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Uncertainty in forecasting

▪ Weather is a chaotic system

▪ Minor perturbations affect the outcome the further 
into the future we predict

▪ Solution: Ensemble Prediction Systems – predict weather 
as a probability distribution

▪ Approximated by (stochastic) partial differential equations

Source: www.weather.us

Source: www.ecmwf.int



spcl.inf.ethz.ch

@spcl_eth

▪ Initial condition uncertainties result from data assimilation

▪ 51 ensemble members, 1 control (deterministic), 50 perturbed (stochastic)

▪ Approximate the highest likely trajectory from output distribution D

▪ Lower resolution (9km vs. 18km) in order to fit compute budget

mostly an economic argument

▪ Next step in the economic argument:

▪ Could the number of ensemble members be reduced without sacrificing accuracy?

▪ Idea I: predict mean and standard deviation (StdDev) of D from a smaller ensemble

This may allow us to increase resolution at equal cost – better predictions

▪ Can we improve prediction quality by learning from ground truth observations?

▪ Idea II: learn (local) model bias from observations

This may allow us to increase accuracy – better predictions
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Ensemble Prediction System at ECMWF
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Why machine learning/deep learning?
Canziani et al. 2017

Number of users 0.8 bn

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

f(x)

layer-wise weight update

▪ ImageNet (1k): 180 GB 

▪ ImageNet (22k): A few TB

▪ Industry: Much larger

▪ 100-200 layers deep

▪ ~100M-2B  parameters

▪ 0.1-8 GiB parameter storage

▪ 10-22k labels

▪ growing (e.g., face recognition)

▪ weeks to train
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Deep learning is a multi billion-dollar industry!
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And everybody is optimizing for it …

The field is moving fast – trying everything imaginable – survey results from 227 papers in the area of parallel deep learning

Hardware used Shared vs. distributed memory

Deep learning is here to stay – as programming 2.0 or otherwise!

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv Feb 2018

Communication mode
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A multi billion dollar (hardware) industry 
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▪ Spatial:

▪ 10-member ensembles from ECMWF's hindcasts 
“ENS10” and “ERA5” reanalysis data – both 
interpolated on lat/lon grid with 0.5 degree 
resolution

▪ 850 hPa (T850) and 500 hPa (Z500) pressure 
levels

▪ Temporal:

▪ Forecasts available from 0600 and 1800 UTC for 
each day from 2000-2018

▪ Using smallest timestep: 3 hour steps
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Data Acquisition: Data Selection
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1 Pressure level: 500/850hPa
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Reanalysis dataset – 1950-today
Contains High-RESolution (HRES) 
data as ground truth

Reforecast data from 10-
ensemble ENS10 (18km 
resolution)
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Uncertainty Quantification Network (based on ResNet)
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Bias Correction Network (based on 3D-Unet + LCN)
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▪ Framework: TensorFlow

▪ Default Adam optimizer

▪ NVIDIA V100 

Four hours for training

1/3rd second for inference

▪ Batch size 2

▪ Training Loss: MSE

▪ Evaluation on RMSE

▪ Combined training of both models

▪ Loss function
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Training: Setup
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Global RMSE results

T850 T850Z500 Z500

10 ensembles 
vs. UP with 5 
ensembles

10 ensembles 
vs. 5 ensembles

ERA5 (ground 
truth) vs. BN with 

5 trajectories

ERA5 (ground 
truth) vs. 10 
trajectories
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Global average values for each day 2016-2017)

BN+UP with 5 
ensembles 

trained on CRPS
BN with 5 
ensembles 

trained on CRPS

5 
ensembles

10 
ensembles

T850 Z500
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Extreme event: Tropical Cyclone Winston & Hurricane Matthews

10 ensemble vs. ERA5 Difference 5-10 ensemble 5 ens. BN+UN – 10 ens. Trained on CRPS
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Cold wave over Asia
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▪ Simple Deep Learning can be used to accelerate forecast pipelines
▪ Take advantage of industry efforts to tune hardware and tool-chains
▪ An informed approach is necessary to ensure improved results

▪ Using Encoder-Decoder networks for predicting mean and StdDev in ensemble systems yields higher accuracy 
than using small ensemble statistics
▪ Fewer than half of the ensemble members are necessary
▪ Accuracy improved with custom operators

▪ Promising for increasing performance in large-scale settings
▪ Needs further investigation!
▪ Join us/try yourself: https://github.com/spcl/deep-weather

▪ Future directions:
▪ Larger datasets
▪ Custom neural architectures for unstructured grids
▪ Integrate into dace tool-chain for further optimization
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Summary of our preliminary study

https://github.com/spcl/deep-weather

