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The overall 
objective function:
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Deep learning training

Model parallelism

Dataset

P0 P1 P2

ξ is a data point 
sampled from a 
distribution D.

F is the loss 
function.

w denotes 
the model
parameters. 

Training: optimize w to minimize f (using SGD). 
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Deep learning training

Pipeline parallelism

P0

P1

P2

Dataset

ξ is a data point 
sampled from a 
distribution D.

F is the loss 
function.

w denotes
the model
parameters. 

Training: optimize w to minimize f (using SGD). 

The overall 
objective function:
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Deep learning training

Data parallelism

P0 P1 P2

Dataset

ξ is a data point 
sampled from a 
distribution D.

F is the loss 
function.

w denotes
the model
parameters. 

Training: optimize w to minimize f (using SGD). 

Global synchronization
using Allreduce

The overall 
objective function:
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▪ Load imbalance on application level
▪ Recurrent Neural Networks 

(RNN/LSTM/GRU)

▪ Transformers
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Unbalanced training workloads

(One input 

multiple outputs)
(Multiple inputs 

multiple outputs)

(Multiple inputs 

one output)

▪ Load imbalance on system level
▪ Performance variability on multitenant 

cloud systems

▪ System or network noise

Different types of RNNs

Multitenant cloud system

Interrupts, 
daemon, 
page/cache 
misses, et al.

Challenge: stragglers 
dominate the performance.
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Many-to-one RNN for video classification

h0 fw h1 fw h2 fw h3 hT
…

FC1

FC2

0.13
0.14
0.41
0.09
0.13
0.10

Playing 
Basketball

x1 x2 x3 xT

Backward   pass

L(WT)L(W3)L(W2)L(W1)

L(w)

RNN:
Workload is 

proportional to T
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Workload statistics for video classification

(a) Video length distribution for UCF101 dataset

Distribution: 201 ~ 3,410 ms
Mean: 1,235 ms
Standard deviation: 706 ms

Distribution:   29 ~ 1,776 frames
Mean:   187 frames
Standard deviation: 97 frames

(b) Runtime distribution for the mini-
batches to train a LSTM model on P100



spcl.inf.ethz.ch

@spcl_eth

8

[1] Vaswani, Ashish, Noam 

Shazeer, Niki Parmar, Jakob 

Uszkoreit, Llion Jones, Aidan N. 

Gomez, Łukasz Kaiser, and Illia

Polosukhin. "Attention is all 

you need." In Advances in 

NeurIPS, pp. 5998-6008. 2017.

Transformer

Distribution: 179 ~ 3,482 ms
Mean: 475 ms
Standard deviation: 144 ms

Runtime distribution for the mini-batches to train 
a Transformer model (using WMT16) on P100

知识就是力量。 Knowledge is power

power.  

.  

Encoder

Decoder

The workload is proportional to input_size * output_size .   

? ? 
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▪ Compared with imbalanced applications (e.g., LSTM, Transformer), the load imbalance on 
cloud servers is relatively light.
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Training on Cloud

Runtime distribution on Google Cloud with 2xV100 GPUs 
(batch size=256, ResNet-50 on ImageNet).

Distribution: 399 ~ 1,892 ms
Mean: 454 ms
Standard deviation: 116 ms
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Deep learning training is robust

f(g)

g

g

p(g)

0 1

0.5

1-bit gradients 
quantization

f(g)

g

f(g)

g

Top-kTop-k

Gradients 
sparsification

Gossiping

Hidden units 
dropoutP-1

P

P+1

Allreduce
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W(1)

W(1)

W(2)

W(2)

Process0

Processn

W(0)

idle

idle 

Time

(a) synch-SGD
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Eager-SGD to solve the load imbalance problem

(b) eager-SGD

W(1)

W(1)

W(2)

W(2)

Process0

Processn

W(0)

Time

synch-allreduce synch-allreduce partial-allreduce partial-allreduce

Eager-SGD exploits the robustness of the training 
by allowing allreduce on stale gradients.

Communication
participants

Number of steps for 
update propagation 

Consistency mode

D-PSGD [1] 2 O(P) synchronous

AD-PSGD [2] 1 O(logP) asynchronous

eager-SGD P 1 asynchronous

Gossip-based SGDs
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▪ Two phases:   the activation and the collective operation
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Partial Allreduce operations
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R2

S3

R3

R0 R1

S1 S0

S2 R2 R3

C0

C1S3

N1

N0

▪ Asynchronous execution: an 
auxiliary thread would progress the 
execution (activation and collective) 
in the background.

▪ Multiple initiators: the same 
operation is only executed once 
even if we may have multiple 
initiators, i.e. multiple processes 
arrive at the same time.
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▪ Two variants: solo allreduce [3] and majority allreduce.

▪ For solo, at least one process “actively” participates.

▪ For majority, a majority of processes must “actively” participate.
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Solo allreduce and majority allreduce

Solo allreduce Majority allreduce

Initiator The fastest process A randomly specified process

Attributes Wait-free Wait for the randomly specified 
initiator

The expectation of 
the participants

Ω(1) Ω(P/2)

[3] Di Girolamo, Salvatore, Pierre Jolivet, Keith D. Underwood, and Torsten Hoefler. "Exploiting offload enabled network interfaces." In 2015 IEEE 23rd 
Annual Symposium on High-Performance Interconnects, pp. 26-33. IEEE, 2015.
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Implementation eager-SGD based on Tensorflow

1      All-
reduce

2      All-
reduce

      All-
reduce

      All-
reduce

3

4

Conv-BN

Conv-BN-ReLU

Conv-BN

Max Pool

Addition

forward pass

Conv-BN

Conv-BN-ReLU

Conv-BN

Max Pool

Addition

backward pass

control 
dependency

Customized distributed optimizer based on Tensorflow

Eager-SGD utilizes the execution engine of TF to exploit the parallelism in the computation DAG.
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Execution of eager-SGD

Computation thread

Communication thread

w t
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1.  Two processes and P1 is faster.

2.  P1 finishes the calculation for the 
gradients of step t, and triggers partial-
allreduce.   P0 contributes NULL.

3.  P0 finishes step t, and discovers partial-
allreduce is already done. P0 copies the 
stale gradients to its send buffer.

4.  P0 catches up P1 in step t+1. The stale
gradients are combined with the latest 
gradients, and then commit to partial-
allreduce.
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▪ For a learning rate value

,     

eager-SGD converges after 

iterations.
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Convergence of eager-SGD

▪ Note the dependence in 𝜏
(staleness bound) and  𝑃-𝑄 (the 
number of stale gradients) for 
iterations T.

▪ Eager-SGD would converge 
slower if too many stale 
gradients are used.

Staleness 
bound

The total 
number of 
processes

The number of 
processes which 
contribute the 
latest gradients
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▪ CSCS Piz Daint supercomputer.

▪ Cray Aries interconnected network.

▪ Cray MPICH 7.7.2 communication library.

▪ Each node contains a 12-core Intel Xeon E5-2690 CPU, and one NVIDIA Tesla P100 GPU.

▪ We compare eager-SGD with the allreduce-based synch-SGD (Horovod and Deep500), the 
asynchronous centralized SGD (TF parameter server), and the gossip SGDs (D-PSGD, SGP).
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Evaluation

Simulated load imbalance 
(traces on cloud machine)

Inherent load imbalance

Table 1. Neural networks used for evaluation
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Hyperplane regression (light load imbalance)

Synch-SGD  vs eager-SGD for hyperplane regression using 8 GPUs. 
"synch/eager-SGD-200/300/400" represent 200/300/400 ms load 

imbalance injection for 1 out of 8 processes.

▪ Eager-SGD (solo) achieves 1.50x, 
1.75x, and 2.01x speedup over 
synch-SGD (Deep500), respectively. 

▪ The loss value is equivalent with 
synch-SGD (Deep500). 
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ResNet-50 on ImageNet (light load imbalance)
Synch-SGD  vs eager-SGD for ResNet-50 on ImageNet using 64 GPUs. "synch/eager-SGD-

300/460" represent 300/460 ms load imbalance injection for 4 out of 64 processes.

▪ Eager-SGD (solo) achieves 1.25x and 1.29x speedup 
over Deep500, respectively; 1.14x and 1.27x
speedup over Horovod, respectively. Top-1 accuracy 
is almost equivalent (75.2% vs 75.8%).
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▪ Eager-SGD (solo) achieves 2.64x, 1.26x, 
1.17x over aysnch-PS and gossip-based SGDs 
(D-PSGD, SGP) respectively.
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Top-1 test accuracy and runtime for LSTM on UCF101 
using 8 GPUs.

eager-SGD 
(solo)

eager-SGD 
(majority)

Speedup over 
Horovod

1.64x 1.27x

Top-1 test 

accuracy

60.6% on average,

up to 70.4%

69.7% on average,

up to 72.8%

LSTM on UCF101 (severe load imbalance)
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Conclusion
1. Eager-SGD deals with the 
imbalanced workloads using 
partial allreduce operations.

2. Eager-SGD has two 
variants, solo and majority.

4. For the future work, we will verify the idea of eager-SGD on model-averaging SGD algorithms.

Questions:   shigang.li@inf.ethz.ch

3. Solo allreduce is suitable for light load 
imbalance, while majority allreduce
works for severe load imbalance.


