfectly symmetrical because of some missing (or degraded)
cables, 2) there is some background traffic in the network
that is using ECMP routing.
Microscopic analysis: We visualize this problem with a
simple scenario where we have a switch with 𝑛 input and
output ports and 𝑛 flows active, each from a different source
sending a 32 MiB message. To create an asymmetry, we
reduce one of the uplinks speed to 200 Gbps while all the
other links remain at 400 Gbps. In Figure 3 we visualize the
output port utilization rate for OPS and REPS.
We observe that while OPS chooses each port equally, irre-
spective of its actual bandwidth, REPS eventually converges
to a stable configuration where the slower uplink is used
less frequently. This results in both stabler queues but, more
importantly, a much faster completion time (1400 𝜇s for OPS
and 756 𝜇s for REPS).
Macroscopic analysis: We now shift our focus to more
general results when encountering asymmetries in a net-
work. For space constraints, we focus mostly on the case
where some of the links have a lower sending rate. In our
first experiment we run synthetic benchmarks where 2% of
the TOR uplinks, chosen randomly, have been downgraded

Main Data Tra�c Background Tra�c

Figure 5: Synthetic traffic with background ECMP traf-
fic.

to 200 Gbps. In Figure 4, we can see results similar to be-
fore where REPS gets an up to 350% advantage over ECMP
and 10% advantage over the second best algorithm (usually
BitMap). In the DC traces we can see a higher difference due
to the asymmetry in the network. At 100% load REPS gets a
25% advantage over the second best algorithm and a 1000%
advantage over ECMP. We show the results for several AI
collectives. We note how for AllToAll REPS keep a small
but significant advantage and in the AllReduce a sizable 50%
advantage over the second best performing algorithm.
In Figure 5, we showcase one example of REPS sharing traffic
together with background ECMP traffic (we assume 10% of
the traffic is ECMP). In this case, REPS: 1) shifts REPS traffic
away from ECMP traffic in order to not slow down REPS
traffic, 2) helps background traffic by ensuring that it will
not be slowed down by REPS traffic. This also highlights the
possibility of incrementally deploying REPS on ECMP-base
systems.
Finally, we note that WCMP [67] could be used to enhance
ECMP performance in the case of a topology with known
asymmetries, but would not help as much in the case of un-
predictable mixed traffic or sudden temporary asymmetries.

4.3.3 Network Failures. We focus our attention to cases
where the network encounters a failure during operation.
We collect data from several previous works on networking
failures and also study internal logs to simulate the most

8

REPS

Permutation 8MiB DC Traces - 100% Load Ring AllReduce

Figure 6: REPS performance under different failure modes in a 8 MiB permutation, DC traces at 100% load and a
ring AllReduce.

KMin

KMin

KMax

KMax

Queues

Ports
Utilization

Fail.1
starts

Fail.1
ends

Fail.2
starts

Fail.2
ends

Freezing
starts

Freezing stops
but restarts soon after

Freezing
starts

Freezing
stops

Freezing
stops

REPS �nishes 35% faster
and with fewer drops

Figure 7: REPS vs. OPS in a 32 MiB permutation with
two cables’ failure (a shorter one and a longer one).

commonly reported cases [26, 56–58]. Since the probability
of a failure happening during a short simulation is low, we
simulate worst case scenarios where we force individual fail-
ures to happen. Most particularly we focus on total or partial
failures of cables and switches. We note that we limit our
failures to components that would not prevent the workload
from completing (single point of failure).
Microscopic analysis: We study a simple synthetic case
where we fail, at different times, two uplinks of a TOR switch:
a shorter 100 𝜇s failure and a longer 300 𝜇s failure. As sug-
gested in Section 3.2, we advise to set the timeout for freezing
mode of REPS to a number which is consistent with the av-
erage failure duration (which we artificially lower only for
this experiment).
In Figure 7, OPS keeps choosing all paths equally (although
at lower rate due to CC activation), while REPS once it enters
freezing mode, stops selecting the failing path all together
after only one timeout period (order of tens of microsec-
onds). Afterwards, once the failure stops, REPS also exits

freezing mode and converges once again quickly to use all
paths. The overall result is that, compared to OPS, REPS com-
pletes the workload more than 35% faster even with such
a short failure and, more importantly, reduces the number
of dropped packets by 2.5×. We showcase a similar analysis
but for incremental failures in Appendix D.3.
Macroscopic analysis: We showcase three cases with a se-
ries of failure modes in Figure 6. We start each failure mode
after a fixed amount of time to ensure initial CC conver-
gence. We can see when dealing with total failures that REPS
provides a dramatic speedup over OPS but also other load
balancer algorithms. This is because of freezing mode that
helps REPS to quickly converge to a safe configuration after
detecting a failure, considerably faster than the time needed
for ECMP routing to update to exclude the failing path. Pos-
itively, we note that the gains with REPS inrease with the
amount of failures. Furthermore, random drops (e.g., because
of BER) does not affect negatively REPS performance.
To further demonstrate the resilience of REPS, we evaluate
its performance under an extreme scenario characterized by
increasingly large and long-lasting network failures during
a permutation. As shown in Figure 8, REPS performs close
to an ideal load balancer, even with 50% of network cables
failing, while PLB, the second-best alternative, significantly
lags behind.

PLB

REPS

Theoretical Best

Slowdown over
Theoretical Best

Figure 8: Extreme failures scenario.

9

Bonato et al.

4.4 REPS-FPGA Evaluation
4.4.1 Healthy Symmetric Network Conditions. The first

set of results focuses on a baseline healthy symmetric net-
work configuration. Figure 9a shows per-flow goodput de-
fined as end-to-end useful bit rate observed by application,
after header, overheads, retransmissions, etc. We use OPS
and REPS across two experimental configurations: denoted
as setup-1 and setup-2. In setup-1, all FPGA endpoints under
the two T0s are active while in setup-2, 40 out of 64 FPGA
endpoints are active.
We present results from both of these configurations as

we observe small unexpected performance variations de-
pending on which and how many switch ports are active
in experiments near the peak network performance levels
using all switch ports (setup-1). These variations appear to be
related to internal switch microarchitectural details such as
port-buffer affinity and vendor-specific scheduling policies.
The setup-2 uses a subset of the switch ports and eliminates
most of these vendor-specific and implementation-related
behaviors. To get a better understanding of this behavior
we performed a sweep where we capped the TX rate of our
FPGA NICs and discovered that the slight degradation for
setup-1 when using REPS appears to subside if the TX rate is
capped at 95 Gbps.

4.4.2 Asymmetric Network Conditions. We evaluate the
performance of REPS under asymmetric network conditions.
We connect 16 endpoints through two T0 switches (8 end-
points each) with a total of 4 links to a pair of T1 switches. To
demonstrate the adaptive load balancing capabilities of REPS,
we change the link speed of one T0-T1 link from 400 Gbps to
200 Gbps, creating asymmetry in the network. Fig. 9b shows
the per-flow goodput as observed by the application while
Fig. 10a the FCT distribution. OPS sends packets across all
paths (including those crossing the 200 Gbps link) with equal
probability and is ultimately capped by the slower 200 Gbps
path. The ECN marking on the 200 Gbps path causes the
CC algorithm to throttle all flows and eventually match the
capacity of that single slower link, thus leading to underuti-
lization of the remaining 400 Gbps links (that are running at
50% utilization).

REPS can gracefully adapt in such a scenario as the cached
entropies will reflect the network asymmetry and result in
a path distribution that is skewed to tailor to the relative
capacity of the available paths. In this example, REPS can
reach high utilization with average per-flow goodput within
5% of the ideal fair-share target.

4.4.3 Network Failures. We also evaluate the performance
of REPS in the presence of network failures. To demonstrate
the robustness and resilience of REPS in the context of link
failures, Fig. 10b shows total packet drops (average across

Ideal Share
REPS

OPS REPSOPS

(a) Symmetric Network

Ideal Share

(b) Asymmetric Network

Figure 9: REPS-FPGA impact on goodput.

(a) Asymmetric Network

Max

Min

(b) Link Failure

Figure 10: REPS-FPGA impact on FCT and packet drops

five runs each) observed in a large-scale 128 endpoint run
(endpoints split across 2 T0s connected through 8 T1s) where
we abruptly bring down a T0-T1 link during the experiment.
While the network is trying to recover from the impact of
this event (which in our environment can take in the or-
der of 100s of milliseconds), OPS continues sending packets
across all paths (including those affected by the link that
went down). The freezing capability of REPS can quickly
adapt to such events (within the order of an RTO) and avoid
sending packets down the affected paths as the entropy cache
is replenished from packets traversing remaining healthy
paths.

4.5 REPS Applicability
In this section, we briefly evaluate REPS, in simulations,
under different scenarios by changing the EVS size, the ACK
coalescing ratio and the underlying CC algorithm. Generally,
we believe that REPS can work well under many different
circumstances, topologies and workloads.

4.5.1 EVS Size. In Appendix B, we prove that OPS rout-
ing, done through EVs and ECMP hashing, requires a large
EVS to work correctly and reduce collisions. Moreover, this
requirement also grows with the number of output ports
in a switch as demonstrated in Section 5.1. On the other
hand, REPS, due to its adaptive nature, can drastically reduce
the EVS size and still work well. We show this in the left
plot of Figure 12 where we compare, in a real scenario, OPS
and REPS when using 32, 256, and 64K EVs. REPS works

10

REPS

equally well with 256 and 64K EVs and is only 8% slower
with 32 EVs. On the other hand, OPS is 21% and 64% slower
with 256 and 32 EVs when compared to 64K. This confirms
that REPS could potentially work well even just with 1 byte
for the EVS. We note that while OPS could be implemented
without using EVS—such as through round-robin selection
or by making random choices directly at the switch—these
approaches introduce additional challenges (Section 5.2).

4.5.2 ACKCoalescing. Wehave primarily evaluated REPS
without ACK coalescing, as this configuration allows REPS to
operate with the most up to date data. However, some trans-
port protocols permit ACK coalescing, where the receiver
sends an ACK packet only after receiving 𝑛 data packets
from the sender. In theory, the coalesced ACK packet could
return all previous non-ECN marked entropies in its header,
but we focus on the worst case scenario for REPS where the
ACK only carries the entropy of the packet that triggered it.

No Failures 5% Network Failures

REPS and
OPS similar
performance
at 16:1 ratio
(~230μs)

REPS 6x
faster
even at
16:1 ratio

No Failures

Figure 11: Performance with different ACK coalescing
ratios during a 8MiB permutation.

We run a real 8 MiB permutation workload simulating
different ACK coalescing ratios. As we can see in the left
part of Figure 11, REPS with 2:1, 4:1 and 8:1 coalescing ratios
does significantly better than OPS, while with 16:1 it starts
losing its advantage. However, it should be noted that in case
of asymmetries or failures (right Figure 11), REPS does much
better due to its various improvements over OPS even at 16:1
ratio. We confirm these results theoretically in Appendix D.1.
Finally, we note that the trade-off of sending more ACKs

is worth the effort if the underlining hardware supports such
rate and the impact on the network traffic is minimal (1%)
since ACKs are relatively small (64B) compared to the packet
size usually used in modern interconnects (4KiB or 8KiB).

4.5.3 Different CC Algorithms. In principle, REPS has
been designed to work with any CC algorithm as long as
there is no over-reaction to out-of-order packets and ECN
support. In this paper, we have, so far, evaluated REPS work-
ing alongside a tuned version of DCTCP. However, as we will

see, REPS can work well even with other algorithms. More-
over, we envision also a version of REPS that could work just
with delay if ECN is not supported but we do not go into
details here. For example, in the right plot of Figure 12, we
run a simple 8 MiB permutation workload without failure
for DCTCP, EQDS and a proprietary CC algorithm. REPS
can help all of these CC algorithms when compared to OPS.

Max FCT is
~325μs (64% slower
than REPS)

REPS with 32 EVs performs
almost as well as OPS
with 64K EVs

REPS is superior
even when
changing CCs

Di�erent EVs Sizes Di�erent CCs

Figure 12: Performance with different EVs sizes and
CCs during a 8MiB permutation.

5 THEORETICAL VERIFICATION
To support our experimental findings, we present a theoret-
ical first principles analysis of OPS and demonstrate how
it can lead to arbitrarily long queues. To address this issue,
we develop a new recycled balls-into-bins model and prove
its local convergence. This model serves as the theoretical
intuition behind the REPS protocol (Section 3).

5.1 Recycled Balls-into-Bins Model
At maximum injection rate, OPS suffers from severe load-
imbalance that eventually leads to queues of arbitrary length
building up.We explain this behaviorwith an infinite batched
balls-into-bins model [11, 13, 40]. In contrast, we show that
recycling good paths such as in REPS leads to a convergent
behavior and logarithmically-bounded queues.
In our switch model, each output port corresponds to a

bin. At each time step, every non-empty bin removes one
element. Afterward, a new set of balls (packets) arrives and
is distributed among the bins. In our setting, we focus on the
case where 𝑛 balls arrive in each time step, representing full
throughput. The maximum queue length at any time step
corresponds to the maximum load of any bin at that time
step. Balls are removed in FIFO order from the bins.
In OPS, balls are allocated to bins uniformly at random.

In what follows, we assume the EVS is sufficiently large
(i.e., 16 bits), allowing us to model the assignments as uni-
formly random. If balls arrive at a rate of 𝜆𝑛 for 𝜆 < 1,
the process remains stable. The maximum load at any time
step is 𝑂

(1
1−𝜆 log

𝑛
1−𝜆

)
with high probability [13] and with

11

Bonato et al.

probability approaching 1, there is always a bin containing
Ω
(1
1−𝜆 log𝑛

)
balls [13]. In the limit as 𝜆 → 1, this implies

that some bin will eventually become arbitrarily overloaded.
In the context of load-balancing, this means that at the max-
imum injection rate, oblivious random spraying leads to un-
bounded queue lengths. Intuitively, this occurs because 𝑛 balls
are introduced at each step, but fewer than𝑛may be removed,
as some output ports may remain unselected.
As 𝑛 increases, the maximum load grows, exacerbating

congestion in OPS. Figure 13 illustrates this effect for 𝜆 =

0.99, where larger numbers of bins (output ports) result in
faster-growing maximum queues.

0 200 400 600 800 1000
Balls-into-bins Round

20

40

60

80

Av
g.

 M
ax

. Q
ue

ue
Si

ze
 (P

kt
s)

4 output ports
8 output ports
16 output ports

32 output ports
64 output ports
128 output ports

Figure 13: Simulating 10000 rounds of balls-into-bins.
We propose a new model, called recycled balls-into-bins

and prove it converges locally to a load-balanced state with
bounded queue lengths, even at maximum injection rate.
In the recycled balls-into-bins model, we keep a set of

𝑏 · 𝑛 colors (for some constant 𝑏) and a threshold 𝜏 . We
cycle through the colors in round-robin fashion in batches
of 𝑛 colors. In each time step, we remove a ball from each
nonempty bin. If a bin has at most 𝜏 balls, the color of the
removed ball remembers the bin, unless it already remembers
another bin. If the bin has more than 𝜏 balls, the color forgets
its bin. Then, for each color in the batch that remembers a
bin, throw a ball into the remembered bin. For all colors in
the batch without a remembered bin, throw a ball uniformly
at random. We show that, for a single switch, recycled balls-
into-bins converges, meaning all colors remember a bin and
keep the same bin remembered.

Theorem 5.1. For 𝑛 ≥ 16, 𝜏 ≥ 4 ln𝑛, 𝑏 ≥ 2.4 ln𝑛, recycled
balls-into-bins converges in 𝑂 (𝑛 log𝑛) expected steps. Every
bin has 𝑂 (log𝑛) elements throughout, with probability 1 −
𝑜 (1).

The proof in Appendix C shows that recycled balls-into-
bins converges as bins fill and stabilize below the threshold.

To visualize these behaviors, we model the balls-into-bins
problem with both OPS and with the recycled balls improve-
ment. In Figure 14, we set 𝑛 = 8 (for visualization purposes,
but this holds true for more realistic 𝑛 values) and show-
case the queues’ evolution for oblivious packet spraying
and the recycled balls model. The results confirm our find-
ings that oblivious packet spraying will see the queues grow
unbounded while the recycled balls model will eventually

converge and keep all queues below the threshold (𝜏) value.
This is also consistent with our previous simulation results
(e.g. Figure 1 and Figure 3).

OPS
Recycled
Balls

τ

Figure 14: Simulating 200 rounds of balls-into-bins.

5.2 Limitations and Alternatives
While the provided models perform well in an idealized set-
ting with maximal injection rates, in a real network scenario,
CC algorithms would reduce the sending rate if a large queue
were to build up. However, such activations of the CC would
result in a slowdown of the sending rate and, hence, an in-
crease of the completion time of a workload as we can see
in Section 4.3.1. Moreover, we note that while real scenar-
ios would have more subtle interactions not modelled here
(like using distinct 𝐾𝑀𝑖𝑛 and 𝐾𝑀𝑎𝑥), the key results hold
and are consistent with our evaluations in Section 4. Finally,
we note that here we provide a proof only about the local
convergence of REPS and that other models such as static
path assignments and round-robin across the ports would
also work well and potentially provide no queueing. How-
ever, such approaches are not viable in reality for a series
of reasons: they cannot react well to partial or total failures,
they would struggle with multiple tiers topologies and they
require knowing the workload in advance to properly assign
paths [25].

6 RELATEDWORK
The literature for load balancing designs is vast, however
most of it focuses on TCP-based deployments where out-of-
order packets are not desirable [5, 12, 21, 60, 63]. In contrast,
REPS alignswith the new transports (UE [19], Adaptive RoCE
by NVIDIA [46], Falcon [2]) where out-of-order packets help
to leverage the capacity of multi-path networks.

Generally, most load balancers work at different granular-
ity: per-flow, sub-flow or per-packet. ECMP [32] is a per-flow
solution and susceptible to flow collisions and are oblivious
to congested paths. Solutions like Hedera [5] and MicroTE
[12] require a global controller which is not desirable in pro-
duction datacenters [25]. For these reasons, many sub-flow
solutions like Flowlet Switching [60], Presto [29], CONGA
[6], PLB [51], FlowBender [35] have been proposed. How-
ever, some of these solutions are still congestion oblivious

12

REPS

(Flowlet, Presto), react too slowly for AI/ML bursty and in-
tense traffic (PLB, FlowBender), require specialized switches
(CONGA). Moreover, most of these solutions are unable to
quickly deal with blackholes and failures.

Load balancerswith per-packet granularity, such as OPS [21],
help drastically reduce ECMP collisions, but still are oblivi-
ous to asymmetries. As demonstrated in Section 5 OPS can
suffer even in symmetric cases. MPRDMA [41] also uses ECN
for load balancing like REPS, however it requires probing
and ACK clocking and does not offer caching of entropies.
Hermes [63] combines both ECN and delay but it works best
with TCP-like protocols and has many parameters to tune.

ConWeave [59] is designed specifically for RDMA net-
works and offers a solution by masking out-of-order packets
in commodity RNICs but it requires changes to TOR switches
and has limited scalability.

Proteus [33] focuses on optimizing the load balancing for
lossless PFC networks while REPS focuses on lossy networks.

7 CONCLUSION
We presented REPS, a simple, lightweight, yet highly effec-
tive load-balancing mechanism designed to meet the con-
straints of next-generation datacenter networks tailored for
AI workloads. As demonstrated in our extensive evaluations,
conducted through both simulations and FPGA hardware,
REPS’ adaptive entropy caching enhances end-to-end per-
formance across multiple critical metrics, including average
flow completion time, runtime, and packet loss. REPS out-
performs ECMP and OPS by up to 6x and 1.25x in symmetric
networks, and by up to 4.5x and 1.5x in asymmetric networks,
outperforming OPS by as much as 100x during short-term
transient link failures while reducing packet drops by over
70x. We also showed how REPS can work well under vari-
ous network configurations demonstrating its flexibility to
adapt to different scenarios while remaining light-weight on
memory requiring only 25 bytes of state per-connection.

REFERENCES
[1] 2004. Infiniband Performance Review. In 2004 USENIX

Annual Technical Conference (USENIX ATC 04). USENIX
Association, Boston, MA. https://www.usenix.org/
conference/2004-usenix-annual-technical-conference/
infiniband-performance-review

[2] 2023. Introducing Falcon: a reliable low-latency hardware transport |
Google Cloud Blog. https://cloud.google.com/blog/. (2023). [Accessed
16-09-2024].

[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774 (2023).

[4] Popa Adrian, Dumitrescu Dragos, Handley Mark, Nikolaidis Geor-
gios, Lee Jeongkeun, and Raiciu Costin. 2022. Implementing packet
trimming support in hardware. (2022). arXiv:cs.NI/2207.04967

[5] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow sched-
uling for data center networks. In Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’10).
USENIX Association, USA, 19.

[6] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
distributed congestion-aware load balancing for datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).
Association for Computing Machinery, New York, NY, USA, 503–514.
https://doi.org/10.1145/2619239.2626316

[7] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). SIGCOMM Comput.
Commun. Rev. 40, 4 (aug 2010), 63–74. https://doi.org/10.1145/1851275.
1851192

[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Mu-
rari Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings
of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10). Associa-
tion for Computing Machinery, New York, NY, USA, 63–74. https:
//doi.org/10.1145/1851182.1851192

[9] Anix Anbiah and Krishna M. Sivalingam. 2022. Efficient failure recov-
ery techniques for segment-routed networks. Computer Communica-
tions 182 (2022), 1–12. https://doi.org/10.1016/j.comcom.2021.10.033

[10] Infiniband Trade Association. 2024. Supplement to InfiniBand Ar-
chitecture Specification Volume 1 Release 1.2.1 Annex A17: RoCEv2.
(2024).

[11] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco
Pasquale, and Gustavo Posta. 2019. Self-stabilizing repeated balls-
into-bins. Distributed Comput. 32, 1 (2019), 59–68. https://doi.org/10.
1007/S00446-017-0320-4

[12] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
2011. MicroTE: fine grained traffic engineering for data centers.
In Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies (CoNEXT ’11). Association for Com-
puting Machinery, New York, NY, USA, Article 8, 12 pages. https:
//doi.org/10.1145/2079296.2079304

[13] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-
Trenn, Lars Nagel, and Chris Wastell. 2018. Self-Stabilizing Balls and
Bins in Batches - The Power of Leaky Bins. Algorithmica 80, 12 (2018),
3673–3703. https://doi.org/10.1007/S00453-018-0411-Z

13

https://www.usenix.org/conference/2004-usenix-annual-technical-conference/infiniband-performance-review
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/infiniband-performance-review
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/infiniband-performance-review
https://cloud.google.com/blog/
http://arxiv.org/abs/cs.NI/2207.04967
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1016/j.comcom.2021.10.033
https://doi.org/10.1007/S00446-017-0320-4
https://doi.org/10.1007/S00446-017-0320-4
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1007/S00453-018-0411-Z

Bonato et al.

[14] Broadcom. 2024. Tomahawk 5 Switch. (2024).
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm78900-series (accessed
01/24).

[15] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.
Joseph. 2009. Understanding TCP incast throughput collapse in data-
center networks. In Proceedings of the 1st ACM Workshop on Research
on Enterprise Networking (WREN ’09). Association for Computing Ma-
chinery, New York, NY, USA, 73–82. https://doi.org/10.1145/1592681.
1592693

[16] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch
the Whole Lot in an Action: Rapid Precise Packet Loss Notification
in Data Center. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIXAssociation, Seattle,WA,
17–28. https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/cheng

[17] Fan Chung and Linyuan Lu. 2006. Concentration inequalities and
martingale inequalities: a survey. Internet Mathematics 3, 1 (2006), 79
– 127.

[18] Ultra Ethernet Consortium. [n. d.]. Ultra Ethernet Specification Update
- Ultra Ethernet Consortium — ultraethernet.org. https://ultraethernet.
org/ultra-ethernet-specification-update/. ([n. d.]). [Accessed 16-09-
2024].

[19] Ultra Ethernet Consortium. 2024. Ultra Ethernet. (2024).
https://ultraethernet.org/.

[20] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Dun-
can Roweth, and Torsten Hoefler. 2020. An In-Depth Analysis of the
Slingshot Interconnect. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis. 1–14. https:
//doi.org/10.1109/SC41405.2020.00039

[21] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella.
2013. On the impact of packet spraying in data center networks. In
2013 Proceedings IEEE INFOCOM. 2130–2138. https://doi.org/10.1109/
INFCOM.2013.6567015

[22] Benjamin Doerr. 2020. Probabilistic Tools for the Analysis of Ran-
domized Optimization Heuristics. In Theory of Evolutionary Computa-
tion - Recent Developments in Discrete Optimization, Benjamin Doerr
and Frank Neumann (Eds.). Springer, 1–87. https://doi.org/10.1007/
978-3-030-29414-4_1

[23] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783 (2024).

[24] S. Floyd and V. Jacobson. 1993. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking 1, 4
(1993), 397–413. https://doi.org/10.1109/90.251892

[25] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, Shuqiang Zhang, Mikel Jimenez
Fernandez, Shashidhar Gandham, and Hongyi Zeng. 2024. RDMA
over Ethernet for Distributed Training at Meta Scale. In Proceed-
ings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24).
Association for Computing Machinery, New York, NY, USA, 57–70.
https://doi.org/10.1145/3651890.3672233

[26] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk
Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and Huaicheng
Li. 2018. Fail-Slow at Scale: Evidence of Hardware Performance Faults
in Large Production Systems. In 16th USENIX Conference on File and
Storage Technologies (FAST 18). USENIX Association, Oakland, CA,

1–14. https://www.usenix.org/conference/fast18/presentation/gunawi
[27] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,

Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
Architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17). Association
for Computing Machinery, New York, NY, USA, 29–42. https://doi.
org/10.1145/3098822.3098825

[28] Jun He and Xin Yao. 2004. A study of drift analysis for estimating
computation time of evolutionary algorithms. Nat. Comput. 3, 1 (2004),
21–35. https://doi.org/10.1023/B:NACO.0000023417.31393.C7

[29] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. 2015. Presto: Edge-Based Load Balancing for Fast
Datacenter Networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15). As-
sociation for Computing Machinery, New York, NY, USA, 465–478.
https://doi.org/10.1145/2785956.2787507

[30] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di Giro-
lamo, Shigang Li, Marco Heddes, Jon Belk, Deepak Goel, Miguel Castro,
and Steve Scott. 2022. HammingMesh: a network topology for large-
scale deep learning. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC
’22). IEEE Press, Article 11, 18 pages.

[31] Torsten Hoefler, Duncan Roweth, Keith Underwood, Robert Alver-
son, Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra
Anubolu, Siyuan Shen, Moray McLaren, Abdul Kabbani, and Steve
Scott. 2023. Data Center Ethernet and Remote Direct Memory Ac-
cess: Issues at Hyperscale. Computer 56, 7 (2023), 67–77. https:
//doi.org/10.1109/MC.2023.3261184

[32] C. Hopps. 2009. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. (Nov. 2009). https://www.ietf.org/rfc/rfc2992.txt

[33] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo,
Hong Xu, Jiawei Huang, and Kai Chen. 2023. Enabling Load Balancing
for Lossless Datacenters . In 2023 IEEE 31st International Conference on
Network Protocols (ICNP). IEEE Computer Society, Los Alamitos, CA,
USA, 1–11. https://doi.org/10.1109/ICNP59255.2023.10355615

[34] A. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe. 2004. Resilient
routing using MPLS and ECMP. In 2004 Workshop on High Performance
Switching and Routing, 2004. HPSR. 345–349. https://doi.org/10.1109/
HPSR.2004.1303507

[35] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and FabienDuchene.
2014. FlowBender: Flow-level Adaptive Routing for Improved Latency
and Throughput in Datacenter Networks. In Proceedings of the 10th
ACM International on Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’14). Association for Computing Machinery,
New York, NY, USA, 149–160. https://doi.org/10.1145/2674005.2674985

[36] Abdul Kabbani, David J. Wetherall, Gautam Kumar, Junhua Yan, Kira
Yin, Masoud Moshref, Mubashir Adnan Qureshi, Qiaobin Fu, Van
Jacobson, and Yuchung Cheng. 2022. PLB: Congestion Signals are
Simple and Effective for Network Load Balancing.

[37] Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul
Kabbani, Vipin Jain, Raghava Sivaramu, and Francis Matus. 2024.
STrack: A Reliable Multipath Transport for AI/ML Clusters. (2024).
arXiv:cs.NI/2407.15266 https://arxiv.org/abs/2407.15266

[38] Johannes Lengler. 2020. Drift Analysis. In Theory of Evolutionary
Computation - Recent Developments in Discrete Optimization, Benjamin
Doerr and Frank Neumann (Eds.). Springer, 89–131. https://doi.org/10.
1007/978-3-030-29414-4_2

[39] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
et al. 2020. Pytorch distributed: Experiences on accelerating data
parallel training. arXiv preprint arXiv:2006.15704 (2020).

14

https://doi.org/10.1145/1592681.1592693
https://doi.org/10.1145/1592681.1592693
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/cheng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/cheng
https://ultraethernet.org/ultra-ethernet-specification-update/
https://ultraethernet.org/ultra-ethernet-specification-update/
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/INFCOM.2013.6567015
https://doi.org/10.1109/INFCOM.2013.6567015
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/3651890.3672233
https://www.usenix.org/conference/fast18/presentation/gunawi
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1023/B:NACO.0000023417.31393.C7
https://doi.org/10.1145/2785956.2787507
https://doi.org/10.1109/MC.2023.3261184
https://doi.org/10.1109/MC.2023.3261184
https://www.ietf.org/rfc/rfc2992.txt
https://doi.org/10.1109/ICNP59255.2023.10355615
https://doi.org/10.1109/HPSR.2004.1303507
https://doi.org/10.1109/HPSR.2004.1303507
https://doi.org/10.1145/2674005.2674985
http://arxiv.org/abs/cs.NI/2407.15266
https://arxiv.org/abs/2407.15266
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_2

REPS

[40] Dimitrios Los and Thomas Sauerwald. 2023. Tight Bounds for Re-
peated Balls-Into-Bins. In 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg,
Germany (LIPIcs), Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and
MamadouMoustapha Kanté (Eds.), Vol. 254. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 45:1–45:22. https://doi.org/10.4230/LIPICS.
STACS.2023.45

[41] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. 2018.
Multi-path transport for RDMA in datacenters. In Proceedings of the
15th USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI’18). USENIX Association, USA, 357–371.

[42] Tesla Motors. 2024. Tesla Transport Protocol (TTPoE). (2024).
https://github.com/teslamotors/ttpoe (accessed 09/24).

[43] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learn-
ing recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091 (2019).

[44] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay:
A modern AQM is just one piece of the solution to bufferbloat. Queue
10, 5 (may 2012), 20–34. https://doi.org/10.1145/2208917.2209336

[45] Nvidia. 2024. Networking for the Era of AI:
The Network Defines the Data Center. (2024).
https://nvdam.widen.net/s/bvpmlkbgzt/networking-overall-
whitepaper-networking-for-ai-2911204 (accessed 01/24).

[46] NVIDIA. 2024. NVIDIA Spectrum-X Network Platform Architecture.
(2024). https://resources.nvidia.com/en-us-accelerated-networking-
resource-library/nvidia-spectrum-x.

[47] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa,
Cristi Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley, and
Costin Raiciu. 2022. An edge-queued datagram service for all datacen-
ter traffic. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 761–777.
https://www.usenix.org/conference/nsdi22/presentation/olteanu

[48] Christos Pelekis. 2017. Lower bounds on binomial and Pois-
son tails: an approach via tail conditional expectations. (2017).
arXiv:math.PR/1609.06651 https://arxiv.org/abs/1609.06651

[49] Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg, and Torsten
Hoefler. 2013. Bandwidth-optimal all-to-all exchanges in fat tree
networks. In Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing (ICS ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 139–148. https:
//doi.org/10.1145/2464996.2465434

[50] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi Fangbo Zhu, Rui Miao, Chao Wang, Peng
Wang, Pengcheng Zhang, Xianlong Zeng Zhiping Yao, Ennan Zhai,
and Dennis Cai. 2024. Alibaba HPN: A Data Center Network for Large
Language Model Training. (2024).

[51] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu,
Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David
Wetherall, and Abdul Kabbani. 2022. PLB: congestion signals are
simple and effective for network load balancing. In Proceedings of
the ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association for
Computing Machinery, New York, NY, USA, 207–218. https://doi.org/
10.1145/3544216.3544226

[52] Martin Raab and Angelika Steger. 1998. "Balls into Bins" - A Simple
and Tight Analysis. In Randomization and Approximation Techniques
in Computer Science, Second International Workshop, RANDOM’98,
Barcelona, Spain, October 8-10, 1998, Proceedings (Lecture Notes in Com-
puter Science), Michael Luby, José D. P. Rolim, and Maria J. Serna (Eds.),
Vol. 1518. Springer, 159–170. https://doi.org/10.1007/3-540-49543-6_13

[53] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. 2011. Improving data-
center performance and robustness with multipath TCP. SIGCOMM
Comput. Commun. Rev. 41, 4 (aug 2011), 266–277. https://doi.org/10.
1145/2043164.2018467

[54] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A
Cloud-Optimized Transport Protocol for Elastic and Scalable HPC.
IEEE Micro 40, 6 (2020), 67–73. https://doi.org/10.1109/MM.2020.
3016891

[55] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In Sigcomm ’15.

[56] Preeti Singh, J. K. Rai, and Ajay K. Sharma. 2020. Bit Error Rate
Analysis of AWG Based Add-Drop Hybrid Buffer Optical Packet
Switch. In 2020 2nd International Conference on Advances in Com-
puting, Communication Control and Networking (ICACCCN). 454–458.
https://doi.org/10.1109/ICACCCN51052.2020.9362921

[57] Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha Parkhi,
Jitendra Padhye, and David Maltz. 2021. Surviving switch failures in
cloud datacenters. SIGCOMM Comput. Commun. Rev. 51, 2 (may 2021),
2–9. https://doi.org/10.1145/3464994.3464996

[58] Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha Parkhi,
Jitendra Padhye, and David Maltz. 2021. Surviving switch failures in
cloud datacenters. SIGCOMM Comput. Commun. Rev. 51, 2 (may 2021),
2–9. https://doi.org/10.1145/3464994.3464996

[59] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and
Mun Choon Chan. 2023. Network Load Balancing with In-network
Reordering Support for RDMA. In Proceedings of the ACM SIGCOMM
2023 Conference (ACM SIGCOMM ’23). Association for Computing
Machinery, New York, NY, USA, 816–831. https://doi.org/10.1145/
3603269.3604849

[60] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and
Tom Edsall. 2017. Let It Flow: Resilient Asymmetric Load Balancing
with Flowlet Switching. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 407–420. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/vanini

[61] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eu-
gene Ng, Neal Cardwell, and Nandita Dukkipati. 2023. Poseidon: An Ef-
ficient Congestion Control using Deployable INT for Data Center Net-
works. https://www.usenix.org/system/files/nsdi23-wang-weitao.pdf

[62] Jin Ye, Renzhang Liu, Ziqi Xie, Luting Feng, and Sen Liu. 2019. EMPTCP:
An ECN Based Approach to Detect Shared Bottleneck in MPTCP. In
2019 28th International Conference on Computer Communication and
Networks (ICCCN). 1–10. https://doi.org/10.1109/ICCCN.2019.8847013

[63] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowd-
hury. 2017. Resilient Datacenter Load Balancing in theWild. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 253–266. https://doi.org/10.1145/3098822.3098841

[64] Jiao Zhang, Fengyuan Ren, and Chuang Lin. 2011. Modeling and
understanding TCP incast in data center networks. 2011 Proceedings
IEEE INFOCOM (2011), 1377–1385. https://api.semanticscholar.org/
CorpusID:16461175

[65] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen
Qi, Xuemei Shi, and Guohui Wang. 2021. Hashing Linearity Enables
Relative Path Control in Data Centers. In 2021 USENIXAnnual Technical
Conference (USENIX ATC 21). USENIX Association, 855–862. https:
//www.usenix.org/conference/atc21/presentation/zhang-zhehui

15

https://doi.org/10.4230/LIPICS.STACS.2023.45
https://doi.org/10.4230/LIPICS.STACS.2023.45
https://doi.org/10.1145/2208917.2209336
https://www.usenix.org/conference/nsdi22/presentation/olteanu
http://arxiv.org/abs/math.PR/1609.06651
https://arxiv.org/abs/1609.06651
https://doi.org/10.1145/2464996.2465434
https://doi.org/10.1145/2464996.2465434
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1145/2043164.2018467
https://doi.org/10.1145/2043164.2018467
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1109/ICACCCN51052.2020.9362921
https://doi.org/10.1145/3464994.3464996
https://doi.org/10.1145/3464994.3464996
https://doi.org/10.1145/3603269.3604849
https://doi.org/10.1145/3603269.3604849
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/system/files/nsdi23-wang-weitao.pdf
https://doi.org/10.1109/ICCCN.2019.8847013
https://doi.org/10.1145/3098822.3098841
https://api.semanticscholar.org/CorpusID:16461175
https://api.semanticscholar.org/CorpusID:16461175
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui

Bonato et al.

[66] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al.
2023. Pytorch fsdp: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277 (2023).

[67] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. WCMP: weighted
cost multipathing for improved fairness in data centers. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys ’14).
Association for Computing Machinery, New York, NY, USA, Article 5,
14 pages. https://doi.org/10.1145/2592798.2592803

[68] Yibo Zhu, Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar
Raindel, Mohamad Haj Yahia, Ming Zhang, and Jitu Padhye. 2015.
Congestion Control for Large-Scale RDMA Deployments. In SIG-
COMM (sigcomm ed.). ACM - Association for Computing Ma-
chinery. https://www.microsoft.com/en-us/research/publication/
congestion-control-for-large-scale-rdma-deployments/

A FREEZING MODE IN REPS
Ideally, REPS should enter freezingmode only upon detecting
a network failure. To achieve this, we employ two strategies:
(1) Packet Trimming Support: When packet trimming

is available, distinguishing between packets lost due to
congestion and those lost because of network failures
becomes more straightforward. We use trimming to
identify and separate lost packets with greater accu-
racy.

(2) Absence of Packet Trimming: In the absence of
packet trimming, we analyze the maximum round-
trip time (RTT) observed during a period preceding
the timeout event. If the maximum RTT immediately
before the timeout is high, it indicates that the packet
was likely lost due to congestion. Conversely, if the
maximum RTT was low, the packet was more likely
lost due to a network failure.

In our paper, we focused on scenarios where packet trim-
ming was not supported. However, REPS performs optimally
when packet trimming is available, benefiting from both an
enhanced loss detection algorithm and a more responsive
CC loop.

Regardless of the employed strategy, REPS maintains high
performance even if it inadvertently enters freezing mode
without an actual network failure. This is because entering
freezing mode effectively reduces the EVS size of REPS. As
demonstrated in Section 4.5.1, REPS remains effective with as
few as 32 EVs. For instance, we tested REPS with the 16 MiB
tornado workload, running it first under normal conditions
and then with forced freezing mode activated after 150 𝜇s.
The results showed only a 1% increase in completion time
for REPS with forced freezing mode, with the 99th percentile
RTT remaining very close, as illustrated in Figure 15.
As an extension for REPS, probing can be incorporated

to make the failure detection more precise, but we decided
to not add this as part of REPS for now in order to keep

things simple. Moreover, in this paper we do not discuss fast
loss recovery mechanisms as they are anyway orthogonal
to REPS behaviour and could be used to further improve its
performance.

11.2 11.4 11.6 11.8 12.0
RTT (microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RTT Distribution -- 99th percentile

Freeze after 150us
No Freeze

Figure 15: Studying REPS while forcing freezing mode
without failures.

B ENTROPY VALUES SET ANALYSIS
Practical implementations make use of hashing functions
to map EVs onto output ports. We show that while using a
small EVS can lead to high inherent load balancing issues,
using 216 EVs is very close to uniformly random.
We first show theoretically that the EVS size is very im-

portant for OPS and later that REPS is much more flexible
and can work well even with small EVS.

We investigate the phenomenon that a small EVS leads to
poor load balancing of the output ports of a switch in the
case of a fat tree topology.
We use a balls-into-bins model [52], where 𝑚 balls are

thrown uniformly and idependently at random into 𝑛 bins.
The goal is to determine the largest number of balls in any
bin, referred to as the maximum load 𝑙 (𝑚,𝑛). We define the
load imbalance 𝜆𝑚,𝑛 as 𝑙 (𝑚,𝑛)

𝑚/𝑛 − 1, representing the extent to
which the most heavily loaded bin exceeds the average.

In our setting, the output ports correspond to bins and the
EVs correspond to balls. In our model, 𝜆𝑚,𝑛 represents the
load imbalance of the EVs onto uplinks. Since EVs are chosen
for packets uniformly at random, the load balancing of EVs
directly affects the load balancing of packets onto output
ports.
The load imbalance depends on the average number of

balls per bin (i.e., 𝑚
𝑛
): if𝑚 = 𝑛, then the load imbalance is

Θ
(log𝑛
log log𝑛

)
with high probability. However, when the ratio

of balls to bins 𝑚
𝑛
≫ log𝑛, the load imbalance tends to zero

with high probability [52]. In conclusion, for OPS and a fixed
16

https://doi.org/10.1145/2592798.2592803
https://www.microsoft.com/en-us/research/publication/congestion-control-for-large-scale-rdma-deployments/
https://www.microsoft.com/en-us/research/publication/congestion-control-for-large-scale-rdma-deployments/

REPS

number of flows, we expect high load imbalance with a small
EVS and near-zero load imbalance as the EVS increases.
We confirm this theoretical analysis with simulations of

the load imbalance. Figures 16a and 16b show the distribution
of the load imbalance for 1 and 32 unique flows, respectively.
We note that each flow is from a different sender and will
hence have different header fields that will be used in the
hashing function regardless of the EV value. We note that
for each case, we throw for each active flow a number of
balls equal to the EVS size, with each ball being a unique
EV. We can see that for 32 flows, choosing less than 28 EVs
can lead to more than 10% load-imbalance, whereas 216 EVs
guarantee less than a 1% load imbalance.

5 6 7 8 9 10 11 12 13 14 15 16
EVS Size (2^x)

0

1

2

3

4

Lo
ad

 Im
ba

la
nc

e

2.6
6

1.7
6

1.2
2

0.8
2

0.5
6

0.3
8

0.2
8

0.1
9

0.1
4

0.0
9

0.0
7

0.0
5

Average Load Imbalance
95% Percentile Range

(a) 1 flow active

5 6 7 8 9 10 11 12 13 14 15 16
EVS Size (2^x)

0.0

0.2

0.4

0.6

Lo
ad

 Im
ba

la
nc

e

0.4
1

0.3
0

0.2
1

0.1
4

0.1
0
0.0

7
0.0

5
0.0

3
0.0

3
0.0

2
0.0

1
0.0

1

Average Load Imbalance
95% Percentile Range

(b) 32 flows active

Figure 16: The expected load imbalance at a switch
with 32 uplinks.

C REPS SINGLE SWITCH CONVERGENCE
PROOF

We prove the main theorem that demonstrates the conver-
gence of the recycled balls-into-bins process for a single
switch.
The process has two distinct phases. In the first phase,

there are still empty bins. The number of balls can still grow
in this ’warmup’ phase. We will bound the steps it takes
to undergo the first phase and bound the maximum load.
In the second phase, all bins are non-empty. Once a bin is
non-empty, it remains non-empty. Moreover, once all bins
are non-empty, the number of balls in the system remains
constant, as for every ball removed a ball is thrown. In this
second phase, we will show that the system converges to a
state where all bins have at most 𝜏 balls by means of a drift
theorem [38]. Note that once all bins have at most 𝜏 balls and
every ball has a distinct color, they will keep having at most
𝜏 balls. Moreover, we will argue about the maximum load
and we will show that throughout, as long as the number of
colors is at least 𝑏 · 𝑛 ≥ (2.4 ln𝑛)𝑛, there is at most one ball
of any given color with high probability.
Note that much of the proof is devoted to showing con-

vergence of the second phase. If we set the threshold large
enough, no bin ever overflows and essentially we only have
the first phase, which converges in expected 𝑛 ln𝑛 + 𝑛 steps.
Since queues are an expensive hardware resource, we are

interested in showing good constant factor bounds for the
queue lengths rather than giving a weaker asymptotic bound
for 𝜏 .

Proof of Theorem 5.1. First Phase.We say a ball is fresh
if it was thrown randomly. After𝑚 = 2𝑛 ln𝑛 fresh balls are
thrown, every bin received at least one fresh ball with proba-
bility 1 − 1

𝑛
, by the coupon collector problem [22]. Either all

bins are non-empty before𝑚 steps and we are done, or we
have thrown at least𝑚 fresh balls and all bins are non-empty.
Either way, a bin receives at most 𝑂 (log𝑛) fresh balls, by
balls into bins with𝑚+𝑛 balls [52]. Observe that the number
of balls in a bin only increases if it receives a fresh ball. Hence,
the number of received fresh balls bounds the number of
balls in a bin.

Since 𝑏 > 2.4 ln𝑛, we have at most one ball per color when
the first phase ends.

Second Phase At the beginning of the second phase, we
have atmost 2𝑛 ln𝑛+𝑛 balls in total and all bins are nonempty.
We define a potential function to measure the drift towards
a completely load-balanced state. Let 𝑋 𝑖

𝑡 be the number of
balls in bin 𝑖 at time step 𝑡 and let 𝑌 𝑖

𝑡 = max(0, 𝑋 𝑖
𝑡 − 𝜏). Our

potential is 𝑌𝑡 =
∑

𝑖 𝑌
𝑖
𝑡 . Clearly, when the potential is 0, all

bins have at most 𝜏 elements. We need to bound the drift
𝑌𝑡+1 − 𝑌𝑡 .
We first consider the case where each ball has a unique

color. The drift depends on the number of bins with more
than 𝜏 elements, which we denote by 𝐾𝑡 . Let us consider the
expected drift for one particular bin 𝑖 . The easy cases are:

𝐸 [𝑌 𝑖
𝑡+1 − 𝑌 𝑖

𝑡 |𝑋 𝑖
𝑡 = 𝑥, 𝐾𝑡 = 𝑘] =


𝑘
𝑛
− 1 if 𝑥 > 𝜏,

𝑘
𝑛

if 𝑥 = 𝜏

0 if 𝑥 ≤ 𝜏 − 𝑘,

If 𝑥 is in between 𝜏 − 𝑘 and 𝜏 , it gets interesting. The ex-
pected drift is still bounded by 𝑛

𝑘
, but this estimate is not

strong enough overall. Instead, we need to show that the
expected drift is very small for all such bins. To this end, we
express the expected drift using a binomial random variable
𝐵 with parameters 1

𝑛
and 𝑘 as 𝐸 [max(0, 𝐵 − (𝜏 − 𝑥))]. We

cannot directly use linearity of expectation because of the
maximum function. Instead, using total expectation leads to
the following expression (for 𝑧 ≥ 3):

𝐸 [max(0, 𝐵 − 𝑧)] = (𝐸 [𝐵 | 𝐵 ≥ 𝑧] − 𝑧) 𝑃 [𝐵 ≥ 𝑧]

≤ 1
𝑧 − 1𝑒

−(𝑧−1) ,

where we show the tail bound in Lemma C.2.
We now compute the expected drift overall by considering

each type of bin separately. By summing over all bins, the
total expected drift contribution of bins with less than 𝜏−ln𝑛
balls is therefore bounded by 1

ln𝑛 (since 𝑧 ≥ ln𝑛 + 1). Note
that these bins only contribute to the drift if 𝑘 > ln𝑛. Next,

17

Bonato et al.

consider the contribution from bins with at least 𝜏 − ln𝑛 but
at most 𝜏 balls. Since we have at most 2𝑛 log𝑛 + 𝑛 balls, of
which at least 𝑘 (𝜏 + 1) balls are in overfull bins, there can
be at most 2𝑛 log𝑛+𝑛−𝑘 (𝜏+1)

𝜏−ln𝑛 ≤ 3
4𝑛 − 𝑘 such bins. They each

contribute at most 𝑘
𝑛
, so their total contribution is at most

3
4𝑘 − 𝑘2

𝑛
. Finally, each overfull bin contributes 𝑘

𝑛
− 1 to the

expectation, for a total contribution of 𝑘2

𝑛
− 𝑘 . Hence, the

total expected drift is

𝐸 [𝑌𝑡+1 − 𝑌𝑡 |𝐾𝑡 = 𝑘] ≤
{

1
ln𝑛 − 𝑘

4 if 𝑘 > ln𝑛,
− 1

4 else.

Next, we bound the expected drift when there is more
than one ball per color. We have two ball of the same color
only if a ball does not get removed before the next ball of
the same color is thrown. This happens if more than 𝑏 balls
arrive in the same bin in the same time step as the ball (this
uses the FiFO-property of the queues). By a tail bound on the
binomial distribution, this happens with probability at most
𝑒5/4

𝑛3 , by Lemma C.1 using 𝑏 ≥ 12
5 ln𝑛. By a union bound, the

probability that any color in a batch has more than one ball
is at most 𝑒5/4

𝑛2 . The drift is bounded by 𝑛, so the contribution
to the expected drift by this case is at most 𝑒5/4

𝑛
.

Note that for 𝑛 ≥ 16, 𝑒5/4

𝑛
+ 1

ln𝑛 − 1+ln𝑛
4 ≥ − 1

8 and 𝑒5/4

𝑛
−

1
4 ≥ − 1

32 . Hence, the expected drift is at most − 1
32 . We

conclude by an additive drift theorem [28, 38] that the ex-
pected time until all bins are below the threshold is at most
𝐸 [32 · 𝑌0] = 𝑂 (𝑛 ln𝑛). If all balls have unique colors at the
end, the process converges then. This happens with prob-
ability 1 − 𝑂 (ln𝑛

𝑛
). So with high probability, a single such

𝑌𝑡 = 0 event suffices and the overall expectation is 𝑂 (𝑛 ln𝑛).
Observe that the number of balls in the queues is bounded

by 𝜏 plus the maximum load of a batched balls-into-bins
process [13] with expected injection rate 𝜆 = 𝑘

𝑛
≤ 1

2 . Hence,
the number of balls in a bin is𝑂 (log𝑛) throughout with high
probability.

□

We use the following tail bound:

Lemma C.1. Let 𝐵 be binomially distributed with parame-
ters 1

𝑛
and 𝑘 ≤ 𝑛. Then, for any 𝑥 ≥ 16:

𝑃 [𝐵 ≥ 𝑥] ≤ 𝑒− 5
4 (𝑥−1)

Proof. We use an additive Chernoff bound [17]:

𝑃 [𝐵 ≥ 𝐸 [𝐵] + 𝛿] ≤ 𝑒−
𝛿2

2(𝐸 [𝐵]+𝛿/3)

≤ 𝑒
− 𝛿

2
𝛿
+ 2
3

≤ 𝑒− 5
4𝛿 using 𝛿 ≥ 15

□

We use the following lemma to bound the expected drift
of bins that are far below the threshold:

Lemma C.2. Let 𝐵 be binomially distributed with parame-
ters 1

𝑛
and 𝑘 ≤ 𝑛/2. Then, for any 𝑥 ≥ 7/2:

(𝐸 [𝐵 | 𝐵 ≥ 𝑥] − 𝑥) 𝑃 [𝐵 ≥ 𝑥] ≤ 1
𝑥 − 1𝑒

−(𝑥− 1
2)

Proof. Weuse a bound fromPelekis [48] for 𝐸 [𝐵 | 𝐵 ≥ 𝑥].
By their theorem on this conditional expectation:

𝐸 [𝐵 | 𝐵 ≥ 𝑥] ≤ 𝑥 +
(𝑛 − 𝑥) 1

𝑛

𝑥 − 𝑘
𝑛
+ 1

𝑛

≤ 𝑥 + 1
𝑥 − 1 .

We bound 𝑃 [𝐵 ≥ 𝑥] similarly as in Lemma C.1:

𝑃 [𝐵 ≥ 𝐸 [𝐵] + 𝛿] ≤ 𝑒−
𝛿2

2(𝐸 [𝐵]+𝛿/3)

≤ 𝑒
− 𝛿

1
𝛿
+ 2
3 using 𝐸 [𝐵] ≤ 1

2
≤ 𝑒−𝛿 using 𝛿 ≥ 3

Because 𝐸 [𝐵] ≤ 1
2 , 𝑃 [𝐵 ≥ 𝑥] ≤ 𝑒−(𝑥− 1

2) . □

D ADDITIONAL RESULTS
This section presents additional results that could not be
included in the main body of the paper.

D.1 ACK Coalescing Theoretical Modeling
To assess REPS performance under different ACK coalesc-
ing ratios, we validate it using the theoretical model from
Section 5.1.

τ

τ

τ

OPS
Recycled Balls

Figure 17: Performance with different ACK coalescing
ratios using the balls-into-bins models.

18

REPS

Figure 17 shows how the recycled balls model performs
well, even with less frequent recycling. While we lose the
guarantee of consistently staying below 𝜏 , with 2:1 and 4:1
recycling ratios, the queues barely exceed this threshold. An
8:1 ratio still proves slightly more advantageous than OPS.

D.2 Different Tiers
We aim to verify that REPS performs effectively with fat-tree
topologies that have three tiers. This scenario poses a slightly
greater challenge for REPS, as a single EV must manage two
hops. Nonetheless, there is no intrinsic reason why REPS
should not perform well in such a topology.
To validate this, we execute the synthetic benchmark us-

ing the symmetric topology described in Section 4.3.1, but
with three tiers instead of two. The results, shown in Fig-
ure 18, indicate that REPS performs comparably to the two-
tier topology.

Figure 18: Studying REPS with a 3 tiers fat tree topol-
ogy.

D.3 Incremental Failures
To further demonstrate the resilience of REPS under failures,
we conducted an experiment where we incrementally failed
all but one of a switch’s uplinks at 200 µs intervals. Figure 19
presents the permutation from the perspective of the failing
switch, where three of the four uplinks were permanently
disabled in a staggered manner. As expected, REPS enters
freezing mode immediately after the first failure, ensuring
that failing output ports are avoided. Notably, small utiliza-
tion spikes are observed on the failing links when REPS exits

freezing mode to verify if the failure has been resolved. Since
the failures are permanent for the duration of the experiment,
REPS promptly re-enters freezing mode after detecting unre-
solved issues.

Failure
1 starts

Failure
2 starts

Failure
3 starts

Freezing
starts

REPS occassionally exits
freezing to check the failure status
before re-entering it right away

OPS performs very poorly as continuous
timeouts and retransmissions drastically
slow its sending rate.

Figure 19: REPS vs. OPS in a 32 MiB permutation with
incremental persistent failures.

In this drastic scenario, OPS performs 40× worse than
REPS, primarily due to its inability to avoid broken links, re-
sulting in numerous retransmissions and reduced congestion
windows.

E ADDITIONAL DATA
The datacenter traces used throughout this paper have been
previously used in a number of similar works [7, 60]. In
particular we use traces provided by Alibaba and Facebook
and a series of traces used for web search in production
clusters. The CDF distribution for such traces can be seen in
Figure 20. For most of the paper we focus exclusively on the
WebSearch traces.

WebSearch

Facebook

Figure 20: CDF for different data center traces

19

	Abstract
	1 Introduction
	2 Background
	2.1 Congestion Signals
	2.2 Load Balancing

	3 REPS
	3.1 Core Logic: Path Exploration and Reuse
	3.2 Failure Mitigation: Freezing Mode
	3.3 REPS Design Advantages

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Workloads
	4.3 Simulation Results
	4.4 REPS-FPGA Evaluation
	4.5 REPS Applicability

	5 Theoretical Verification
	5.1 Recycled Balls-into-Bins Model
	5.2 Limitations and Alternatives

	6 Related Work
	7 Conclusion
	References
	A Freezing Mode in REPS
	B Entropy Values Set Analysis
	C REPS Single Switch Convergence Proof
	D Additional Results
	D.1 ACK Coalescing Theoretical Modeling
	D.2 Different Tiers
	D.3 Incremental Failures

	E Additional Data

