
Fast Multi-Parameter Performance Modeling
Alexandru Calotoiu∗, David Beckingsale‡, Christopher W. Earl‡, Torsten Hoefler†

Ian Karlin‡, Martin Schulz‡, Felix Wolf∗

∗Technische Universität Darmstadt, Darmstadt, Germany
†ETH Zürich, Zurich, Switzerland

‡Lawrence Livermore National Laboratory, Livermore, USA
calotoiu@cs.tu-darmstadt.de, beckingsale1@llnl.gov, earl2@llnl.gov, htor@inf.ethz.ch,

karlin1@llnl.gov, schulzm@llnl.gov, wolf@cs.tu-darmstadt.de

Abstract—Tuning large applications requires a clever explo-
ration of the design and configuration space. Especially on
supercomputers, this space is so large that its exhaustive traversal
via performance experiments becomes too expensive, if not
impossible. Manually creating analytical performance models
provides insights into optimization opportunities but is extremely
laborious if done for applications of realistic size. If we must
consider multiple performance-relevant parameters and their
possible interactions, a common requirement, this task becomes
even more complex. We build on previous work on automatic
scalability modeling and significantly extend it to allow insightful
modeling of any combination of application execution parame-
ters. Multi-parameter modeling has so far been outside the reach
of automatic methods due to the exponential growth of the model
search space. We develop a new technique to traverse the search
space rapidly and generate insightful performance models that
enable a wide range of uses from performance predictions for
balanced machine design to performance tuning.

I. INTRODUCTION

Ever-growing application complexity across all domains,
including but not limited to theoretical physics, fluid dynamics,
or climate research requires a continuous focus on perfor-
mance to productively use the large-scale machines that are
being procured. However, designing such large applications
is a complex task demanding foresight since they require
large time investments in development and verification and are
therefore meant to be used for decades. Thus, it is important
that the applications be efficient and potential bottlenecks are
identified early in their design as well as throughout their
whole life cycle.

Continuous performance analysis starting in early stages of
the development process is an indispensable prerequisite to
ensure early and sustained productivity. This in turn, requires
the availability of continuously updated performance models
reflecting design updates and supporting the optimization
process. Such models allow problems in applications to be
detected early and their severity to be determined when
the cost of eliminating the problems is still small. This is
increasingly important since mitigating such problems can
often take several person years. Despite this, though, current
practice often looks different: since creating detailed analytical
models is too time consuming, such models are often only built
on back-of-the-envelope calculations, rough estimates, simple

and manual spreadsheet calculations, or even only developer
intuition.

Further, to ensure that current applications are performance-
bug free, it is often not enough to analyze any one aspect
such as processor count or problem size. The effect that the
one varying parameter has on performance must be understood
not only in a vacuum, but also in the context of the variation
of other relevant parameters, including algorithm variations,
tuning parameters such as tiling, or input characteristics.

In this work, we address this challenge by automating
the model generation process for large and complex param-
eter spaces, making it feasible to have updated performance
models available throughout the entire development process.
In particular, we present a fast multi-parameter analysis ap-
proach for parallel applications: combining standard perfor-
mance profiling [2] with an enhanced version of a lightweight
automatic performance-modeling method [5], we generate
human-readable empirical models with multiple parameters
that allow insights into application performance. For exam-
ple, our approach can determine exact models, such as the
previously undocumented floating-point instruction count of
the kernel LTimes in the particle-transport proxy application
Kripke [11] depending on the processor count p, number
of directions d, and number of groups g. The model is
f(p, d, g) = 5.4 · d · g millions of floating point operations
(Mflop). The designer can then reduce the accuracy to simplify
the handling, e.g., round to the next order of magnitude
f(p, d, g) ≈ 10 · d · g Mflop, or even simply consider the
asymptotic scaling f(p, d, g) ∈ O(d · g) Mflop. Furthermore,
the model certifies that the floating-point instruction count
does not depend on the number of processors.

In this work, we describe our techniques and implemen-
tation to automatically generate multi-parameter performance
models for parallel applications. In a detailed case study with
two applications, we show how our modeling framework can
be applied in practice to gain non-obvious insights into perfor-
mance characteristics of real codes. The major contributions
of our work are:

• An automated technique to generate empirical perfor-
mance models of parallel applications as a function of
an arbitrary set of input parameters.

• Two heuristics to accelerate the search for suitable perfor-
mance models employed by our generation method, mak-
ing our approach practically feasible. The first heuristic
speeds up multi-parameter modeling, as it reduces the
search space to only combinations of the best single-
parameter models. The second heuristic speeds up model
selection for single parameter models. Combined, the
heuristics allow a search space of hundreds of billions of
models to be reduced to under a thousand and to reduce
the time required to obtain a multi-parameter model from
over 6 years to under 6 milliseconds.

• A fully-functional implementation of the multi-parameter
modeling technique using the two heuristics to demon-
strate and validate our approach in practice using both
synthetically generated data and measurements from three
scientific applications.

• Two case studies where we highlight the utility of multi-
parameter modeling to understand application behavior
and to gain new insights into performance optimization
opportunities while putting existing performance expec-
tations to the test.

The remainder of the paper is organized as follows. After
providing background on our prior work related to automatic
performance modeling with a single parameter, we outline
our multi-parameter modeling method, followed by details
on the heuristics employed to reduce the search space. We
then provide a validation of our heuristics. Finally, we present
the two case studies, discuss the insights gained, and offer a
conclusion.

II. SINGLE-PARAMETER MODELING

Our multi-parameter performance-modeling approach builds
upon a method to generate empirical performance models
with a single model parameter, primarily scaling models, from
performance measurements [5].

A. The Performance Model Normal Form

A key concept of our single-parameter approach is the
performance model normal form (PMNF). The PMNF models
the effect of a single parameter (predictor) x on a response
variable of interest f(x), typically a performance metric such
as execution time or a performance counter. It is specified in
Equation 1.

f(x) =

n∑
k=1

ck · xik · logjk2 (x) (1)

The PMNF allows building a function search space, which we
then traverse to find the member function that comes closest
to representing the set of measurements. This assumes that
the true function is contained in this search space. A possible
assignment of all ik and jk in a PMNF expression is called a
model hypothesis. The sets I, J ⊂ Q from which the exponents
ik and jk are chosen and the number of terms n define the
discrete model search space. Our experience suggests that
neither I and J nor n have to be particularly large to achieve
a good fit. We then automatically determine the coefficients of

Input data

Hypothesis generation
Maximum hypothesis size ω

Hypothesis evaluation
via crossvalidation

Computation of R̄2
ω

for best hypothesis

R̄2
ω−1 ≥ R̄2

ω ∨
ω = ωmax

Performance
model

ω = 1, R̄2
0 = −∞

Yes
No; ω + +

Fig. 1: Iterative model refinement process. Solid boxes repre-
sent actions or transformations, and banners their inputs and
outputs [5].

all hypotheses using regression and choose the hypothesis with
the smallest error to find the most likely model function. Often
a simple selection like the following will be sufficient to model
an application: n = 2, I =

{
0
4 ,

1
4 , . . . ,

12
4

}
, and J = {0, 1, 2}.

It is possible to expand or modify the sets or the number of
terms if clear expectations regarding the application behavior
exist, but such prior knowledge is not required in the common
case.

For the above process to yield good results, the true function
that is being modeled should not be qualitatively different from
what the normal form can express. Discontinuities, piece-wise
defined functions, and other behaviors that cannot be modeled
by the normal form will lead to sub-optimal results.

B. Model Generation

Our single parameter model generator requires a set of
performance profiles as input, representing runs with one
changing parameter. These profiles can be obtained using
existing performance measurement tools. Here, we use the
performance measurement system Score-P [2], which collects
several performance metrics, including execution time and
various hardware and software counters, broken down by
call path and process. Based on such profiles, we compute
one model for each combination of target metric and call
path, enabling a very fine-grained scalability analysis even
of very complex applications. The instrumentation done by
Score-P is direct, which on the one hand necessitates careful
control of the runtime dilation, but on the other hand allows
an accurate attribution of counters and timers to individual
call paths. Other data sources from other performance mea-
surement tools are equally possible and simply require some
form of input format conversion. Past experience has shown

that as few as five different measurements for one parameter
are enough for successful model generation. If noise can
affect the measurements, experiments will be repeated until
the data provides reasonably tight 95% confidence intervals:
Confidence intervals larger than 5% of the absolute difference
between measurements will often lead to noise being modeled
rather than the desired behavior.

Running the number of required experiments can be man-
aged by automated test frameworks [1] and the runtime
required can be kept in check by carefully selecting the exper-
iment range. For example in a weak scalability study, unless
there is reason to believe that the application would behave
qualitatively different at a larger scale, there is no reason to
run experiments at massive scales. A qualitative difference in
this context could be the result of changing an algorithm for
a part of the application beyond a certain processor count. We
mainly used this approach to study scalability by varying the
number of processes—both in weak and strong scaling mode.

Once the profiles are available, we identify models in an
iterative process, which is illustrated in Figure 1: in each step,
we instantiate a number of model hypotheses of a certain
size (i.e., number of terms) according to the PMNF defined
above, and select the winner through cross-validation. We
start the process with a one-term model, which we extend
after each step. We continue this process until we reach the
configurable maximum model size or discover onsets of over-
fitting with the help of the adjusted coefficient of determination
R̂2 [6]. R̂2 indicates which share of the variation in the data
is explained by the model function and thus can be used to
assess the quality of the fit. Its values are between 0 and 1
and values closer to 1 indicate a better quality of fit. The
advantage of R̂2 is that it penalizes models for having more
degrees of freedom and therefore helps to detect over-fitting.
For further details of model generation including references
to the statistical methods employed, we refer to Calotoiu et
al. [5].

III. MULTI-PARAMETER MODELING

Common questions asked by developers when trying to
understand the behavior of applications are:
• How does application performance change when more

processors are used?
• How does application performance change when the

problem size is increased or decreased?
Changing the processor count while keeping everything else

fixed is also known as strong scaling. The goal of many large-
scale applications, however, is to solve larger problems using
more processing power, leading to the concept of weak scaling.
Weak scaling is often defined as the application’s behavior
when the problem size per processor is fixed and the processor
count is varied. Creating an experimental setup in practice
where the problem size per processor is fixed is not trivial as
the problem decomposition is not arbitrary in the general case.
When considering the pressure on applications to judiciously
use computing resources both questions must be answered,
and a new vital question arises:

• Are the effects of processor variation and problem size
variation independent of each other or can they amplify
each other?

For example, a weak-scaling run of the kernel SweepSolver
in Kripke [11], a particle transport proxy application, has a
runtime model for processor variation of t(p) = O(p1/3)
and a runtime model for varying the number of dimensions
of t(d) = O(d). The number of dimensions influences the
problem size proportionally. It now needs to be determined
how these two factors play together. Depending on their inter-
action, the application is scalable or not. For example, it would
make a huge difference if the combined effect of processor
variation and number of dimensions was t(p, d) = O(p1/3 ·d)
or t(p, d) = O(p1/3 + d).

A. A Normal Form for Multiple Parameters

Below, we expand the original performance model normal
form presented in Section II-A to include multiple parameters.

f(x1, . . . , xm) =
n∑

k=1

ck ·
m∏
l=1

x
ikl

l · log
jkl
2 (xl) (2)

This expanded normal form allows a number m of parameters
to be combined in each of the n terms that are summed
up to form the model. Each term allows each parameter xl
to be represented through a combination of monomials and
logarithms. The sets I, J ⊂ Q from which the exponents ikl

and jkl
, respectively, are chosen can be defined as in the one-

parameter case.

B. Considerations for Multiple Parameters

Of course, if multiple parameters are considered, perfor-
mance experiments have to be conducted for all combinations
of parameter values and the total number of experiments that is
required grows accordingly. While this might be manageable
if the number of parameters considered is small enough (single
digit) and/or the cost of an individual experiment is very small,
another and more serious problem emerges even for two and
three of parameters.

Looking at Equation 2, the combinatorial explosion of
the search space for model hypotheses that multi-parameter
modeling generates becomes apparent. This shows the need
for efficient methods for traversing the search space. The max-
imum number of terms should always allow at least an additive
combination of all parameters so n ≥ m. For convenience, we
will use n = 3 throughout the following example, which is
required for three parameters. With n = 3 and I , J defined as
in Section II-A, the model search space when one parameter is
considered can be built as follows: For each of the terms there
are |I| · |J | possible options, i.e., 54 in this case. The order
of terms is irrelevant and the same term cannot be repeated,
therefore the cardinality of the search space is the binomial
coefficient

(|I|·|J|
n

)
, i.e., 24,804 models in total. If we now

consider two parameters, each term has (|I| · |J |)2 possible
options, i.e., 2916 in total. The model search space in this case
contains 4,128,234,660 candidates. Let us assume that 300,000
hypotheses can be evaluated in a second, a rate drawn from our

experience on current commodity personal computers. Even
with the simplifying assumption that evaluating a hypothesis
with multiple parameters would take as much as evaluating
a hypothesis with only one parameter, it would still take
more than three hours to select the best model for a single
combination of metric and kernel. With three parameters the
model search space contains around 6.51 · 1014 candidates,
and with m parameters

(
(|I|·|J|)m

n

)
, making the search for the

best fit a daunting task. Spending six years to compute the
best model with three parameters for one metric of one kernel
is not something any developer would consider. Obviously,
one does not need many parameters to make the traversal
of such a multi-parameter search space practically infeasible.
While this problem is embarrassingly parallel, the resource
requirements for such a performance modeling process will
far outweigh any gains obtained through optimization of the
target application. To overcome the challenge that the size of
the search space presents, we speed up the search process
using novel heuristics, which we describe in Section IV.

IV. FAST MULTI-PARAMETER
MODELING

We build on the concepts of single-parameter modeling from
our prior work, but extend and optimize them to match the new
requirements posed by modeling multiple arbitrary parameters.
Note that the original method is only capable of modeling
the scalability as a function of one parameter, usually the
number of processes. This single-parameter modeling allowed
several simplifying assumptions that do not hold for general
multi-parameter modeling, for example, that we can search
all models for this one parameter. Thus, we first develop a
new search method for the model space of a single arbitrary
parameter and then derive an effective method to combine all
single-parameter models into a single model for all parameters.

A. Improved Single-Parameter Modeling

To model multiple parameters without the time to solution
becoming prohibitive, with billions of candidates being gener-
ated for as few as three parameters, the existing approach to
model detection is no longer sufficient: we must find a way to
reduce the search space of model hypotheses. The following
method is only applicable to single-parameter modeling. It
complements the hierarchical search outlined in the next
subsection to speed up the entire modeling process.

Reducing a search space is often related to finding some
ordering of the search space, i.e., finding a way to rank the
possible hypotheses, and our method is no exception. We
use the following sets of modeling terms for n = 1: I ={

0
4 ,

1
4 , . . . ,

12
4

}
, and J = {0} as an example to demonstrate

our hypothesis ranking approach. This example generates a
small set of hypotheses when modeling a single parameter x:
{x0;x1/4, . . . , x12/4}. Based on our experience with perfor-
mance modeling, we make the following observation: if we
rank the hypothesis functions by the magnitude of their first
derivative at the observation with the largest parameter value
then the respective error function of the ranked hypotheses

x0 x0.75x1 x1.5 x3

0

25

50

75

i1

i3
i4

i2

Model hypotheses

M
od

el
fit

er
ro

r
(x
10

1
7
)

Fig. 2: Model fit error for different model hypotheses. The fit
error of model hypotheses decrease towards the one with the
smallest error, in this case x1. The figure further shows the
golden-section-search interval reduction. The search interval
starts as [i1, i2] and becomes [i1, i4] after one step of the
golden section search method.

is unimodal, i.e., a function that has a unique minimum or
maximum point and is monotonically decreasing/increasing
towards it. The unique minimum of this discrete function will
be the best matching term. This is intuitive: the regression
and cross-validation approach we use always finds the best
possible coefficients for each of the terms to fit the available
data, but the results will be better the closer the hypothesis
function is to the true function.

Following this observation, we sort all hypotheses by their
slopes at the measurement with the largest parameter value.
In the particular example from above, this is trivial, as all
hypotheses are simple monomials and thus their order (for
any value) is the ascending order of the exponent. In the case
of more complex hypotheses the order may change depending
on the measurement chosen. We select the measurement with
the largest parameter value, as users are most often interested
in understanding and predicting the behavior at and beyond
the upper range of a given parameter.

As an example, we will attempt to model the effect that
varying the group number has on floating point instructions in
the LTimes kernel of the Kripke application. We will consider
the following pairs of parameter x and measurement t as in
input: (32, 1209.6), (64, 2419.2), (96, 3628.8), (128, 4838.4),
(160, 6048). Figure 2 shows the residual sum of squares error
of various model functions fitted via the least squares method
to our five data points. The x1 hypothesis is a perfect fit
without error, and the error of the model fit as a function of its
rank (the index in the sorted hypothesis list) has a minimum
at the index of the best model. Since this minimum is also
unique, this function is unimodal in the analyzed range.

1) Modified golden section search: The observation above
justifies a modified golden section search as a means to
traverse the model hypothesis search space. This method is
a way to quickly narrow down the range of values in which
the extremum of a unimodal function is found. Starting with
the complete search space, we recursively refine the interval
in which the extremum can be found as follows: we first
divide the total search space into subintervals by choosing two
additional points between the extreme points of the interval.
For optimal performance, the points in the interval are selected
using the golden ratio φ = 1.618. We then evaluate the model
fit at all four points and from there pinpoint the interval that
contains the extremum. We then repeat the same approach on
this interval recursively, until only one hypothesis remains.

As an example, a step of the method is displayed in Figure 2
using data from the LTimes kernel of Kripke: the two end
points of the interval [i1, i2] and one point in the interval,
i3, such that i2−i3

i3−i1 = φ. In this situation e(i1) > e(i3) <
e(i2) ∧ e(i1) > e(i2). A new point i4 is then chosen in the
interval [i3, i2] using the same φ as before. Indices only take
integer values, so the i3 and i4 must be rounded before the
hypothesis error function e can be evaluated.

The evaluation of i4 indicates where the search should
continue. If e(i4) ≥ (i3) due to the monotonicity of e the
minimum cannot be in the interval [i4, i2]. Therefore the search
has to be continued in the interval [i1, i4]. Should e(i4) < e(i3)
the search must be continued in [i3, i2]. After a finite number
of recursive search interval contractions only one hypothesis
can be selected, and that will be the one with the optimal fit
out of all hypotheses available in the search space.

2) Limitations: If the true function we are trying to model
has a behavior very different from what can be modeled
based on the normal form then it is possible that the above
observation no longer holds. Examples include discontinuous
functions and functions with multiple behaviors depending on
the parameter values. While we have not encountered such
cases so far, they can occur and in the worst case a model
which is not the model with the best fit could be selected.
Nevertheless, if a model has a large fit error, an unsatisfying
value for R̂2 would alert the user before he could draw any
wrong conclusions.

3) Benefits: Golden section search allows the model hy-
pothesis space to be searched faster. The dependence between
the cardinality of the hypotheses set and the number of steps
needed to find the best model goes down from linear to
logarithmic. The benefits therefore increase the larger the
search space becomes. For example, in the case of the single
parameter search described in Section III-B, which created
a search space of 24,804 candidates, the number of steps
required drops to 25, a reduction of almost three orders of
magnitude.

The advantage of the golden section search over similar
approaches, such as ternary search, is the reuse of previous
measurements. At any given step only one new point has to
be evaluated. Needing as few such evaluations as possible
is crucial, as this is a computationally intensive part of the

process.

B. Combining Multiple Parameters

Our approach for multi-parameter modeling is based on the
assumption that the best single parameter models for each
individual parameter form the best multi-parameter model
together, only their combination is unknown. This is—just like
the previous assumption—intuitive: If the best model for the
process count is c1 · log x1 and the best model for problem
size is c2 · x2

2 we expect that the best multi-parameter model
will either be c3 · log x1 ·x2

2 or c4 · log x1+c5 ·x2
2 depending

on whether the effects of the two parameters are combined
or independent of each other. We do not expect it to be
c6 · x1

3 ·
√
x2, or any other model unrelated to the best single

parameter models.
1) Hierarchical search: Using the assumption above, we

first obtain single parameter models for each individual pa-
rameter using the golden section search method previously
described. Once we have these models, all that is left is to
compare all additive and multiplicative options of combining
said models into one multi-parameter model and choosing the
one with the best fit.

The size of the search space for this approach is as follows:
given m parameters and one n-term model for each of them.
We must combine all subsets of terms of each single-parameter
model with each subset of terms of each other single parameter
model. The number of subsets of a set of n elements is 2n,
so the total size of the search space is 2n·m.

Again using the example from Section III-B, assuming the
single-parameter models for all three parameters have been
computed and that all models have three terms each (the worst
case scenario for search space cardinality in this case), the
number of hypotheses that have to be tested is 23∗3 = 512.
Adding the 3 times 25 steps needed to generate the single-
parameter models, we will need to look at most at 587
models to find the best fit, compared to the 6.51 · 1014 in
the unoptimized approach.

2) Discussion: The total size of the search space, 2n·m,
can seem daunting at first, but is insignificant when compared
to the unoptimized search space. Considering that two terms
have proven sufficient to successfully model applications, the
search space becomes 4m. While the number of parameters
cannot be arbitrarily large, our approach practically removes
model generation as a bottleneck, as collecting sufficient
experimental measurements will prove impractical long before
our modeling approach will experience any issues.

C. Data Collection

To create multi-parameter models, we need to have suffi-
cient input data that allows accurate single-parameter models
for all parameters to be generated, as required by the hier-
archical search described in Section IV-B1. For this reason,
the set of parameter assignments used in experiments must
be symmetric. Assume each of v measurements is a tuple
of (x1,i, . . . , xm,i, ti), consisting of m input parameter values
plus the metric t of interest (e.g., the completion time). Then

TABLE I: Evaluation of heuristics using synthetic functions.

Search type Heuristic Exhaustive

Optimal models identified 95,480 [95.5%] 96,120 [96.1%]
Lead-order term identified 4,520 [4.5%] 3880 [3.9%]
(including coefficient)
Lead-order term not identified 0 [0%] 0 [0%]

Modeling time 1.5 hrs. 107 hrs.

symmetric means that for each input parameter xi there must
be a set of k measurements where xi is varied while all other
parameters remain constant. For example, the three-parameter
tuple set (1,10,22,t1), (2,10,22,t2), (1,11,22,t3), (2,11,22,t4),
(1,10,44,t5), (2,10,44,t6), (1,11,44,t7), (2,11,44,t8) is symmet-
ric. The removal of any single tuple would render the set non-
symmetric. Symmetry is required by our method because it
allows to fix any single parameter and look at it in isolation,
considering the other parameters constant. For this, we project
out all but one parameter and calculate the average metric
value across all tuples with the same assignment for the chosen
parameter. For example, if we model the first parameter of the
previous example, we would use (1, 0, 0, (t1+ t3+ t5+ t7)/4)
and (2, 0, 0, (t2 + t4 + t6 + t8)/4) as the basis for the single-
parameter model of the first parameter. Overall, this strategy
requires a full factorial design of v = km measurements if
each parameter is tested in k configurations. We empirically
observed that k = 5 is sufficient in practice. Thus, the number
of parameter assignments to be tested is 5m. Depending on
the run-to-run variation, the measurement of each parameter
assignment must be repeated up to five times. Therefore, the
total number of required measurements is between 5m and
5(m+1).

V. EVALUATION OF HEURISTICS

To evaluate the heuristics presented in Section IV, we
quantify the speedup of the model search in comparison to an
exhaustive traversal of the same search space. Furthermore,
we determine the frequency at which our heuristics lead
to models that differ from the ones the exhaustive search
produces. In those cases where the models we discover are
different, we analyze these differences and discuss their impact
on the quality of the results. Because traversing the entire
search space for three or more parameters is prohibitively time
consuming even with a very small number of potential terms,
we allow only at most two model parameters for the purpose
of this comparison.

The evaluation is divided into two parts. First, we examine
how close the models generated both through exhaustive
search and with the help of heuristics are to inputs derived
from synthetically generated functions. This allows our results
to be compared with a known optimal model. Second, we
compare the results of both approaches when applied to actual
performance measurements of scientific codes, which factors
in the effects of run-to-run variation.

A. Synthetic Data

We generate 100,000 test functions by instantiating our
normal form from Eq.1 with random coefficients cl ∈ (0, 100)
and il and jl randomly selected from the sets I and J, obtaining
functions of the type represented in Eq. 3.

f(x) = c0 + c1(x
i · logj2(x))0|1 · (yk · logl2(y))0|1+

c2(·xi · logj2(x))0|1 · (yk · logl2(y))0|1
(3)

To create the input sets for our model generator, we evaluated
the functions at 5m points with m = 2 being the number of
parameters. To these inputs, our model generator responded in
three different ways:

1) Optimal models. The most common result (ca. 95%)
is that the heuristically determined model, the model
determined through an exhaustive search, and the known
optimal model are identical.

2) Lead-order term and its coefficient identified, smaller
term not modeled by either method. Another scenario
is encountered when the optimal model has the form
c1 ·f(x)·f(y)+c2 ·f(y), where c1 ·f(x)·f(y)� c2 ·f(y)
in the considered parameter ranges. The optimal model
100 · x3 · log2(y) + 2 · log2(y) is a example of this
case. Neither modeling approach is capable of detecting
the smaller term and they both only model the lead-
order term. The effect on the quality of the resulting
models is very small, and an attempt to model such
small influences will often lead to noise being modeled
instead.

3) Lead-order term and its coefficient identified, smaller
additive term only modeled by exhaustive search.
This behavior appears when the optimal model has the
form c1 · f(x) + c2 · f(y), where c1 · f(x)� c2 · f(y).
In this case the heuristic approach fails to identify the
parameter with a smaller effect. The contribution of one
parameter leads to the single parameter model for the
other parameter to have a very large constant component.
As this constant is larger than the variation caused by
the parameter with the smaller effect, the modeling
process attributes the variation to potential noise and
conservatively selects the constant model. The effect on
the quality of the resulting model is again negligible.

Table I displays the number of times the modeling identified
the entire function correctly and the times only the lead-
order term was identified correctly. The lead-order term was
correctly identified in all test cases. The difference in time
required to obtain the 100,000 models is significant: 1.5 hours
when using the heuristics compared to 107 hours when trying
out all models.

B. Application Measurements

In addition to synthetic data, we evaluate our heuristics with
three scientific applications: Kripke, Cloverleaf, and BLAST.
Below, we briefly describe them along with the input decks
used. All tests we report were run on Vulcan, an IBM
BG/Q system at Lawrence Livermore National Laboratory

BLAST
(full assy.)
224 models

BLAST
(partial assy.)
224 models

Cloverleaf
203 models

Kripke
91 models

0

20

40

60

80

100

2.2% 2.6% 1.9% 0%

Pe
rc

en
ta

ge
of

m
od

el
s

Fig. 3: Comparison of performance models obtained for
scientific applications using either our heuristics or a full
traversal of the search space. For each application, we show
the percentage of times where the resulting models were
identical (left bar), where only the lead-order terms and their
coefficients were the same (center bar), and where the lead
order terms were also different (right bar).

BLAST
(full assy.)

BLAST
(partial assy.)

Cloverleaf Kripke
0

500

1,000

7.08s 6.41s 1.31s 1.68sTi
m

e
(s

ec
on

ds
)

Fig. 4: Time required to obtain performance models of sci-
entific applications via heuristics (left bar) and via exhaustive
traversal of the entire search space (right bar).

with 24,576 nodes in 24 racks. Each node is powered by
an IBM PowerPC A2 processor with 16 cores/64 hardware
threads and features 16 GB of main memory. The system
uses IBM’s Compute Node Kernel (CNK), as well as an
IBM MPI implementation based on MPICH2. We use Score-
P [2] to acquire all of our metrics for the chosen applications.
In particular, we measured execution time, total number of
instructions, number of floating point instructions, and MPI
bytes sent and received.

Kripke [11] is an open-source 3D Sn deterministic particle
transport code. It calculates angular fluxes and stores them in a
flexible hierarchy of data structures (direction sets, group sets,
and zones). Kripke was designed as a research tool to explore
how data-layouts affect performance, especially on different
architectures and with different programming models. For this
test, we varied two parameters: the number of directions per
set (16, 32, 64, 128, 256, and 512), and the number of groups
per set (32, 64, 96, 128, and 160).

BLAST [12] is an arbitrary-order finite-element hydrody-
namics research code under development at Lawrence Liv-
ermore National Laboratory. It is used to explore the costs
and benefits of high-order finite element methods for com-
pressible hydrodynamics problems on modern and emerging

architectures. BLAST implements two different algorithmic
approaches that produce the same answer: full assembly, which
assembles and solves a global matrix, and partial assembly,
which stores only physics data and solves the linear system
matrix free. Using the Sedov test problem [15] as input, we
kept the number of degrees of freedom in the problem fixed
and ran 2D tests varying two parameters: order (1, 2, 4, 8,
and 16) and number of MPI ranks (64, 256, 1024, 4096, and
16384) using 64 ranks per node. These tests allowed models
for both code options to be produced, considering various
parameters of interest to the application team, including FLOP
scaling with order, data motion scaling with order, and code
scaling with processor count.

CloverLeaf [9] is a 2D structured hydrodynamics mini-
application that solves the Euler equations using an explicit,
second-order method. It was developed to investigate the use
of new programming models and architectures in the context
of hydrodynamics. We use a modified version of Sod’s shock
tube [17] as input problem, where we increase the vertical
size of the domain and allow the problem to evolve in both
dimensions. We ran CloverLeaf in a weak-scaling configura-
tion, where the problem size per node remains fixed. We vary
two parameters: the per-node problem size (1, 2, 4, 8, 16) and
the number of MPI ranks (64, 256, 1024, 4096, and 16384)
using 16 MPI ranks per node. This allowed models to be
produced that capture key concerns for CloverLeaf developers:
how problem size and processor count impact the scalability
of the application.

Real data sets come with new challenges, such as not
knowing the optimal model, and indeed no guarantees that
the assumptions required for our method hold, namely that
the optimal model is described by one and only one function
and that the function is part of the search space. Fig. 3
shows the results of both applying the heuristics and searching
the entire solution space. As expected, in the overwhelming
majority of cases the two approaches provide the same result
(84%), or at least present the same lead-order term (14%).
In about 2% of the cases the models differ. The reason is
that noise and outliers occurring in real data sets are not
limited to any arbitrary threshold compared to the effect
of different parameters on performance. The projection used
by the heuristics to generate single-parameter models out of
multi-dimensional data diminishes noisy behavior to a higher
degree than the exhaustive search does. Therefore, in these
rare cases, the heuristic approach results in models with a
more conservative growth rate than the ones identified through
an exhaustive search. The optimal model is not necessarily
the one identified by the exhaustive search, as noise could be
modeled alongside the parameter effects.

In all three cases, the model generation for an entire
application took only seconds (cf. Fig. 4) and was at least
a hundred times faster than the exhaustive search. Generating
performance models for an entire application means one model
per call path and target metric. The search space reduction in
all three cases was five orders of magnitude (from 4,250,070
model hypotheses down to 66 per call path and target metric).

C. Discussion

The evaluation with synthetic and real data demonstrates
that our heuristics can offer results substantially faster than an
exhaustive search—without significant drawbacks in terms of
result quality. For three or more parameters, the size of the
search space would have prevented such a comparison alto-
gether, which also means that the exhaustive search presents
no viable alternative beyond two parameters.

VI. APPLICATION CASE STUDIES

In the following, we present the type of insights our ap-
proach can deliver. In two case studies, Kripke and BLAST, we
look at how performance modeling with multiple parameters
can help developers understand and validate the behavior of
an application.

A. Kripke

For Kripke we now increase the number of model parame-
ters to three, enabling more complex behavior to be captured.
The number of directions per set and number of groups per set
are varied as in Section V-B. In addition, we vary the number
of MPI ranks (8, 64, 512, 4,096, and 32,768). Each rank has
8 OpenMP threads, which means the rank counts correspond
to using 1, 8, 64, 512, and 4,096 nodes on Vulcan, using
all 64 hardware threads available on a node. These parameter
settings represent a realistic range for actual use cases, while
remaining tractable. Although we assume that system noise
affects our Blue Gene system to a lesser degree, we repeat
each test five times to verify its impact experimentally. We ran
750 tests (150 different parameter settings times 5 repetitions
each). We determined the confidence intervals and found that
there is little to no noise. Had we have known for sure that
the system has little to no noise, 150 measurements would
have sufficed. This is also true if measurements are restricted
to deterministic countable metrics.

The analysis of Kripke covers three parameters: the number
of MPI ranks p, the number of directions per direction set d,
and the number of groups per group set g. We are particularly
interested in the behavior of the LTimes, LPlusTimes,
and SweepSolver kernels, as the combination of these
three kernels encapsulate the physics simulated by Kripke.
Table II lists selected performance models we generated for
these kernels. The LTimes kernel computes the spherical
harmonic moments of the the angular flux for each element
in each group and for each direction. Given that in our weak
scaling experiments the number of elements per rank is kept
constant, we expect the number of floating-point instructions
per rank to remain constant as well. However, we should
discover linear relationships with respect to both directions and
groups, and their effects to be multiplicative. The model we
found is 5.4·106·d·g. R̂2 = 1 indicates that this model is exact.
Given the expected availability of floating-point processing
power on current and future supercomputers, linear growth
is not necessarily a bottleneck, but the combined influence
of the two parameters could become challenging. The kernels
LPlusTimes and SweepSolver are structured similarly

to the LTimes kernel, except that the calculations in their
innermost loop are different. Nonetheless, as far as the number
of floating-point instructions is concerned, all three kernels
belong to the same complexity class.

However, the SweepSolver kernel’s runtime model is
different from the other two kernels: The number of paral-
lel MPI ranks appears in the model. The difference stems
from the fact that in addition to floating-point calculations,
the SweepSolver uses MPI to pass data between ranks
and ensures that dependencies between ranks are maintained.
Theoretically, the processor count should not affect the number
or size of MPI messages sent by each processor, except for a
logarithmic term in the message number due to optimizations
in the inter-processor communication scheme. The models we
have generated are in agreement with this theory and indicate
that the p1/3 term is caused by waiting on other processors,
as shown by the model of the MPI_Testany function. The
MPI_Testany function is called from SweepSolver using
spin waiting. The p1/3 term stems from the three dimensional
data decomposition across processes. It represents the diagonal
of the process cube, and the waiting time caused by the
wavefront traveling along it. The spin waiting causes the
performance of these two kernels to compound each other.
This is why both kernels show a much smaller p1/3 · d · g
term, (about 2 orders of magnitude smaller than the lead-order
term), representing the interaction caused by the spin-waiting.

Bailey and Falgout [3] show that the theoretical lower
bound on the SweepSolver kernel for 3D simulations is
O(p1/3 + d · g). The key difference between the theoretical
lower bound and Kripke’s actual runtime performance is
the small multiplicative effect caused by the spin waiting.
Although the coefficient is quite small, the contribution could
become more pronounced at larger configurations.

Since the study above considers three parameters, relying
on an exhaustive search would not have been a competitive
option. The model generator would have taken more than
five hundred years. In contrast, our heuristics-based model
generation took less then a minute. This corresponds to a
search space reduction of twelve orders of magnitude.

B. BLAST

BLAST [12] has provided us with the opportunity to study
the effects of a parameter, the order, that does not define
the input problem size and analyze its interaction with the
processor count. When used with a fixed number of degrees
of freedom, order is independent of problem specification.
That is, for a fixed processor count, changing order does not
meaningfully change initial conditions of the simulation, nor
the resolution of the degrees of freedom within the mesh.
Changing order does change the calculations used within the
simulation and the flexibility of the mesh (how likely the mesh
is to tangle). In general, a higher order increases the number
of calculations and increases the flexibility of the mesh. A
discussion of balancing the costs and benefits of increasing
order are beyond the scope of this paper. We used the same
setup and measurements as in Section V-B.

TABLE II: Selected multi-parameter performance models for different kernels of Kripke and BLAST.

Kernel Metric Model R̂2

Kripke
LTimes Floating point instr. [106] 5.4 · d · g 1
LPlusTimes Floating point instr. [106] 5.4 · d · g 1
SweepSolver Floating point instr. [106] 2.16 · d · g 1

LTimes Time [seconds] 12.68 + 3.67 · 10−2 · d5/4 · g 0.989

LPlusTimes Time [seconds] 9.82 + 9.62 · 10−3 · d · g3/2 0.991

SweepSolver Time [seconds] 4.91 + 4.83 · 10−3 · p1/3 · d · g + 0.90 · d · g 0.994

MPI Testany Time [seconds] 6.81 + 0.8 · p1/3 + 4.76 · 10−3 · p1/3 · d · g 0.996
SweepSolver Bytes sent per msg. = Bytes recv. per msg. [106] 4.8 · d · g 1
SweepSolver Messages sent = Messages received 11250 + 900 · log(p) 1

BLAST – full assembly
MPI Isend Bytes sent per msg. 1.95 · 104 + 81.8 · log p · o7/4 + 4.62 · 103 · o7/4 0.999

BLAST – partial assembly
MPI Isend Bytes sent per msg. 7.63 · 103 + 1.31 · 102 · log p 0.871

When modeling the two different algorithms for BLAST, we
have gained new insights into how their parallel communica-
tion behavior differs. We model the bytes sent and received in
non-blocking fashion and display the results in Table II. We
observe that both approaches grow logarithmically with the
number of processors in weak scaling mode. The order of the
solver has no effect on the partial assembly algorithm but a
significant effect on the full assembly algorithm, as indicated
by the o7/4 component. The developer analyzed our result, and
did not expect the order to have such a pivotal effect, or that the
order should have such a different effect on the two algorithms.
These insights will help the developers better run and optimize
the code as they are now aware of the additional cost the
order has in full assembly mode. This result also showcases
the compounding effect on performance that parameters have
and the need to understand their interactions.

VII. RELATED WORK

There is a broad spectrum of existing methods and tools to
support the creation of performance models. While Hammer et
al. [8] and Lo et al. [13] focus on roofline models, Zaparanakus
et al. generate simple performance models for sequential
algorithms [21]. The PMaC tool suite creates scaling models of
parallel applications [14]. Finally Goldsmith et al. apply clus-
tering and linear regression analysis to derive performance-
model coefficients from empirical measurements [7]. Although
already quite powerful, none of the above methods supports
true multi-parameter models. If different parameters are con-
sidered at all, then only one at a time or with a fixed
relationship between them.

PALM [19] supports the creation of true multi-parameter
models but requires the user to annotate the source code with
micro-models that apply only to small sections of the code.
Following extensive and detailed per-function measurements,
the underlying framework then automatically combines these
micro-models into structural macro-models. The approach
is related to Aspen [18], a dedicated language to specify
such micro-models. Our approach provides a higher degree

of automation without prior source-code annotation. Vuduc
et al. select the best implementation of a given algorithm
by automatically generating a large number of candidates
and then choosing the one that offers the best performance
according to an empirically derived model—potentially with
multiple parameters [20]. However, automatic is only the linear
regression to determine the model coefficients. The model
hypothesis itself must be chosen manually, which is why their
approach, as far as performance modeling is concerned, cannot
be considered truly automatic.

Finally, there are also automated methods for multi-
parameter performance modeling. For example, Siegmund et
al. analyze the interaction of different configuration options
of an application and model how this affects the performance
of the application as a whole [16]. The main difference
is the supported diversity of model functions. While they
allow only linear, quadratic or logarithmic functions, we
allow a flexible combination of polynomials and logarithms.
Furthermore, we apply heuristics to traverse the model search
space more quickly, which is especially helpful in view of
the higher model diversity we provide. Finally, we construct
performance models for every function (with calling context)
in an application - not just for the application as a whole.
This allows optimization efforts to be channeled to where they
will be most effective. Hoefler et al. generate multi-parameter
performance models online [4]. Although already supported by
prior static analysis, the online nature of their approach limits
the size of the search space and thus the diversity of models
quite significantly, and thus adversely affects model accu-
racy. Finally, another multi-parameter approach was presented
by Jayakumar et al. [10]. They extract execution signatures
from their target applications, representing different execution
phases, and match them with reference kernels stored in a
database. If such a match exists, they use the performance
model belonging to the reference kernel to predict execution
times for varying numbers of processors and input sizes. If no
match can be found for an execution phase, they apply static
analysis to derive performance models. Model parameters

include the core count p and only one input-size defining
variable n at a time, which the user has to identify manually.
The spectrum of model functions is quite small and restricted
to n, log(n), n/p, log(n)/p.

VIII. CONCLUSION

We demonstrate that automatic performance modeling with
multiple parameters is feasible. Within seconds, we generated
accurate performance models for realistic applications from a
limited set of performance measurements. The models both
confirmed assumption the developers had earlier, providing
further validation for our heuristics, and offered new un-
expected insights into application behavior. Given that the
resources needed for the model generation itself are now
negligible, the number of model parameters is only constrained
by the amount of measurements a user can afford. From a
practical perspective, we believe that this will allow the key
parameters of many applications to be captured in empirical
performance models.

Speaking in general terms, our method enables a more
complete traversal of the performance space compared to other
performance analysis methods at relatively low cost, making
application performance tuning more effective. This will not
only benefit application developers but also the designers of
emerging systems, who can now project application require-
ments more precisely along several parameter dimensions and
balance their systems accordingly. Auto-tuning methods that
still rely on long series of performance tests, which are not
only time consuming but also expensive, can profit as well.

ACKNOWLEDGMENTS

A part of this work was performed under the auspices of the
U.S. Department of Energy under Grant No. DE-SC0015524
and by Lawrence Livermore National Laboratory under Grant
No. DE-AC52-07NA27344. Moreover, support of the German
Research Foundation (DFG) and the Swiss National Science
Foundation (SNSF) through the DFG Priority Programme
1648 Software for Exascale Computing (SPPEXA) as well
as the German Federal Ministry for Education and Research
(BMBF) under Grant No. 01|H13001G is also gratefully
acknowledged.

REFERENCES

[1] JuBE: Jülich Benchmarking Environment. http://www.fz-juelich.de/jsc/
jube.

[2] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Knüpfer, D. Lorenz, A. D. Malony, W. E. Nagel,
Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S. Shende,
M. Wagner, B. Wesarg, and F. Wolf. Score-P: A unified performance
measurement system for petascale applications. In Proc. of the CiHPC:
Competence in High Performance Computing, HPC Status Konferenz
der Gauß-Allianz e.V., Schwetzingen, Germany, June 2010, pages 85–
97. Gauß-Allianz, Springer, 2012.

[3] T. S. Bailey and R. D. Falgout. Analysis of massively parallel
discrete-ordinates transport sweep algorithms with collisions. In Interna-
tional Conference on Mathematics, Computational Methods & Reactor
Physics, Saratoga Springs, NY, 2009.

[4] A. Bhattacharyya, G. Kwasniewski, and T. Hoefler. Using compiler
techniques to improve automatic performance modeling. In Proc.
of the 24th International Conference on Parallel Architectures and
Compilation Techniques (PACT’15), pages 1–12, San Francisco, CA,
USA, 2015.

[5] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using Automated
Performance Modeling to Find Scalability Bugs in Complex Codes.
Nov. 2013. IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis (SC13).

[6] D. S. Carter. Comparison of different shrinkage formulas in estimating
population multiple correlation coefficients. Educational and Psycho-
logical Measurement, 39(2):261–266, 1979.

[7] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. Measuring Empirical
Computational Complexity. In Proc. of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, pages 395–404, New York, NY, USA, 2007. ACM.

[8] J. Hammer, G. Hager, J. Eitzinger, and G. Wellein. Automatic loop ker-
nel analysis and performance modeling with kerncraft. In Proceedings of
the 6th International Workshop on Performance Modeling, Benchmark-
ing, and Simulation of High Performance Computing Systems, PMBS
’15, pages 4:1–4:11, New York, NY, USA, 2015. ACM.

[9] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A.
Beckingsale, A. C. Mallinson, and S. A. Jarvis. Accelerating Hydrocodes
with OpenACC, OpeCL and CUDA. In Proceedings of the 3rd
International Workshop on Performance Modeling, Benchmarking and
Simulation, pages 465–471, Nov. 2012.

[10] A. Jayakumar, P. Murali, and S. Vadhiyar. Matching application
signatures for performance predictions using a single execution. In
Proc. of the 29th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2015), pages 1161–1170, May 2015.

[11] A. J. Kunen. Kripke - user manual v1.0. Technical Report LLNL-SM-
658558, Lawrence Livermore National Laboratory, August 2014.

[12] S. Langer, I. Karlin, V. Dobrev, M. Stowell, and M. Kumbera. Perfor-
mance analysis and optimization for blast, a high order finite element
hydro code. Proceedings of the 2014 NECDC, 2014.

[13] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery,
N. J. Wright, M. W. Hall, and L. Oliker. Roofline Model Toolkit: A
practical tool for architectural and program analysis. In High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking, and
Simulation, pages 129–148. Springer, 2014.

[14] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and
S. Poole. Modeling and Predicting Performance of High Performance
Computing Applications on Hardware Accelerators. Int. J. High Per-
form. Comput. Appl., 27(2):89–108, May 2013.

[15] L. I. Sedov. Propagation of strong shock waves. Journal of Applied
Mathematics and Mechanics, 10:241–250, 1946.

[16] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. Performance-
influence models for highly configurable systems. In Proc. of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 284–294, New York, NY, USA, 2015. ACM.

[17] G. A. Sod. A Survey of Several Finite Difference Methods for Systems
of Nonlinear Hyperbolic Conservation Laws. Journal of Computational
Physics, 27(1):1–31, Apr. 1978.

[18] K. L. Spafford and J. S. Vetter. Aspen: A domain specific language for
performance modeling. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 84:1–84:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[19] N. R. Tallent and A. Hoisie. Palm: Easing the Burden of Analytical
Performance Modeling. In Proc. of the 28th ACM International
Conference on Supercomputing, ICS ’14, pages 221–230, New York,
NY, USA, 2014. ACM.

[20] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical Models for
Empirical Search-Based Performance Tuning. Int. J. High Perform.
Comput. Appl., 18(1):65–94, Feb. 2004.

[21] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. SIGPLAN
Not., 47(6):67–76, June 2012.

