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ABSTRACT
Krylov solvers are key kernels in many large-scale science and
engineering applications for solving sparse linear systems. Applica-
tions running at scale can experience significant slowdown due to
factors such as network congestion, off-node congestion, network
distance, and performance variation across processes. Performance
models can help us better understand factors limiting performance,
however simple models fail to capture slowdowns often occurring
at scale and performance variation across multiple runs of the
same code. This work develops performance models that capture
behavior found at scale and uses these models to guide optimiza-
tions for Krylov solvers and related kernels using both blocking
and non-blocking communication for structured grid problems at
scale. We use detailed performance analysis with network perfor-
mance counters to show how network behavior relates to observed
performance and guide the development of performance models
that capture the runtime impact of network congestion, network
distance, communication and computation overlap, and process
mappings. These models guide us to optimize kernels using MPI
protocol changes, node-aware communication, and topology-aware
communication. The resulting tools and analysis provide us with a
better understanding of how to improve performance at scale that
can benefit a wider range of applications.

CCS CONCEPTS
• Theory of computation → Parallel computing models; •
Computingmethodologies→Massively parallel algorithms.
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Figure 1: Runtimes vs. postal model expectations for PCG
on Blue Waters. Median runtimes with box plots are shown
for solving a 27-point Poisson matrix with 8k rows per core.

1 INTRODUCTION
Krylov solvers are key kernels for solving linear systems in many
large-scale applications, however these algorithms often experience
decreased performance at scale. Large-scale systems have many
factors that can increase the cost to send a message through the net-
work or result in performance variation across cores. Furthermore
multiple runs of the same code can produce significantly different
runtimes due to factors such as the state of the network at runtime
and the node allocation a job is given.

However due to the complexity of modern supercomputers it
is not always clear which factors heavily impact performance and
which are minimized. Some kernels use optimizations such as over-
lapping communication and computation to seek improved perfor-
mance, however these optimizations do not always significantly
improve runtimes. If we have a better understanding of perfor-
mance barriers at scale we can optimize kernels to minimize their
impact and provide guidance to hardware and software developers
for creating systems with improved performance at scale.

Performance models can help us understand key factors affecting
performance at scale by comparing the expected performance with
different assumptions to observed performance. However simple
performance models often fail to capture decreased performance
at scale. Furthermore many performance models produce a single
predicted runtime for a given algorithm when in practice multiple
runs of the same code will produce multiple different runtimes.

Figure 1 demonstrates the decreased performance we see in
practice when scaling preconditioned conjugate gradient (PCG)
solvers and the large differences between model expectations and
observed performance. PCG experiences reduced performance as
the node count increases with significant slowdowns at higher
node counts however the postal model predicts consistently good
performance. This suggests we need to develop more accurate
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performance models that account for slowdowns observed at scale
and can guide us to better optimize our algorithms.

Krylov solvers such as PCG are used to solve linear systems for
a wide range of applications including computational fluid dynam-
ics, wind energy, and particle physics. Quantum chromodynamics
(QCD) codes often spend a significant portion of the runtime solving
linear systems using Krylov solvers that require halo exchanges and
require large supercomputers to run accurate simulations [6, 13].
These factors make QCD a good target application for scalable
Krylov solvers and allow us to focus our study on structured grid
problems to help prepare for future QCD application studies.

The remainder of this work is structured as follows. Section
2 provides relevant background on Krylov solvers, performance
modeling, and HPC systems. Section 3 presents the blocking and
non-blocking allreduce, halo exchange, and PCG kernels used in
this study. Section 4 presents the test setup and initial performance
results with network performance counters. Section 5 presents our
performance modeling approach with penalty terms and compares
model expectations with observed results. Section 6 presents opti-
mizations guided by our models and improved results for optimized
kernels. Section 7 presents key conclusions from this work.

2 BACKGROUND AND RELATEDWORK
2.1 Krylov Solvers
Krylov solvers such as PCG [29] are used to iteratively solve lin-
ear systems for many scientific applications. More scalable varia-
tions have been developed including non-blocking pipelined [15,
19, 22, 25], communication-avoiding [35], and enlarged Krylov sub-
space methods [24, 43]. We focus on non-blocking pipelined Krylov
solvers that rearrange Krylov solvers to decrease the number of
allreduces and/or overlap communication and computation using
non-blocking allreduces. Similar methods have been developed for
GMRES [21], BiCG-Stab [14], and other Krylov solvers.

2.2 Performance Modeling
The postal model [30] uses a fixed cost latency term and per byte
cost bandwidth term to model communication. However the sim-
plicity of this model can result in inaccurate performance predic-
tions especially at scale. Previous studies added penalty terms to
the postal model for network distance, network congestion, and
off-node bandwidth to produce more accurate models [10, 20, 27].

The LogP model and its expanded variations [1, 17, 34, 40] at-
tempt to model parallel communication using more detailed param-
eters. These models were developed to capture the more complex
behavior observed on HPC systems such as network pipelining and
overlap, however accurately measuring parameters for this model
can be difficult due to the complexity of modern HPC systems.

2.3 Network Performance
A number of studies showed network congestion can significantly
reduce performance at scale [7, 8, 23]. Other studies have shown
significant network performance variation exists on large scale
systems [9, 12, 28] due to network congestion, other jobs, varying
message distances, and varying message link types. A few studies
[31, 36] discuss best practices for producing meaningful experimen-
tal results on large-scale systems.

Many studies looked at the effectiveness of overlapping com-
munication and computation. Significant improvements for non-
blocking algorithms over blocking variations have been shown
[32, 33, 41]. Other studies analyzed the ability of modern inter-
connects to overlap communication and computation, showing
effective overlap for small messages using an eager protocol [47].
A few studies used overlap to speed up applications [37, 42, 46].

2.4 HPC Systems
To better analyze performance at scale we need to understand the
network design and the communication costs on systems we use.
Blue Waters uses a Cray Gemini network [38] with a 243 3-d torus
topology, two compute nodes per network node, and static routing.
Messages can take up to 36 hops to cross the network while static
routing can cause increased congestion in parts of the network.

Piz Daint uses a Cray Aries [2] network with a dragonfly topol-
ogy, four compute nodes per network node, and dynamic routing.
The network can send messages directly between any two nodes
in at most 4 hops, but may use up to 10 hops to avoid congestion.

MPI on both systems provides different message passing proto-
cols depending on message size. The short protocol eager sends
very small messages, the eager protocol eager sends messages using
extra copies to and from buffers, and the rendezvous protocol sends
large messages using synchronized data transfers.

We access hardware performance counters using PAPI [48] to
better understand network performance. Studies have analyzed
Cray Gemini [45] and Aries [11] hardware performance counters
to provide guidance on effectively using counters to understand
and improve performance. Cray Gemini and Aries systems provide
access to optimized collectives using the DMAPP library including
optimized 8 and 16 byte allreduces.

3 KEY KERNELS
This study primarily focuses on a collection of PCG solvers includ-
ing PCG [29], single allreduce PCG (SAPCG) [18], non-blocking
PCG (NBPCG) [25], pipelined PCG (PIPECG) [22], and 2-iteration
pipelined PCG (PIPE2CG) [19]. PCG solvers rely on allreduces
for dot products and halo exchanges for matrix-vector multiplies
and some preconditioners as the primary communication routines.
Therefore we look at standalone kernels for these routines to better
understand their performance in addition to full PCG solvers.

The NBPCG, PIPECG, and PIPE2CG solvers rely on non-blocking
allreduces to overlap communication and computation, guiding us
to experiment with blocking and non-blocking allreduce and halo
exchange kernels. Busy waits are used to mimic computation while
allowing us to easily control their runtime. One busy wait is used
to mimic computation that can be overlapped with communica-
tion while a second mimics the computation that often follows
communication routines within Krylov solvers.

3.1 PCG and Related Kernels
We use blocking and non-blocking allreduce and halo exchange ker-
nels to help us better understand the effectiveness of overlapping
communication and computation before moving to more complex
Krylov solvers. The halo exchange kernels send messages to neigh-
bors in each dimension to account for sending face elements that
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Blocking Allreduce
MPI_Al l reduce ( ) ;
Busywai t ( d e l ay ) ;
Busywai t ( d e l ay ) ;

Non-blocking Allreduce
MP I _ I a l l r e d u c e ( ) ;
Busywai t ( d e l ay ) ;
MPI_Wait ( ) ;
Busywai t ( d e l ay ) ;

Blocking Halo Exchange
Halo_Send ( ) ;
Ha lo_Rece ive ( ) ;
MPI_Wai ta l l ( ) ;
Busywai t ( d e l ay ) ;
Busywai t ( d e l ay ) ;

Non-blocking Halo Exchange
Halo_Send ( ) ;
Ha lo_Rece ive ( ) ;
Busywai t ( d e l ay ) ;
MPI_Wai ta l l ( ) ;
Busywai t ( d e l ay ) ;

Halo Send
f o r i =1 to ndims

MPI_Isend ( l e f t ) ;
MPI_Isend ( r i g h t ) ;

Halo Receive
f o r i =1 to ndims

MPI_ I recv ( l e f t ) ;
MPI_ I recv ( r i g h t ) ;

require largermessages. For simplicity we skip the smaller messages
needed in practice to send corner and edge elements.

This work studies the standard PCG solver and four more scal-
able variations [19]. PCG solves linear systems using matrix-vector
multiplies, preconditioner applications, allreduces, and vector oper-
ations. Each PCG iteration calls a single matrix-vector multiply and
preconditioner application, although scalable variations require
additional calls in the initialization step to create a pipeline. We use
a matrix-vector multiply that performs a halo exchange overlap-
ping communication with the diagonal block computation and a
block-Jacobi incomplete Cholesky preconditioner.

PCG uses two blocking allreduces per iteration while the more
scalable variations decrease the number of allreduces per iteration
and/or replace blocking allreduces with non-blocking allreduces.
The non-blocking allreduces overlap one or more matrix-vector
multiply and/or preconditioner calls.We experimentwith a 27-point
Poisson problem commonly used in benchmarks. We implement
these solvers in PETSc [3, 4] using modified versions of provided
PCGmethods and create a PIPE2CGmethod. Matrices are stored us-
ing the MPIAIJ compressed sparse row format and we use provided
matrix-vector multiply and preconditioner routines.

4 INITIAL PERFORMANCE RESULTS
First we run experiments with each kernel to more clearly under-
stand their performance using runtime measurements and network
performance counters.

We run experiments on Blue Waters using 16 cores per node
(1 process per bulldozer core) and on Piz Daint using 36 cores per
multi-core node. We set the max short and eager protocol sizes at 1k
and 8k bytes on both systems. We run each algorithm 20 iterations
for 50 tests using a 1ms busy wait to clear the network prior to each
test. Allreduce and halo exchange kernels use busy waits of 1ms
and 100µs to mimic computation. Runtimes are measured for each
iteration and test and network performance counters are measured
for each test. We compute the statistics needed for box plots to
show the range of measured values.

Figure 2: Blocking vs. non-blocking allreduce communica-
tionmedian iteration runtimes and test congestionwith 1ms
busy waits on 1k nodes (16k cores) on BlueWaters (top) and
512 nodes (18k cores) on Piz Daint (bottom).

We are primarily interested in the network performance counters
for congestion and bandwidth due to their frequent correlation
with runtime and ability to show the effectiveness of optimizations.
Network congestion is computed as the ratio of stalls to traffic
(measured in phits on Blue Waters and flits on Piz Daint) passing
through each network node. Phits on Blue Waters are 3 bytes while
flits on Piz Daint vary in size. Higher network congestion increases
the time for a message to travel through the network.

We compute network tile counters for each link type. Cray Gem-
ini systems differentiate between X-, Y-, Z-, and host dimension
links while Cray Aries systems differentiate between black, green,
blue, and host dimension links. The host links connect compute
nodes to network nodes. The X-, Y-, and Z-links on Blue Waters
differ in the number and type of connections in each dimension.
Piz Daint has electrical groups containing 6 sets of 16 node chassis.
Black links provide all-to-all connections within each chassis while
green links provide 16 sets of all-to-all connections between the 6
chassis. Blue links provide all-to-all links between electrical groups.

Obtaining effective non-blocking communication requires using
a progress thread or explicitly giving an MPI thread control to
make progress. We split each overlapped computation into chunks
and add calls to MPI_Test() to allow MPI to make progress on non-
blocking communication. This approach outperformed progress
threads for previous solver tests on Blue Waters.

4.1 Allreduce
Figure 2 shows significantly improved performance on both sys-
tems for the non-blocking allreduce at smaller message sizes but
decreased performance at larger message sizes especially when
using the rendezvous protocol.

On Blue Waters we see significantly decreased performance
coincidingwith increased congestion around 1 stall per byte starting
at 2k bytes. This suggests Blue Waters may use a non-blocking
allreduce routine with an increased number of messages. We see
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Figure 3: 3-d halo exchange communication median itera-
tion runtimes and test congestion with 1ms busy waits on 1k
nodes on Blue Waters.
similar congestion for all link types with the exception of Y-links.
Most large jobs are assigned blocks of nodes that are narrow in the
Y-dimensions, resulting in less Y-link traffic.

On Piz Daint we see a larger gap between blocking and non-
blocking allreduce communication likely due to dynamic message
routing producing increased background congestion throughout the
network. This allows the less synchronized non-blocking allreduce
to spread out messages more, decrease congestion, and hide the im-
pact of congestion to improve performance. Blue, green, and black
links experience reduced congestion, while host links experienced
less congestion for very small messages and increased congestion
for larger messages that slightly increased overall congestion.

These experiments suggest overlapping communication and com-
putation can be effective for non-blocking allreduces provided the
message size is not too large, eager message protocols are used, and
the overlap period is large enough.

4.2 Halo Exchange
Figure 3 shows non-blocking halo exchange algorithms effectively
overlap communication and computation for larger message sizes
where blocking algorithms experience decreased performance on
Blue Waters. The decreased performance coincides with increased
network congestion, suggesting network congestion limits halo
exchange performance. Once communication takes longer than
overlapped computation we see a decrease in the non-blocking
kernel runtime due to only hiding a small amount of communication.
Network congestion is similar for both kernels and most network
dimensions experience similar congestion.

Similar tests on Piz Daint show the same performance trends.
However Piz Daint has slightly faster communication and less
congestion resulting in more effective overlap for a larger range
of message sizes and overlap computation periods. Host-links ex-
perience the worst congestion, however overall congestion most
closely mirrors black-links. Black and green links encounter the
most network traffic while host links encounter the least.

These experiments suggest congestion limits performance for
halo exchanges, however we can hide the impact of congestion by
overlapping communication and computation.

4.3 Preconditioned Conjugate Gradient Solvers
Figure 4 shows blocking PCG solvers experience decreased perfor-
mance at higher node counts while non-blocking solvers maintain
more consistent performance on Blue Waters. Blocking solvers
experience more congestion than non-blocking solvers, with the
highest congestion coinciding with large performance decreases.

Figure 4: PCG solver median test runtimes and congestion
for 27-point Poisson with 8k rows per core on Blue Waters.

Non-blocking solvers reduce congestion by about two orders of
magnitude. NBPCG transitions from low to high congestion in part
due to the preconditioner failing to fully overlap a non-blocking
allreduce. The highest bandwidth usage approaches the max link
bandwidth and coincides with the highest congestion for blocking
solvers, suggesting once the network is saturated solvers experi-
ence high congestion and decreased performance. Most network
dimensions experience similar congestion and bandwidth.

Piz Daint shows similar behavior, however tests with fewer rows
per core result in steeper performance decreases for blocking meth-
ods and slight decreases for less pipelined non-blocking methods.
PIPECG and PIPE2CG experience significantly less congestion than
other solvers that contributes to their improved performance. The
highest bandwidth usage coincides with decreased performance at
higher node counts. Host-links experienced the most congestion,
while other link types experienced similar congestion. Similar to
the halo exchange, black and green links have the most network
traffic and host links the least.

These experiments suggest PCG solvers experience slowdown
due to congestion, however non-blocking variations can reduce
congestion to produce faster, more consistent performance at scale.

5 PERFORMANCE MODELS
Performance modeling is used both for predictive models that pro-
vide us with a performance expectation for an algorithm or for
analytic models that show where runtime is spent and which fac-
tors limit performance. We primarily focus on analytic modeling to
more clearly understand which factors limit solver performance at
scale and how we can further optimize these methods to reduce the
impact of performance barriers. This modeling approach should
be effective on a wider range of systems since most face similar
performance barriers, but system specific changes may be required.

5.1 Postal Model
The postal model [5, 30] uses a fixed cost latency term and a per
byte cost bandwidth term to model communication. We model the
time to send a message asT = α + β · n, where α is latency, β is the
inverse of the asymptotic bandwidth, and n is the number of bytes.

This provides a simple approach tomodeling parallel communica-
tion and a good starting point for developing accurate performance
models at scale. However this model does not account for perfor-
mance barriers such as network congestion and varying hop counts,
suggesting penalty terms are needed to improve model accuracy.

To accurately model a given run on an HPC system we need to
use data from that run as input to our performance models. Each
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Postal Parameters for Blue Waters
Protocol Off α Off β On α On β

Short 2.2467µs 0.3451ns 1.1284µs 0.8154ns
Eager 7.1826µs 0.5092ns 2.3950µs 0.0489ns
Rdvz 8.9720µs 0.1498ns 2.1162µs 0.0954ns

Postal Parameters for Piz Daint
Protocol Off α Off β On α On β

Short 1.7416µs 0.0041ns 0.51055µs 0.22926ns
Eager 4.3080µs 0.2224ns 0.97865µs 0.03879ns
Rdvz 5.9433µs 0.1083ns 0.85828µs 0.05603ns
Table 1: Postal model parameters for latency and bandwidth
terms for off- and on-node communication.

Hop Costs on Blue Waters
Dim Host-hop 1-hop 2-hops 3-hops Hop Lat.
X 2.146µs 2.273µs 2.400µs 2.525µs 0.126µs
Y 2.231µs 2.309µs 2.495µs 2.544µs 0.104µs
Z 2.230µs 2.309µs 2.422µs 2.514µs 0.094µs

Hop Costs on Piz Daint
Type Host-hop S. Hop D. Hop S. Hop Lat. D. Hop Lat.
Blue 2.864µs 5.607µs 5.991µs 2.754µs 3.113µs
Black 2.864µs 2.998µs 3.219µs 0.146µs 0.341µs
Green 2.864µs 3.348µs 3.639µs 0.496µs 0.761µs
Table 2: Ping times for the host-hop up to three hops and the
average hop latency for each network dimension on Blue
Waters and ping times and hop latency for each network di-
mension using static and dynamic routing on Piz Daint.

run we save data about the node allocation, how the algorithm
maps to the node allocation, and the network state during the run.
This data allows us to better model the number of messages sent by
each algorithm, where each message travels through the network,
and the cost to travel through the network. This approach allows
different sets of input parameters to produce different runtimes for
the same algorithm on a given system.

5.2 Model Parameters
We determine postal model parameters using a ping-pong test with
improvements to ensure accurate timings. We run a ping-pong
prior to the first test to warm up the system. At the beginning of
each iteration we use a barrier to synchronize the processes and
delay all processes by 1ms to clear the network from previous tests.

We run each test 20 times for 20 iterations and compute statistics
for ping-pong times. We compute separate postal model parameters
for the short, eager, and rendezvous MPI protocols for both on- and
off-node communication. We use linear least squares to fit a linear
function to measured ping times to determine α and β and show
the results in Table 1.

Table 2 shows the ping and latency costs for messages sent
through each network dimension on Blue Waters to better un-
derstand the impact of message distance on performance. These
values are computed by running 1-byte ping-pong tests with nodes
separated by the host-, 1-, 2-, and 3-hops, and then dividing by 2.
Taking the average of the average hop latencies for all three dimen-
sions gives an estimated per hop latency of 108ns , which is close to

Figure 5: Ping costs for off- and on-node communication.
the white paper hop latency of 105ns . These results suggest using
host-dimension costs to determine model parameters and adding
penalties to account for message distance.

Similar tests are run on Piz Daint, however we look at the cost to
travel 1-hop across black and green links and 1 or more hops across
blue links using both static and dynamic routing. The blue links
connecting electrical groups are the most expensive in part due to
the longer route they generally need to take and the more limited
number of blue links connecting nodes. Static routing results in
reduced latency compared to dynamic routing due to messages
traveling through fewer nodes, however they may face more con-
gestion. The observed per hop latency times are much larger than
the white paper hop latency of 100ns , suggesting network conges-
tion due to other jobs and dynamic routing significantly increases
latency. In practice we use dynamic routing to help reduce conges-
tion, however we need to be aware of the increased latency costs
and performance variation.

Figure 5 clearly shows the thresholds between MPI protocols and
cheaper costs for on-node messages on both systems. The postal
model produces a virtually identical match between ping runtimes
and the corresponding postal model expectations. Network perfor-
mance counters show some congestion on both systems at times
during these tests which may produce some runtime variation.

5.3 Algorithms
Next we present postal models for allreduce, halo exchange, and
PCG solvers. For these models we compute the cost of sending
messages on-node (Tonmsg) and off-node (Toffmsg) using the postal
model with penalty terms.

Allreduce Postal Model

nonmsgs = log2(ncores); noffmsgs = log2(nnodes)
Tcomm = 2 · nonmsgs · Tonmsg + 2 · noffmsgs · Toffmsg
Tcomp = n · Tflop · (nonmsgs + noffmsgs)
Tallreduce = Tcomm + Tcomp

The allreduce postal model assumes a reduction is performed
on each node and then a single process per node performs the re-
duction in the network. We assume recursive doubling is used with
log2(ncores) rounds of communication on each node and log2(nnodes)
rounds of communication between nodes. We assume each round
of communication involves a message exchange between two pro-
cesses but these messages are not overlapped.

We add the cost of computing the local reduction using the
individual flop cost by computing the inverse of the average peak
performance per core. Blue Waters nodes have 16 cores and a peak
performance of 313.6 Gflops [44] resulting in an average flop cost of
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Figure 6: 3-d halo exchange communication vs. postalmodel
on 1k nodes on Blue Waters with 1ms busy waits (left) and
512 nodes on Piz Daint with 100µs busy waits (right).

0.0510ns while Piz Daint multi-core nodes have 36 cores and a peak
performance of 1.210 Tflops [16] resulting in an average flop cost
of 0.0297ns . We explored other allreduce postal models however
they were less accurate and had less reasonable assumptions.

Halo Exchange Postal Model

nonmsgs, noffmsgs = load_saved_run_data()
Thalo = Tonmsg · nonmsgs + Toffmsg · noffmsgs

The halo exchange postal model reads network data from saved
runs to determine the average and max number of on- and off-node
messages. We multiply the number of on- and off-node messages
by the message costs and sum these values.

PCG Postal Model
Tcomp = load_saved_run_data()
Tallr = allr_model() Thalo = pcg_halo_model()
Tinit = Tcomp + Tallr Titer = Tcomp + 2 · Tallr + Thalo
Tpcg = Tinit + niters · Titer

The PCG postal model uses a more detailed halo exchange to
model solving a 3-d 27-point Poisson problem. The model reads data
from saved runs for the local grid shape and on-node process grid.
These values are used to estimate the number of on- and off-node
messages and their size. The number of on- and off-node messages
varies, so we estimate message counts for the average process
and the slowest process on each node. We read the computation
times for the vector operations, preconditioner application, and
matrix-vector multiply to allow us to focus on accurately modeling
communication. We model a full 3-d halo exchange including face,
edge, and corner messages. This results in 6 face, 12 edge, and 8
corner messages for the 27-point stencil. Similar approaches are
used for the SAPCG, NBPCG, PIPECG, and PIPE2CG models.

5.4 Initial Model Results
We compare postal model expectations to allreduce, halo exchange,
and PCG solver tests. The postal model underpredicts runtimes for
all tested kernels with the 3-d halo exchange (Figure 6) and PCG
solver models having the largest differences. Therefore we need to
add penalty terms to account for these differences.

5.5 Max-rate Penalty
Next we explore postal models using the max-rate penalty [27] to
limit bandwidth when using multiple cores per node. In practice
the node bandwidth is less than the single process bandwidth times

Figure 7: Postal model with max-rate penalty for 3-d halo
exchange on 64 nodes on BlueWaters (left) and on 512 nodes
on Piz Daint (right) with 1ms and 100µs busy waits.

Figure 8: Postal model with hops penalty for blocking allre-
duce on 1k nodes on BlueWaters (left) and 512 nodes on Piz
Daint (right) with 1ms busy waits.
the number of cores, allowing this model to produce more accurate
predictions when using multiple cores per node.

T = α + ncores · n/min(βnode ,ncores · βcore )

We run ping-pong tests with 1 to 16 pairs of processes on Blue
Waters and 1 to 36 pairs of processes on Piz Daint on two nodes
separated by the host-dimension to determine the max off-node
bandwidth. We use a ping-pong test and divide the amount of data
sent across the network by the difference between the final end
time and the initial start time across all cores.

The ping-pong bandwidth shows a clear decrease in performance
for larger message sizes and pairs of processes. The max measured
node bandwidth used in our models for Blue Waters is 9.03 GB/s
and for Piz Daint is 11.77 GB/s. Using the postal model with max-
rate penalty matches observed ping-pong runtimes better than the
postal model when using multiple cores.

Figure 7 shows improved accuracy for halo exchanges on both
systems. On Blue Waters this penalty is especially accurate at lower
node counts, however at higher node counts and message sizes
there is still a large gap between the model and observed results.
On Piz Daint we see a smaller gap between the model and observed
results likely due to the increased number of cores per node having
a larger performance impact.

5.6 Hops Penalty
The postal model predicted faster allreduce runtimes than achieved
in practice for smaller message sizes in particular, but did not ac-
count for the increased number of hops a message may travel
through. This suggests a hops penalty may account for these differ-
ences especially for kernels with multiple rounds of communication.
We compute the hops penalty by multiplying the hop latency by
the number of hops and adding this to the postal model for the first
message in a series of sends.
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Thops = Thop_lat · nhops

We use the 108ns computed hop latency on Blue Waters and
we can accurately estimate the number of hops due to using static
routing. We estimate best, average, and max cases. The best case
distance assumes that log2(nx/y/z-nodes) steps are used to perform
an allreduce in the X-, Y-, Z-, and host network dimensions. We
read the node allocation size from saved runs for dimension sizes.

However in practice the allreduce likely does not have an ideal
mapping to the allocated node topology or take advantage of the
network topology, resulting in longer message distances. We es-
timate the number of hops by using the node allocation size to
determine the max distance a message could travel through the
allocation. We assume each message travels on average 1/4 and 1/2
of the max network distance for the average and max cases.

On Piz Daint we use the dynamic hop latencies for each link
type and weigh them based on the estimated number of hops along
each link type. We estimate the number of hops as the min, average,
and max number of hops to reach a node in the same chassis, same
electrical group, and different electrical group.We assume nodes are
evenly spread through the allocation and allreduces are performed
along each link type. The node allocation is read from saved runs.

Figure 8 shows the hops penalty accounts for the difference
between the postal model and observed results for smaller message
sizes on Blue Waters. On Piz Daint the hops penalty results in a
significantly more accurate model for all message sizes due to the
increased hop latency costs, likely due to increased background
congestion in the network. However for larger message sizes the
model underestimates observed performance, suggesting adding
additional terms could be helpful.

These results suggest minimizing message distance to improve
performance especially for routines with many communication
rounds and for smaller messages with a lower bandwidth cost.
Systems with more interference from other jobs can experience
slowdowns due to increased hop latency costs. The hops penalty
did not significantly impact halo exchange or solver models.

5.7 Congestion Penalty
Next we need to account for increased runtimes found on larger
node counts and message sizes for halo exchange and PCG routines.
The network performance counters suggest a congestion penalty
may help account for this reduced performance.

Tconдest = (nstalls/nbytes ) · n · ncores ·Tstall
The congestion penalty is computed based on the description in

the Gemini and Aries network white papers [2, 38]. On Blue Waters
the Gemini NIC operates at 650 MHz and transfers 64 bytes of data
in each direction every 5 cycles, resulting in Tstall = 1/650 MHz ·
5 / 64 = 0.120ns. On Piz Daint the Aries NIC operates at 800 MHz
but otherwise performs the same, resulting in Tstall = 0.0976ns. The
model reads the stall rate from saved runs.

The Piz Daint congestion counters measure the number of stalls
per flit, however the number of bytes per flit varies, requiring us to
estimate the number of bytes per flit [39]. Network requests use 3, 5,
and 14 flits to transfer 0, 1 to 8, and 64 payload bytes plus overhead.
Network responses use 1, 3, and 12 flits to transfer 0, 4/8, and 64
payload bytes plus overhead. Therefore we estimate there are 0 to
5.33 bytes of data transferred for each flit. Experiments using 1, 2,

Figure 9: Postal models with max-rate (MR), congestion (C),
and hops (H) penalties for halo exchange on 1k nodes and
matrix-vector multiply with 4k rows per core for Blue Wa-
ters (top) and for allreduce and 3-d halo exchange on 512
nodes on Piz Daint (bottom).
and 4 bytes per flit produced fairly similar results, with a larger
number of bytes per flit predicting slightly faster runtimes. We use
1 byte per flit since it generally produced more accurate models.

Tconдest_hops = Tconдest · nhops

We combine the hop and congestion penalties by multiplying the
congestion penalty by the number of hops. This provides a more
accurate model since there is congestion throughout the network
that can stall a message on each network tile.

Figure 9 shows adding congestion and hops penalties to the
max-rate penalty produces more accurate models that account
for the decreased performance found for larger node counts and
messages. On Blue Waters all three penalties are needed to account
for differences between observed and expected runtimes.

On Piz Daint the congestion and hops penalties are necessary
to produce the most accurate models, however their impact is less
significant than on Blue Waters. Adding the congestion penalty to
the allreduce model in addition to the hops penalty produces a more
accurate model likely due to the increased background congestion
from dynamic routing. Adding congestion and hops penalties to the
halo exchange produces a more accurate model for larger messages,
although the max-rate term accounts for most of the runtime. The
max-rate term likely has a larger impact than the congestion and
hops terms on Piz Daint due to the larger number of cores per
node increasing the max-rate penalty, dynamic routing decreasing
network congestion, and the shorter max distance between any
two nodes in the network limiting the hop count.

These results suggest congestion and hops penalties must be
used together to accurately model the impact of network conges-
tion. Systems that require messages to travel through more hops
and do not take steps to limit congestion may experience signifi-
cant slowdowns, while systems with dynamic routing are likely to
experience more background congestion that even impacts kernels
with lower communication costs.
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Figure 10: PCG and PIPECG vs. postal model, postal model
with penalties, and postal with penalties and synchroniza-
tion penalty for 4k rows per core on Blue Waters.

While congestion penalties produce more accurate models, they
tend to overestimate 3-d halo exchange runtimes for smaller mes-
sages using short and eager protocols. These protocols may hide
some communication costs by pipelining multiple messages, sug-
gesting we need to model this overlap for blocking kernels.

5.8 Synchronization Penalty
While the matrix-vector multiply model within PCG solvers is
reasonably accurate, allreduces within PCG solvers are significantly
slower than standalone allreduces. The PCG solvers often have
significant performance variation across processes even when there
are an equal number of grid cells on every process, suggesting using
a synchronization penalty to account for this slowdown.

Therefore we add a synchronization penalty to account for the
time the average process must wait once reaching the allreduce
until the last process reaches the allreduce and the collective can
be completed. We estimate this by computing the difference be-
tween the median and max computation runtimes since the last
synchronization point and adding this to each allreduce.

We use computation times from saved runs to estimate this
penalty. The median runtime is computed from the runtimes for
all iterations across all cores while the max runtime is computed
from the slowest runtime across all cores each iteration. We take
the median of each set of timings. Non-blocking solvers are less
synchronized, so we use the first quartile instead of the median.

Figure 10 shows the synchronization penalty produces more
reasonable models for both blocking and non-blocking PCG solvers
on Blue Waters. The allreduce models within PCG are significantly
more accurate and generally produce reasonably close matches to
observed performance. Piz Daint produced similar results.

These results suggest performance variation across cores can
greatly reduce PCG solver performance. Despite each process hav-
ing the same number of grid cells, the time spent in computation
can regularly vary by over 10% and have outliers that are an or-
der of magnitude slower. This suggests significant performance
variation may still exist on large-scale systems that can impact the
performance of algorithms at synchronization points.

5.9 Communication and Computation Overlap
The postal model does not account for overlap, however we use
two approaches to model overlap. For non-blocking methods we
overlap the communication penalty term cost with computation
occurring between the communication routine start and the wait
call to ensure communication finished. For blocking methods using

Figure 11: Blocking and non-blocking allreduces vs postal
models with 1ms overlap on 1k nodes on Blue Waters (left)
and 512 nodes on Piz Daint (right).

Figure 12: Postal models vs. blocking halo exchanges on 1k
nodes on Blue Waters with 1ms busy waits (left) and non-
blocking halo exchanges on 512 nodes on Piz Daint with
100µs busy waits (right).
short or eager protocols we model pipelined communication by
overlapping communication penalty terms for all messages with
the postal model costs for all messages after the first message.

Figure 11 shows the postal model with penalty terms and over-
lap effectively models a non-blocking allreduce on both systems,
including decreased performance for larger messages. Models with-
out all penalty terms incorrectly predict communication will be
effectively overlapped.

Figure 12 shows modeling overlap due to pipelining messages in
blocking halo exchanges produces more accurate models for smaller
messages using short and eager protocols. Modeling overlap for
non-blocking halo exchanges accurately predicts effective overlap
for smaller messages and accounts for decreased performance for
larger messages when overlap is less effective.

These results suggest modeling communication and computation
overlap is necessary to produce accurate models both for routines
that explicitly overlap communication and computation as well as
blocking routines that send a series of messages.

6 IMPROVED RESULTS
Guided by our performance models, we explore optimizations with
the potential to reduce the impact of performance barriers to im-
prove performance at scale. Our results demonstrate the optimiza-
tion effectiveness for scalable Krylov solvers and related kernels
and show our models can account for optimization improvements.

6.1 MPI Protocol Changes
First we look at an optimization designed to increase communica-
tion and computation overlap to improve performance. Our perfor-
mance models show accounting for communication and computa-
tion overlap for both blocking and non-blocking halo exchanges is
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Figure 13: 3-d halo exchange with 1ms busy waits comparing
eager and rendezvous protocols for 1k or largermessages for
communication and congestion on 1k nodes of BlueWaters.

Figure 14: Node-aware 3-d halo exchange communication
runtimes for the blocking kernel with 1ms busy waits on 1k
nodes on Blue Waters and non-blocking kernel with 100µs
busy waits on 512 nodes on Piz Daint.

necessary to produce accurate models. This overlap term produces
more accurate models for the short and eager protocols, suggesting
using the eager protocol for larger message sizes will allow more
effective overlap due to avoiding synchronizing the sending and
receiving processes.

Figure 13 shows improved performance for blocking tests for the
eager protocol over the rendezvous protocol likely due to pipelin-
ing messages. The non-blocking tests show limited improvement
due to already overlapping communication and computation. All
kernels have similar performance at the largest message size once
computation cannot fully overlap communication. Piz Daint shows
similar trends for blocking methods, but has slightly reduced per-
formance for non-blocking methods using the eager protocol for
larger messages.

6.2 Node-aware Experiments
Next we look at an optimization designed to minimize off-node mes-
sages and reduce network congestion. Accounting for the difference
between off-node and on-nodemessage costs is critical to producing
accurate models. On-node messages have cheaper postal model pa-
rameters than off-node messages and do not require penalty terms
to produce accurate models. Furthermore decreasing off-node mes-
sages reduces network traffic and should reduce the congestion
penalty for the remaining off-node messages. This suggests using
node-aware communication to minimize the number of off-node
messages will improve performance.

The halo exchange and solver kernels use MPI_Cart_create to
produce the communication pattern. Ideally the on-node process
grid should minimize off-node communication, however in practice
this routine rarely chooses the most efficient on-node process grids.

Figure 15: Original vs. node-aware PCG and PIPECG solver
runtimes with 4k rows per core on BlueWaters (left) and 2k
rows per core on Piz Daint (right).

Figure 16: Postal models vs. original and node-aware 3-d
halo exchanges with 1ms busy waits on 512 nodes on Piz
Daint (left) and PCG with 4k rows per core on 1k nodes on
Blue Waters (right).

We use a node-aware Cartesian communicator [26] to produce
node-aware halo exchange and solver communication patterns.
Figure 14 shows improved performance for blocking and non-
blocking 3-d halo exchanges especially for larger message sizes.
Non-blocking node-aware halo exchanges allow effective overlap
to occur for larger message sizes. We observed similar performance
trends on both systems.

On Blue Waters node-aware blocking kernels produced less con-
gestion while non-blocking kernels produced less congestion for
smaller messages. Reduced congestion and bandwidthwas observed
in all network dimensions in most cases. On Piz Daint both kernels
produced less congestion for larger message sizes and used less
bandwidth for all message sizes. Reduced congestion and bandwidth
was observed along host, black, and green network links.

Figure 15 shows node-aware solvers produce speedups over
the original solvers. Node-aware PCG solvers have runtimes sim-
ilar to PIPECG solvers on Blue Waters while on Piz Daint node-
aware solvers have small but consistent improvements. Node-aware
solvers have slightly reduced congestion and bandwidth on Blue
Waters while on Piz Daint node-aware PCG has congestion similar
to both PIPECG solvers and reduced bandwidth. However host-
link congestion is significantly lower for both PIPECG solvers and
node-aware communication further decreases it.

Figure 16 shows the postal model with penalty terms can capture
the differences between the original and node-aware kernels for
halo exchanges and PCG solvers. While the original and node-
aware kernels differ in how they assign processes to cores, they
both execute the same code. Differentiating between the number
of on- and off-node messages in the models and reading network
information for each run allows us to produce accurate models for
this optimization.
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These results show node-aware routines can improve halo ex-
change and PCG solver performance by reducing off-node mes-
sages, which often results in reduced congestion and bandwidth.
Our performance modeling approach allows us to accurately model
node-aware kernels using the postal model with penalty terms.

On systems with dynamic routing there is potential for the sys-
tem to route extra outside traffic through nodes using less commu-
nication. While this limits the potential benefit for optimizing com-
munication, the ability to reduce bandwidth provides the potential
to reduce overall system traffic. This suggests system administra-
tors may want to ensure their software provides access to routines
optimizing communication such as node-aware communicators.

6.3 Topology-aware Experiments
Lastly we look at an optimization designed to minimize message
distance. The hop and congestion penalties account for significant
performance decreases especially when these penalties are com-
bined. Decreasing the number of hops messages travel will decrease
both the hop latency cost and the multiplier for the congestion
penalty. Decreasing messages distance also reduces network traffic
and provides potential to further reduce the congestion penalty.
This suggests using topology-aware communication to decrease
message distance will improve performance.

We can map 2-d and 3-d halo exchanges to a 3-d torus topology
so every node only communicates with neighboring nodes. This re-
quires messages to pass through at most two network tiles, reducing
message distance. This routine further minimizes message distance
by using node-aware techniques and maximizing the number of
host-dimension messages traveling across a single network tile.
Unfortunately this requires using a cube of nodes, which is difficult
to obtain on Blue Waters and not supported by some systems.

The topology-aware 3-d halo exchange reads network informa-
tion to determine the position of each process within the allocation.
It creates a grid matching the node allocation size and multiplies
the grid size by the on-node grid size so that the largest dimension
of the on-node grid matches the smallest dimension of the overall
grid. The second smallest dimension of the grid is multiplied by the
host-dimension size.

While node-aware communication is often effective, we have
observed cases where network topology mappings have a larger
impact than on-node mappings, allowing the original kernel to
outperform the node-aware kernel. This suggests topology-aware
communication is necessary to ensure the best performance.

Figure 17 shows improved performance for the topology-aware
over the node-aware halo exchange. The topology-aware halo ex-
change has congestion similar to the node-aware algorithm but less
than the original algorithm. Compared to the original algorithm
the topology-aware algorithm decreases bandwidth by 66%-74%
while the node-aware algorithm decreases bandwidth by 43%-56%.
Both obtain the largest reductions for smaller messages.

The 63 node grid is the largest cubic grid we obtained on Blue
Waters and Piz Daint did not allow requesting a specific node shape.
Therefore we use our models to predict halo exchange performance
on 4k nodes on Blue Waters and Piz Daint. The model predicts
significantly improved performance for largermessage sizes on Blue
Waters and predicts small improvements for all message sizes on Piz

Figure 17: Topology-aware 3-d halo exchange results on 63x2
grid for runtime and congestion and predicted 3-d halo ex-
change results on 4k nodes for Blue Waters and Piz Daint.

Daint. These results suggest this optimization could be particularly
valuable on systems where messages may have to travel a long
distance, but should further improve performance even on systems
with shorter max distances across the network.

7 CONCLUSIONS
This study analyzes the performance of scalable PCG solvers and
related kernels for structured grid problems using detailed perfor-
mance analysis and performance modeling to better understand the
issues affecting performance at scale and guide the development of
performance optimizations. Detailed performance analysis using
runtimes and network performance counters for both blocking and
non-blocking communication kernels provides greater insight into
factors limiting performance at scale.

These results guide the development of performancemodels with
penalty terms that account for decreased performance at scale and
variation across multiple runs of the same code. These models guide
us to use optimizations including node-aware and topology-aware
communication to improve performance at scale. Experiments on
Blue Waters and Piz Daint demonstrate the effectiveness of this
performance modeling approach despite the significant differences
between the networks as well as provide deeper insight into the
issues faced by each network. This modeling approach based on
the postal model demonstrated more complex models with more
fine-grained penalty terms were not necessary to accurately model
these kernels at scale and guide optimizations.
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