
Exploiting Offload Enabled Network Interfaces

Salvatore Di Girolamo
ETH Zurich

digirols@inf.ethz.ch

Pierre Jolivet
CNRS

pierre.jolivet@enseeiht.fr

Keith D. Underwood
Intel Corporation

keith.d.underwood@intel.com

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Abstract—The authors propose an abstract machine model for
offload-enabled architectures. The Portals 4 network interface is
used to implement the proposed abstract model. They propose
the concept of persistent offloaded operations that can reduce
creation and offloading overheads. The presented results show
how this work can be used to accelerate existing MPI applications.

I. INTRODUCTION

The importance of interconnection networks is growing with
the scale of supercomputers and datacenter systems. Machines
with thousands to tens of thousands of endpoints are becoming
common in large-scale computing. Communications become
the major bottleneck in such machines, be it to access shared
storage, data redistributions (e.g., MapReduce), or communica-
tions in parallel computations. The most critical communication
operations at scale are collective communications, because
they involve large numbers of processes, sometimes the whole
system. Thus, network optimizations commonly focus on
collective communications.

The steadily growing number of transistors per chip offers
an opportunity to offload new capabilities to the network
interfaces. For example, current high-performance network
interfaces support features such as lossless transport, remote
direct memory access, and offloading for various network
protocols such as TCP/IP. Programmable offload engines like
those in Quadrics Elan3/Elan4 are becoming progressively
less expensive for network interfaces to include. First limited
versions of such offload microarchitectures are already available
in Cray’s Aries network [2] as well as Mellanox ConnectX2 [8].

Such offload features have been used to support the
implementation of collective communications [15, 16]. For
example, MPI-3 defines an extensive set of blocking and
nonblocking as well as (user-defined) neighborhood collective
communications. Previous works have either only supported
partial offload, requiring additional synchronization during
setup, or were limited to small message sizes. Thus, previous
techniques cannot be used to implement fully asynchronous of-
floaded versions of all MPI-3 collective operations. Furthermore,
existing protocols are specialized to particular network-in-chip
(NIC) architectures.

In this work, we specify an abstract machine model for
offload-enabled network interfaces. Our offload model captures
common network operations such as send, receive, and atomics
that can be executed by network cards. Events such as received
messages or accesses from the host CPU can advance the
execution of an offload program. Using the offload model,
we demonstrate how to design fully asynchronous offloaded
collective operations for MPI-3. Furthermore, we demonstrate

in a case study how Portals 4 can be used to implement this
abstract model efficiently, discussing how this interface can be
extended in order to optimize cases presenting a high reuse of
network operations (that is, persistent operations).

The proposed abstract machine model is implemented in
FFLIB, a programming abstraction library built on top of
the Portals 4 reference library. Using this implementation we
benchmark different applications in order to show the potential
effects of hardware offloading and, in particular, of the fully
asynchronous progression of collective operations.

II. OFFLOAD-ENABLED ARCHITECTURE

Support for offloaded communications can vary dramatically,
from the dedicated hardware microarchitecture’s infrastructure
of the Cray Aries interface [6] to the programmable processors
of the Quadrics network [13], to a dedicated core that can
be associated with communications [12]. The salient point
is that all of these system architectures make communication
operations independent of the CPU performing the computation.
We propose an abstract machine model and performance model
in the context of such independence.

A. Abstract Machine Model for Offload Microarchitectures
In this section, we introduce an abstract machine model

describing the offload features offered by the next-generation
network cards. Our model comprises two computational units:
the CPU and the Offload Engine (OE). An offloaded operation
is fully executed by the OE; CPU intervention is required only
for its creation, offloading, and testing for completion.

In this model, we define two main entities: communication
and local computation. In both cases, they are defined as non-
blocking operations. We adopt two-sided matching semantic
to support complex communication schedules: processes are
aware of the interactions among themselves. We use send and
receive operations as data movement operations. An operation
is created on the CPU and then offloaded to the OE.

A happens-before relation can be established between
two operations, a and b: we use the notation a → b to
indicate that b can be executed only when a is completed.
The definition of completion varies according to the type of
operation. A receive is considered complete when a matching
message has been copied into the receive buffer. Instead,
the completion of a send is a local event: it completes as
soon as the data transmission is finished, and the data buffer
can be reused by the user. It is worth noting that, in our
model, once the dependencies of b are satisfied, b can start
without CPU intervention. Arbitrary Boolean expressions can be
defined to express multiple dependencies. We use the notation
(a1 ∧ . . .∧ an)→ b or (a1 ∨ . . .∨ an)→ b to express an AND



or OR dependency between the operations (a1, . . . , an) and b,
respectively.

An operation’s life cycle comprises the following states:
created, if it has been created but not yet posted (that is,
offloaded); posted, if the operation has been created and
offloaded to the OE; and active, if it is posted and it has no
dependencies or all of them are satisfied. A created operation
cannot be executed even if it has no dependencies or all of them
are already satisfied. Moreover, an operation can be marked
as independent if it can be activated as soon as it is posted,
dependent if it can be activated only when all its dependencies
are satisfied, or CPU-dependent if it must be activated from
the CPU. A CPU-dependency can be installed even after the
posting of an operation. It will have an effect only if the
operation is not yet executed. This lets the host process disable
an operation, which can be re-enabled later by satisfying the
installed dependency.

On some offload hardware, on which the OE/NIC is
distant from the CPU, downloading operations can have a
significant overhead. Usually, operations are consumed during
their execution. To mitigate the downloading overhead, we
propose a mechanism to cache operations at the OE. These
operations will automatically be de-activated once they execute
and can be re-activated by the CPU later. Because persistent
operations are not automatically removed after they execute,
they occupy OE resources until the host process removes them.
In order to tackle this aspect, a software-controlled cache can
be implemented at the OE and managed by the CPU. When the
downloading of a new operation fails due to missing resources
in the OE, a cache replacement mechanism can be executed
by the CPU in order to free OE resources.

B. Performance Model for Offload MAs
Let x and y be two operations where x→ y. Assume that x

is a receive operation and it is the only dependency of y: once a
message matching x is received, y must be executed. To make
this step, the following sequence of events and actions must
be handled: receive, matching, and execution of y. Because
the execution of y must start independently from the CPU,
this entire sequence has to be carried out by the OE. This
introduces the requirement that the message matching phase
must be performed directly by the OE.

To catch this behavior, we introduce an additional parameter
to the well-known LogGP model [1]. The standard LogGP
parameters are: latency L, defined as the maximum latency
between any two nodes in the network; processor overhead
o, that is the time spent by a processor to send or receive a
message; gap between messages g, which models the minimum
time interval between two consecutive messages; gap per byte
G, which is the time required by the NIC to send one byte;
and the number of processors P.

The above parameters are not sufficient to model the
matching phase that is now performed by the OE. A new
corresponding parameter, m, is introduced. It models the time
needed to perform the matching phase and satisfy the outgoing
dependencies of the matched receive.

In our model, an operation’s setup and execution are
decoupled: for example, a send can be installed at time t, paying
the CPU overhead o at that time, but it could be effectively

executed at a later time t̄ > t when all its dependencies are
satisfied. In general, the CPU overhead is accounted for when
the operation is installed by the host process.
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Fig. 1: Time-space diagram of the proposed performance model. P1 sends to P0
a message of size s. On P0, a send of a same-size message is scheduled to be
executed as soon as the message from P1 is received.

Figure 1 illustrates how the model can be applied to a ping-
pong communication of a message with size s between P0 and
P1. As soon as P0 receives the message from P1, it responds
with another message: this means that on P0 the sending of the
“pong” message depends on the receive of the “ping”. In our
model, this dependency is handled and solved directly by the
OE, without CPU intervention. The same behavior cannot be
modeled in the LogGP model, because in that case we should
count an additional o after receiving the “ping” message and
before sending the “pong” one. The overall cost Tpp of the
ping-pong communication pattern in our model is:

Tpp = 2(o + L + s ·G + m)

The same pattern, in the LogGP model, has a cost of: T ′pp =
2(2o + L + s · G). The cost difference is explained by the
fact that, unlike in the LogGP model, in our model the CPU
overhead is decoupled from the actual execution of an operation,
so the overhead paid for the send at P0 can be overlapped
with the one induced by the send at P1. In addition, in our
model we must account for the matching phase cost, which is
m.

C. Portals 4 Case Study
We can apply our proposed model on a concrete architecture,

such as the one described by the Portals 4 specification. 9
This network programming interface is based on the one-sided
communication model, with the main difference that it does not
use addresses to identify memory buffers on a remote node. A
portal table is assigned to each network interface. Each portal
table entry identifies three data structures: the priority list, the
overflow list, and the unexpected list. The first two lists provide
entries describing remotely accessible address regions, whereas
the third tracks unexpected messages.

Portals 4 supports two types of semantic: matching and
nonmatching. The first one has been introduced to better support
tagged messaging interfaces, such as MPI. It lets the target
node add constraints to the list entries, which in this case are
called match list entries (MEs), such as the process ID that is
allowed to access the described memory and a set of matching/
ignore bits, which act like the MPI tag field. In order to map the
computation model, we consider only the matching semantic
in this article.

1) Communications: A target node exposes memory regions
by appending match list entries to the priority or overflow
list. When a message arrives, the priority list is traversed and
searched by the OE for a matching list entry. If no match is
found in the priority list, the overflow list is searched: if a
matching ME is found there, the message header is inserted



into the unexpected list. If no match is found, the message is
dropped. The overflow and the unexpected list provide building
blocks to handle unexpected messages: the user can provide
“shadow” buffers by appending list entries to the overflow list.
When an ME is appended to the priority list, the unexpected
list is searched for already delivered matching messages. If a
node (that is, the initiator) wants to start an operation toward a
target node, it must specify a memory region using a memory
descriptor (MD). If the operation is a put, the data will be
copied from the buffer specified by the MD at the initiator
to the one specified by the matching ME at the target. The
get operation works in the opposite way: the data specified by
the matching ME at the target will be copied into the buffer
specified by the MD at the initiator.

2) Local computations: The Portals 4 specification supports
atomic operations: they take as operands the data specified by
the MD at the initiator and the one described by the ME at the
target. A local computation can be expressed as a sequence of
atomic operations with a coinciding initiator and target node.
This approach lets us offload simple local computations, which
enables their asynchronous execution with regard to the CPU
process.

3) Dependencies: Counters can be associated with memory
descriptors and matching list entries, counting occurrences of
specific events related to such data structures (that is, operation
completion). We leverage this counting mechanism to detect
the termination of outstanding operations. Portals 4 introduces
the concept of triggered operations, which are associated with
a specific counter that must be executed when such a counter
reaches a certain threshold.

These two concepts (that is, counters and triggered oper-
ations) are used to map our dependency model. A counter is
associated with each operation in order to detect its termination.
If two operations x and y are defined in a way such that
x → y, then y is implemented as a triggered operation on
the counter associated with x with a threshold equal to one:
as soon as x is completed and its counter is incremented, y
will be triggered. Multiple dependencies can be implemented
using an intermediate counter: if xi → y with i ∈ [1, . . . , n]
and n > 1, then a new counter cty is created. When an xi

is completed, cty is incremented by one. In this case, y will
become active only when cty reaches a certain threshold, which
can be n or 1 depending on the specified relation type: AND
or OR, respectively.

4) Operation Disabling: Portals 4 does not allow to directly
disable the execution of an operation. Suppose that a triggered
operation b is targeting a buffer that the initiator wants to modify.
If the operation is already in execution, the buffer should not
be modified by the host process. In the other case, we can
disable the operation avoiding its triggering: if a → b and b
is not yet executed, we can disable b decreasing the counter
associated with a by one and setting b as to be triggered when
such counter reaches at least the threshold of two. Even if
a is executed and its counter is incremented, b will not be
triggered since its dependency counter (the one associated with
a) has not reached the specified threshold. To reenable b, it is
enough to increment its dependency counter: if a is already
executed, then b will be immediately triggered; otherwise, it
will be executed as soon as a is completed.

5) Persistent Operations: The current Portals 4 interface
specification does not support persistent operations. To enable
their support, the interface should be extended to offer two
new features: auto-resetting counters and permanent triggered
operations. An auto- resetting counter is a normal counter with
an associated reset threshold: the counter is set to a default
value (such as zero) when the reset threshold is reached. A
persistent triggered operation is a triggered operation that is
not consumed once it is executed. It will be triggered every
time the associated counter reaches the specified threshold.

Consider two operations, x and y, such that x → y and
no other dependencies are set on y. Moreover, y is defined
as a persistent operation. The dependent operation (y) is
implemented as a persistent triggered operation to be executed
when the counter ct associated with x reaches the threshold
of 1. The counter ct has a reset threshold of 1: as soon as x
is completed, y is activated and ct is reset. When ct will be
incremented again, due to a new completion of x, the operation
y will be reexecuted. It is worth noting that this mechanism
does not depend on the nature of x but on the counter associated
with the MD or ME that x is targeting. If ct is associated with
an MD, then x can be a Portals put, get, or atomic. It will be
incremented as soon as the operation is completed. Otherwise,
if ct is associated to an ME, it will be incremented as soon as
an operation targeting that specific ME will be completed.

A minimal extension of the Portals 4 interface to support
persistent operations would consist of introducing a persistency
option for triggered operations and extending the counter
interface to introduce the reset threshold. Portals 4’s resource
management allocates a fixed amount of resources to each
process. This mechanism can be easily extended to support the
management of permanent triggered operations.

6) Performance Model: The performance model discussed
in Sec. II-B can be applied to an architecture based on Portals 4.
In particular, we focus on the mapping of the parameters o and
m, because the definitions of L, g, and G are not altered. The
o parameter accounts for an operation’s creation and offloading:
this corresponds to the creation of an ME or an MD and the
interaction with the Portals 4 hardware, through which the
operations can be offloaded to the OE. The time to perform
the matching phase for an incoming message is captured by
m. In Portals 4, the matching phase consists of searching the
priority list and, eventually, the overflow list.

III. OFFLOADING COLLECTIVES

Here, we introduce fully offloaded collective communica-
tions such that the following two conditions are satisfied:

(1) No synchronization is required in order to start the collective
operation. Every process can start the operation without
synchronizing or communicating with the others.

(2) Once it has started, no further CPU intervention is required
to complete the collective.

A collective operation can be described as a directed graph,
in which vertices are operations (either communications or
computations) and edges are dependencies among them. There
are two types of dependencies: intra- and inter-node. An inter-
node dependency can be established between a send and a
receive operation: the matching of the receive leads to the
satisfaction of the dependency. Intra-node dependencies are
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operation type (R: Receive, S: Send; C: Computation) and the pipeline stage.

between operations on the same node, as described by the
proposed abstract machine model. Figure 2 shows a graph
representing a pipelined binary-tree-based reduce operation. The
example represents a two-stage pipeline. The leaves just have
to send a chunk of data at each pipeline stage to their parent.
Internal nodes (P1, P5) have to apply the reduce operator
to both the messages received by their own children, sending
the computed intermediate result to the parent node P1. The
order between the stages of the pipeline is enforced by intra-
node dependencies between the operations at the leaf nodes and
message tags. A schedule is the set of operations and intra-node
dependencies at each node.

Definition (Schedule). A schedule is a local dependency graph
in which a vertex is an operation, whereas an edge represents
an intra-node dependency. It describes a partially ordered set
of operations (that is, point-to-point communications and local
computations).

Using the model proposed earlier, an operation is defined
as dependent or independent according to its in-degree: zero
ingoing edges means that the operation has no dependencies and
can be executed immediately; an operation with an in-degree
greater than zero can be executed as soon as all its incoming
dependencies are satisfied. The completion of an operation
leads to the satisfaction of all its outgoing dependencies. We
consider a schedule as complete when all the operations with
out-degrees equal to zero are completed.

Definition (Collective Communication). A collective commu-
nication involving n nodes is modeled as a set of schedules
S = S1, . . . , Sn in which each node i participates in the
collective executing its own schedule Si.

Offloading a collective operation means that every schedule
Si is fully executed by the OE of node i. This is possible only
if the OE can handle all of a schedule’s components (that is,
communications, local computations, and dependencies among
them). The proposed abstract machine model catches them all,
defining operations and dependencies as fully executed and
handled by the abstract OE, hence allowing collective operation
offloading.

A. Offloaded Point-To-Point Protocols
Collective operations are built on top of point-to-point

communications, which are the building blocks of our model.
We can use two well-known protocols, according to the message

size, to address them correctly and efficiently: eager and
rendezvous. The eager protocol is used for small message
sizes: it assumes that a receive buffer has already been posted
at the destination node when the message from the sender
arrives. When this assumption is not satisfied, the message
is defined as unexpected and is copied into a shadow buffer,
requiring an additional copy at the time in which the receive
buffer will be posted. However, because these buffers must
have a finite size, this protocol is not suitable for arbitrarily
large message sizes. The rendezvous protocol can deal with
arbitrary message sizes at the cost of introducing additional
synchronization overhead. Although the eager protocol leads
the receiver to synchronize on the sender, the rendezvous
protocol implies the full synchronization of the involved nodes.
Apparently, both protocols violate condition (1). However, if
the full protocol is offloaded to the OE, the synchronization
is totally decoupled from the host process, thus preserving the
mentioned condition.

1) Eager Protocol: We have to distinguish between expected
and unexpected messages. In the first case, the microarchitecture
copies the message directly into the user-specified buffer. In
the second case, the message will be copied from the shadow
to the user-specified buffer as soon as a matching receive is
posted. Once this copy is completed, the shadow buffer can be
reused to catch other unexpected messages.

This protocol can be implemented with Portals leveraging
the matching mechanisms provided by the priority and overflow
lists. The data copy from the shadow buffer to the user-specified
one, not directly supported by Portals, can be implemented by
leveraging Portals’ full events. If an unexpected message is
matched by an ME during the append phase, a proper full event
will be raised. Such an event can be used by the host process
to trigger the data copy from the shadow to the user-provided
buffer. We assume that this process is race-free, meaning that
the event will be generated at time t ≥ max(tOW , tME), where
tOW is the time at which the copy of the unexpected message
on the shadow buffer is complete and tME is the time at
which the matching ME is posted by the CPU. Please note
that even if, in the unexpected message case, the data-copy
must be performed by the CPU, the conditions (1) and (2)
are still fulfilled: no synchronization is required and no CPU
intervention is required after the creation of the operations. In
fact, the potential overhead of the data copy due to unexpected
messages is paid at the operation creation time.

2) Rendezvous Protocol: This protocol is used for handling
the transmission of arbitrarily large messages. It requires
synchronization between the two communicating nodes. There
are two variants of this protocol, differentiated by the node
that initiates the protocol. In the sender-initiated version, a
control message is sent to the receiver, who will reply when
the matching receive will be posted (and thus the receiver buffer
will be ready). In the receiver-initiated version [14], the receiver
must signal the sender when it is able to receive the message.
Without loss of generality, in this article we consider only the
sender-initiated variant of this protocol; the receiver-initiated
one can be implemented similarly.

Figure 3 sketches the Portals implementation of the ren-
dezvous protocol between two processes P0 and P1. The send
operation at P0 appends an ME (say, MEdata) to the priority
list and sends a ready-to-send (RTS) control message toward
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Fig. 3: Portals 4 implementation of the rendezvous protocol. After the target
receives the RTS message, a GET is triggered to perform the data movement.

P1. When the receive is activated at P1, an ME is appended
to the priority list to catch the RTS. Moreover, a get operation
is installed in a way such that the data can be read from P0 as
soon as the RTS is receivedhence, the get is dependent on the
RTS reception. If the GET is a Portals operation, the initiator
P1 does not have to specify remote memory addresses: the
data will be read from the memory region specified by MEdata

at the target P0. If the RTS message is received as unexpected,
the receiver-side protocol will start as soon as the receive is
posted.

B. Schedule Caching

Applications that repeatedly issue a fixed set of collective
operations (that is, the same parameters) can benefit from
schedule caching at the OE. Normally, the cost of starting
an offloaded collective operation comprises both the cost of
the algorithm used to produce the schedule and the cost of
offloading the scheduled operations.

Schedule caching can be implemented by exploiting persis-
tent operations. We define a schedule’s “frontier” as the set of
independent operations contained in it. This set’s cardinality
is indicated with nI . Because a cached schedule must be
explicitly activated by the host process, all the independent
operations are converted to dependent ones installing CPU
dependencies (independent operations are executed as soon as
they are posted). All of a cached schedule’s operations are
defined as persistent. The cost of starting a collective operation
with a cached schedule corresponds to the cost of satisfying
nI CPU dependencies, which is the cost necessary to activate
the schedule’s frontier.

It is worth noting that the impact of schedule caching on
the overall application performance depends on the frequency
with which cached collective schedules are executed and on
the single operation creation and offloading cost.

C. Hardware Provisioning

We defined the OE as a generic entity to which the CPU
can offload the execution and the progression of communica-
tions and computations. The main advantages of a hardware-
implemented OE are low latency, immunity to OS noise,
and zero host CPU usage. One limitation of this approach
is the fixed amount of resources on the OE. Considering a
Portals 4-compliant OE, in order to address this problem, we
must answer the following questions: how many triggered
operations do we need, and how many counters?

As we discussed earlier, triggered operations and coun-
ters are used to implement dependencies among operations.
Considering a parallel application and limiting our analysis
to collective operations, we define the amount of resources

Collective Algorithm Time MD/ME Triggered Ops. Counters Memory

Broadcast
Linear O(P ) 1 0 0 S

Binary Tree O(log(P )) 2 2 1 S

Binomial Tree O(log(P )) 2 log(P )− 1 1 S

All-to-All
Linear O(P ) 2 0 0 S

Recursive Doubling O(log(P )) 2 log(P )− 1 1 P · S

All-Reduce
Binomial tree O(log(P )) log(P ) 2 · log(P ) log(P ) S

Recursive Doubling O(log(P )) log(P ) 2 · log(P ) log(P ) S

Scatter
Linear O(P ) 1 0 0 P · S
Binomial Tree O(log(P )) 2 log(P )− 1 1 P · S

Gather
Linear O(P ) 1 0 0 P · S
Binomial Tree O(log(P )) 2 1 1 P · S

Reduce
Linear O(P ) P P P S

Binomial Tree O(log(P )) log(P ) log(P ) log(P )− 1 S

TABLE I: Maximum Portals 4 resources occupation per endpoint of various collec-
tive operation algorithms. (P : communicator size; S: message size.)

needed at the OE as a function of the number of dependent
operations in a schedule, the number of outstanding collective
operations, and the number of processes sharing the same OE.
In addition, offloaded data-movement operations are considered
for the operations count. This suggests that the algorithms used
to implement collective operations play an important role in
the resource usage at the OE. In particular, we notice a tradeoff
between OE resource utilization and the performance of such
algorithms (that is, latency). For example, reducing the fan-
out of a distribution tree will lead to a longer tree and then
likely to a higher latency, but it will also reduce the number
of dependent operations (that is, the number of children) -
hence, the resources usage at the OE. Table I reports the time
complexity [11] and the maximum resource occupation among
all the involved nodes of different possible implementations of
collective operations. The completion time of these operations
is expressed according with the LogGP model.

IV. EXPERIMENTAL RESULT

Results were obtained on Curie, a Tier-0 system for the
Partnership for Advanced Computing in Europe composed
of 5,040 nodes made of two eight-core Intel Sandy Bridge
processors. The interconnect is an InfiniBand QDR full fat-
tree. In our experiments, we use OpenMPI version 1.8.4
compiled with two back ends: InfiniBand (OMPI) and Portals 4
(OMPI/P4). We compared our results against FFlib, a proof-of-
concept library that we built on top of the Portals 4 reference
library (P4RL) [4]. Such a library implements the concepts
described by the proposed abstract machine model. The P4RL
was compiled with InfiniBand support. In all experiments, we
scheduled one MPI process per node and two hardware cores
per MPI process to minimize the overhead induced by the
auxiliary thread used by Portals for the NIC emulation.

In order to report a fair comparison, we compare only
OMPI/P4 results. If OMPI is directly interfaced to the Infiniband
network cards through the Verbs interface, collectives can be
executed faster (up to 2.5 times faster). Comparing OMPI/P4
with FFlib lets us assess the benefits of OE architectures
directly.

A. Collective Operations Latency/Overhead

In this experiment, we compare offloaded and nonoffloaded
collectives showing two measurements: latency and overhead.
The latency is defined as the maximum finishing time of a
collective among all the nodes. We report this value because
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Fig. 4: Non-blocking collectives latency and overhead with 50 B message size.

of its impact on the parallel running time of load-balanced
applications [10]. The overhead, instead, is the fraction of com-
munication time that cannot be overlapped with computation.
For each communicator size, we report the median among 100
samples. The 95 percent confidence interval (CI) is always
within the 5 percent of the reported medians

Figure 4a shows the latency and overhead comparison for
the AllReduce collective operation. The adopted algorithm is
the binomial-tree-based one, consisting of two phases: a reduce
toward a designated root followed by the broadcast of the
computed result. Although the FFlib and OMPI/P4 latencies
of this collective operation are comparable, OMPI/P4 presents
an overhead up to 1.8 times higher with regard to FFlib when
using 256 processes. This is explained by the fact that the
nonoffloaded approach of OMPI/P4 requires CPU intervention
to execute parts of the schedule (that is, communication rounds).
The overhead introduced by FFlib, instead, is just the time
necessary to create and offload the schedule to the OE, which
grows with the number of scheduled operations (which is
logarithmic in the number of processes for the AllReduce
algorithm). Figure 4b shows the results for the broadcast
operation: FFlib shows an improvement up to a factor of two
for both latency and overhead. The algorithms employed by
OMPI/P4 for non-blocking scatter and AllGather are linear in
the number of processes, whereas FFlib implements these two
collectives with the binomial and recursive doubling algorithms,
respectively. In both cases, they have a logarithmic cost in the
number of processes. This explains the results of Figures 4c
and 4d.

B. Micro-Benchmarks

We evaluated the effects of introducing fully offloaded
collectives with two microbenchmarks: parallel 3D Fast Fourier
Transformation (3DFFT) and the Pipelined Generalized Mini-
mal Residual Method (PGMRES). The reported results are
the medians as a function of the communicator size and
configuration (that is, FFlib and OMPI/P4). The 95 percent CI
is always within 5 percent of the reported values.
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Fig. 5: The Pipelined Generalized Minimal Residual Method (PGMRES) bench-
mark. The iteration time and wait time are given for both the examined configura-
tions and for different communicator sizes (P ).

In the PGMRES experiment, we solve the 2D Laplace
equation on a Cartesian grid using the example number 46
from the Portable, Extensible Toolkit for Scientific Computation
(PETSc) distribution [3]. We perform executions with 64,
128, and 256 MPI processes. The global preconditioner is an
additive Schwarz method [5], which involves sparse collectives
operations at each iteration (halo exchanges). The PGMRES
method is the chosen Krylov method [7]. Unlike in the standard
GMRES, there are no blocking global collectives at each
iteration for computing dot products. Instead, a nonblocking
MPI Iallreduce is initiated at the end of each iteration, and
its completion is checked after the computation of the next
preconditioner-matrix-vector product. We modified the PETSc
distribution to allow switching between MPI and FFlib collec-
tives. Figure 5 reports the results of the PGMRES experiment.
The test executes a maximum of 1, 000 iterations, and the
problem size (3200× 3200 grid size) is chosen in a way such
that this limit is reached for all the tested communicator sizes.
The high wait time can be explained by communications among
subgroups of processes taking place at each iteration: these
can introduce load imbalance among the processes, leading to
an increase of the synchronization time implied by the global
reduce operation. We can observe how the fully offloaded
configuration presents a speedup of waiting time up to 2.4 times
in the P = 128 case, which suggests that such a configuration
is less sensible to the discussed load imbalance.

In the parallel 3D Fourier transform, the data is transformed
in the x and y direction first and, after applying a parallel trans-
position (that is, all-to-all communication), the transformation is
applied in the z direction. Following the approach proposed by
Torsten Hoefler and colleagues [9], we implement the z-plane
communication in a nonblocking, pipelined manner to overlap
the communication of the i-th block with the computation of
the (i+1)-th one. Figure 6 shows the pipeline stage completion
time and the wait time for communicator sizes of 64, 128, and
256 MPI processes. For each communicator size, the results
of FFlib and OMPI/P4 are reported. A single pipeline stage
comprises the following steps: compute the i-th block, wait for
the completion of the (i− 1)-th block communication, and set
up the i-th block communication.

The problem size is selected such that the total number of
iterations is approximately 1, 000. The results show how the
introduction of fully offloaded collectives leads to a speedup in
the waiting time, up to 3.11 times in the P = 256 case. This
improvement lets FFlib keep scaling until P = 256, whereas
OMPI/P4 stops at P = 128.
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Fig. 6: 3DFFT benchmark. The pipeline stage completion time and wait time are
given for both the examined configurations and for different communicator sizes.

V. FUTURE WORK

Future work can enhance the discussed model to introduce
Turing completeness. In this way, complex schedules can be
offloaded to the OE, enabling their asynchronous execution
with respect to the host. Persistent operations are the first step
toward this extension: they can be installed on the OE and can
be executed multiple times without requiring any further host
intervention. A next step could enrich the model and introduce
conditional branching, discussing how existing architectures,
like Portals 4-compliant ones, can be extended to support such
an extended model.
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