
Understanding the Effects of Communication and
Coordination on Checkpointing at Scale

Kurt B. Ferreira and Patrick Widener
Scalable System Software

Sandia National Laboratories Albuquerque, NM
{kbferre,pwidene}@sandia.gov

Scott Levy and Dorian Arnold
Department of Computer Science

University of New Mexico
Albuquerque, NM

{slevy,darnold}@cs.unm.edu

Torsten Hoefler
Computer Science Department

ETH Zürich
Switzerland

htor@inf.ethz.ch

Abstract—Fault-tolerance poses a major challenge for future
large-scale systems. Active research into coordinated, uncoordi-
nated, and hybrid checkpointing systems has explored how the
introduction of asynchrony can address anticipated scalability
issues. However, few insights into selection and tuning of these
protocols for applications at scale have emerged. In this paper, we
use a simulation-based approach to show that local checkpoint
activity in resilience mechanisms can significantly affect the
performance of key workloads, even when less than 1% of a
local node’s compute time is allocated to resilience mechanisms
(a very generous assumption). Specifically, we show that even
though much work on uncoordinated checkpointing has focused
on optimizing message log volumes, local checkpointing activity
may dominate the overheads of this technique at scale. Our
study shows that local checkpoints lead to process delays that
can propagate through messaging relations to other processes
causing a cascading series of delays. We demonstrate how to tune
hierarchical uncoordinated checkpointing protocols designed to
reduce log volumes to significantly reduce these synchronization
overheads at scale. Our work provides a critical analysis and
comparison of coordinated and uncoordinated checkpointing and
enables users and system administrators to fine-tune the check-
pointing scheme to the application and system characteristics.

I. INTRODUCTION

In response to alarming projections of high failure rates
due to increasing scale and complexity of high-performance
computing (HPC) systems [1], many researchers have focused
on methods and techniques for resilient extreme-scale HPC
systems and applications. Considering non-algorithm-specific
resilience approaches, researchers have studied both coor-
dinated checkpoint/restart (cCR) and uncoordinated check-
point/restart (uCR) protocols, with cCR having emerged as the
de facto standard.

cCR protocols preempt all application processes to record
a snapshot of the application’s global state. cCR is attractive
for several reasons. Its coordination protocol guarantees that
the most recent global checkpoint captures a consistent global
view, removing the need to store multiple checkpoints, sent
messages, or other additional state information and thereby
minimizing storage requirements. cCR also admits a relatively
simple recovery procedure that does not suffer from rollback
propagation, a scenario in which the most recent checkpoints

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

from each application process do not comprise a consistent
global state [2]. cCR does suffer from I/O contention issues
since all processes checkpoint simultaneously, and with cCR
protocols, upon a failure, even the surviving processes are
perturbed as they must rollback to their most recent checkpoint.
The rework executed by surviving processes also results in
potentially unnecessary energy expenditures.

uCR protocols, in which each process in an application
makes independent decisions about when to checkpoint, can
mitigate cCR’s I/O contention problem since processes are
not forced to take checkpoints simultaneously. Additionally,
when uCR is coupled with message logging, when failures
occur, surviving processes are not forced to rollback to their
most recent checkpoint and therefore can run ahead in their
execution—unless and until they depend on a message from a
failed process.

In order to better understand the potential benefits of
uCR, in this paper we present in-depth analyses that reveal
how the interplay between application and uCR protocol
activities affects performance. We anticipate that this inter-
play will become increasingly important since many cCR
implementations reduce their coordination costs by leveraging
the application-level synchronization in programs that use the
Bulk Synchronous Programming (BSP [3]) model, and future
HPC designs are trending away from BSP. More specifically,
using a wide array of applications, we demonstrate that when
using uCR protocols with message logging1 an application’s
communication activity coupled with local checkpoint over-
head and the degree of synchronization amongst checkpoints
from different processes can have a significant impact on
overall application performance, in that local checkpointing
activity introduces overheads that can be amplified or absorbed
depending on an application’s communication activities. We
use profiles of these communication activities as well as
micro-benchmark studies to attribute more precisely each
application’s coarse performance to its finer composition of
communication operations. Lastly, we demonstrate the poten-
tial for tuning application performance by varying the degree
of checkpoint synchronization by clustering checkpointing
groups.

The possibility of uCR protocol activities inducing delays
amongst processes, including processes that do not communi-
cate directly with each other, is analogous to the manner in

1In this paper, we assume message logging is always used with uCR.

SC14, November 16-21, 2014, New Orleans, LA, USA
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

p0

p1

p2

m1

m2

t1 t2

(a) w/o checkpointing

p0 δ

p1 δ

p2 δ

m1

m2

t1 + δ t2 + δ

(b) coordinated checkpointing

p0 δ

p1 δ

p2

m1

m2

t1 + δ t2 + 2δ

(c) uncoordinated checkpointing

Fig. 1. Propagation of uncoordinated checkpointing delay through application communication dependencies. The processes p1, p2, and p3 exchange two
messages m1 and m2 in each of the three scenarios. The black regions denote coordinated (b) and uncoordinated (c) checkpoint delays marked with δ.

which operating system noise can affect HPC applications [4],
[5]. Figure I illustrates this phenomenon. Subfigure 1(a) shows
a simple application running across three processes (p0, p1,
and p2). These three processes exchange two messages, m1

and m2. We assume here that these messages represent strict
dependencies: any delay in the arrival of a message requires the
recipient to stall until the message is received. Subfigure 1(b)
shows the impact of coordinated checkpoint/restart (cCR).
Because all of the checkpointing activity is coordinated across
processes, the relative progress of the processes is unperturbed
and all of the dependencies are satisfied at the appropriate time.
Subfigure 1(c) illustrates the potential impact of relaxing the
coordination requirement in uCR. If p0 initiates a checkpoint
at the instant before it would have otherwise sent m1, then p1
is forced to wait (the waiting period is shown in grey) until
the message arrives. If p1 subsequently initiates a checkpoint
before sending m2, then p2 is forced to wait. Part of the time
that p2 spends waiting is due to a delay that was originated by
p0. The key point is that without coordination, checkpointing
delays can propagate based on communication dependencies
in the application.

Based on the studies presented in this paper, we make the
following contributions:

• we demonstrate that even with very low resilience over-
heads, the cost and degree of synchronization amongst
local checkpoints can have a greater performance impact
than message logging overheads;

• we analyze how an application’s communication pattern
dictates whether local checkpoint overhead is amplified
or absorbed by other processes;

• we show that CR protocols which leverage process clus-
tering can be used to tune an application’s performance
sensitivity to local checkpointing activities; and

• we show that, in uCR protocols, when failures occur
collective application-level communication can limit the
extent to which the execution run-ahead of surviving
processes actually improves overall application execution
time for many practical workloads.

We proceed by describing the modeling and simulation
tools that we use to execute these studies. Then, we present the
results from our characterization of the performance of several
application workloads with uCR (Section III). Next, we break
down, using application profiles and microbenchmarks, how an
application’s communication activities can impact overall ap-
plication performance with uCR (Section IV). Based on these

results, we show how changing the degree of checkpoint syn-
chronization can potentially impact performance (Section V).
Finally, after an overview of related research works, we
conclude by discussing the anticipated impacts of our results.

II. PREDICTING CHECKPOINT/RESTART PERFORMANCE

In this section, we describe our simulation-based approach
to predicting the behavior of extreme scale applications with
uCR. We begin by discussing how cCR overheads are currently
modeled and why those techniques cannot be applied directly
to uCR.

A. Modeling Sequential Checkpoint/Restart

For a serial computation, we can model the execution time
of an application using CR by:

T = Tapp +Tc +Trework +Tr (1)

Here Tapp is the uninterupted application execution time (with-
out any resiliency mechanisms or failures), Tc and Tr are the
cumulative costs of all checkpoints and restarts, respectively,
and Trework is the cumulative cost of all lost work, that is work
performed after the last checkpoint and before each failure.
Let M, the Mean Time To Interrupt (MTTI), be the mean of
a Poisson distributed random variable that models component
failures in a system and δ the time to perform a checkpoint.
Daly [6] shows that the serial application execution time using
CR can be estimated as

T (τ) = Tapp + (k − 1)δ + k

(
τ + δ

2
+R

)(
τ + δ

M

)
(2)

for a recovery time2 R and a checkpoint interval τ (assuming
Tapp = kτ, k ∈ N).

Assuming δ < 2M , this formula can be used to derive the
optimal checkpointing interval of a serial application, τ̂ [6].

τ̂ =
√
2δM

[
1 +

1

3

√
δ

2M
+

1

9

(
δ

2M

)]
(3)

B. Modeling Distributed Checkpoint/Restart

If we assume that all component failures are identical, then
τ̂ is also the optimal checkpointing interval for each node

2“Recovery time” is the time required before an application is able to resume
real computational work.

of a parallel computer. We next discuss how to extend the
serial time model of Equation (2) to model coordinated and
uncoordinated checkpoint protocols in parallel machines.

a) Coordinated Checkpoint/Restart: We can model
cCR by assuming a BSP-style execution model with additional
checkpoint supersteps (cf. phases) that are performed after a
communication superstep ends (when the network is quiet, cf.
δ in Figure 1(b)). The synchronous nature of all supersteps
(phases) allows us to model the runtime of a parallel appli-
cation identical to a sequential execution as TcCR(τ̂) = T (τ̂)
using Equation (2).

b) Uncoordinated Checkpoint/Restart: We cannot
model uCR with the simple BSP model because in uCR
protocols each process takes checkpoints independently, and
the checkpoints are not necessarily synchronized. Therfore,
uCR requires a more elaborate model than cCR that considers
detailed dependency chains amongst processes.

If processes were fully independent, then T (τ̂) using
Equation (2) would be sufficient to predict the runtime of the
optimal uCR strategy. However, the execution time of a process
may depend on other processes through happens-before rela-
tions [7], a simple concept of causality (cf. Figure 1(c)). For
example, a process that waits to receive a message depends
on the progress of the sender process. If the sender process
is delayed, then so is the receiver. Similarly, if a rendezvous
protocol is used for the communication, the sender will also
wait for the receiver before it can send the message.

Generally, happens-before relationships are a function of
the application’s communication structure. The communication
structure or topology is the set of message matching relations
and their relative timings. The timing is important since delay
chains can be formed as transitive relations between happens-
before relationships as shown in Figure 1(c): process p2 does
not communicate with process p0 directly but is still delayed
by a checkpoint event on process p0.

C. Simulating Distributed Checkpoint/Restart

In general, the communication structure of Message Pass-
ing Interface (MPI) programs cannot be determined offline
because message matches cannot generally be established
statically [8]. Even if all parameters such as the complete
communication structure and all relative timings are known,
modeling the interactions analytically is challenging. Thus, we
choose to use discrete event simulation to assess the overheads
of uCR for real applications via their message traces.

Our simulator framework comprises LogGOPSim [9] and
the tool chain developed by Levy et al. [10]. LogGOPSim
uses the LogGOPS model, an extension of the well known
LogP model [11], to simulate application traces that contain
all exchanged messages and group operations. In this way,
LogGOPSim reproduces all happens-before dependencies and
the transitive closures of all delay chains of the application
execution. It can also extrapolate traces from small application
runs with p processes to application runs with k · p processes.
The extrapolation produces exact communication patterns for
all collective communications and approximates point-to-point
communications [9]. LogGOPSim and its trace extrapolation
features have been validated in [4], [9]. Levy et al.’s tool

LogGOPS parameter Cray XE6 Cray XC30m

Latency 2µs 1.8µs
overhead per message 15.7µs 12.4µs
gap per message 3.9µs 2.6µs
Gap per byte 2ns 1ns
Overhead per byte 0ns 0ns
S: rendezvous threshold 65,536 bytes 65,536 bytes

TABLE I. LOGGOPS PARAMETERS USED IN OUT STUDY TO
REPRESENT THE CRAY XE6 (LAMMPS, CTH, AND HPCCG) AND THE

CRAY CASCADE (MCCK, LULESH, AND MINIFE) ARCHITECTURES.

chain adds the capability to simulate uCR (including message
logging) and cCR to LogGOPSim. The tool chain has been
validated against experiments and established models in [10],
[12].

D. Simulation Setup and Reproducibility

To generate the data presented in this paper, we collected
execution traces of each application with each of its inputs
running on a 128-node system. We simulated the collected
traces with LogGOPSim and verified that it accurately re-
produces (within 6%) the execution time on the respective
system. All used traces are available for download in our
trace repository [13]. The full LogGOPSim infrastructure is
available online so that all results can be reproduced and may
form a basis of additional research efforts in this area.

Unless otherwise stated, we configure the simulator and
make assumptions as follows. System parameters for the
simulator are shown in TABLE I. These parameters were
collected on our test systems using the Netgauge tool [14].
We assume local stable storage for each application process
with a checkpoint commit bandwidth of 2GiB/sec. This com-
mit rate is a value expected of future non-volatile storage
devices, for example phase change memory [15]. To model
independence of inter-process checkpoints, each process waits
a random amount of time before taking its first checkpoint.
Each subsequent checkpoint is taken periodically with the
fixed checkpoint interval τ̂ (see Equation (3)). As we will
show in Fig. III-C, as long as the checkpoint duration (δ) is
significantly lower than the checkpoint interval, this value does
not significantly contribute to the slowdown.

We model hardware failures as an exponential distribution
with a probability density function f(t,M) = 1

M e
−t
M . The

simulator determines node failures and stalls the computation
at the affected process for Tr +Trework. The time Trework is
calculated as the time from the last local checkpoint and we
use a restart value (Tr) of 10 minutes, a value used in previous
checkpointing work [6]. Processes that communicate with
the recovering process are simply delayed until the recovery
succeeds and the computation is virtually resumed. While more
accurate failure models exist (e.g., [16]) and can be used in our
simulator, we chose an exponential distribution as it has been
shown to be reasonably accurate [17] and, more importantly,
enables comparison with other significant works such as [6].
Lastly, in these studies we assume uCR protocol overhead is
free and do not consider failures. Section III-B and III-C justify
and quantitatively rationalize these latter assumptions.

III. IMPORTANT UCR CONSIDERATIONS

Our simulation framework allows us to explore in depth the
behavior of uCR protocols in applications. We have used these
tools to develop insight into the nature of uCR at scale and
assumptions surrounding its use. In this section, we show that a
number of those assumptions should be re-thought in order to
properly consider the use of uCR. We begin by introducing
the suite of workloads that we used. We then demonstrate
that, for applications using uCR, the ability of processes to
make independent progress during node failure is limited;
that the performance impact of local checkpointing is more
significant than that of message logging; and that the duration
of local checkpoints is more significant than their frequency.
Via simulation, we also quantify the resilience overhead of
uCR for our suite of workloads, and show how changing
storage system parameters changes those overheads and thus
the viability of uCR at scale.

A. Workloads

This section, as well as Sections IV and V, presents
results from simulation experiments based on the behavior of
a common set of workloads. These workloads were chosen to
be representative of scientific applications that are currently
in use and computational kernels thought to be important for
future extreme-scale computational science. They include:

• CTH, a shock physics code [18].
• HPCCG, a conjugate gradient solver [19]
• LAMMPS, molecular dynamics code [20]. In this paper,

we use the Lennard-Jones and SNAP potentials.
• MCCK, a neutronics proxy application [21].
• LULESH, an unstructured hydrodynamics

benchmark [22]
• miniFE, a finite element benchmark [19]. We use

two problem sizes: small (512MB/process) and large
(1GB/process).

CTH, HPCCG, and LAMMPS are important US Depart-
ment of Energy DOE applications which run for long periods
of time in production modes and exhibit a range of different
communication structures. MCCK, miniFE and LULESH are
exascale application proxies from two of the DOE co-design
centers [23], [24] and the Mantevo Project [25]. We note that
these applications were designed for other purposes and the
impact of uCR protocols was not necessarily considered. The
results we present using these applications are not intended as
feedback for their designers, but rather as indications that fault
tolerance mechanisms must be considered during application
design for future systems.

B. Independent Progress is Limited

A potential advantage of uCR protocols is that they can be
combined with message logging to yield significant benefits
when failures occur. When a process fails, message logging
allows the failed process to recover from a saved checkpoint
without requiring any other processes to roll back. The sur-
viving processes can continue to execute unless and until they
attempt to communicate with a failed process. If the surviving
processes in the system are able to make progress while failed
processes recover, the total runtime cost of the failure can be

E
ff

ic
ie

n
c
y

Node MTBF (years)

with failures
w/o failures

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

Fig. 2. The impact of failures on uncoordinated checkpointing for LAMMPS
as a function of node MTBF. The simulator data for each system size
represents the range of values produced over 16 runs of the simulator. This
simulation models a ten hour run of LAMMPS using the SNAP potential, a
node restart time of ten minutes and a checkpoint commit time of one second.
Checkpoints are taken every 68 seconds based on the optimal checkpoint
interval described in [6]. The whiskers on the plot represent the min/max
range.

reduced. The magnitude of the runtime benefit depends on the
inter-process dependencies in the application’s communication
pattern.

Using our simulator framework, we examined the extent
to which surviving processes are able to make progress during
failure recovery. For these experiments, we simulated the exe-
cution of LAMMPS with the quantum accurate SNAP potential
across 65,536 nodes. Failures are simulated stochastically
using an exponential distribution. We varied the mean of the
distribution to represent a range of node mean times between
failure (MTBF) from one to seven years [26], [27]. We used the
SNAP potential for this experiment rather than the Lennard-
Jones potential because it is more computationally intensive
allowing us to simulate much longer periods of execution.
Under realistic assumptions about node MTBF, longer periods
of execution are necessary to simulate enough time that one or
more failures are likely to occur. For the data presented here,
we used a SNAP configuration that ran for 10.1 hours natively.

The results appear in Fig. 2. The upper dark green line
shows the efficiency of LAMMPS/SNAP in the absence of
failures. The lower brown line shows the mean efficiency with
simulated failures. Based on the uCR with message logging
failure recovery model described above, we expect that if
surviving processes are able to make significant progress, there
would be only small differences in efficiencies between the ex-
ecutions with and without failures. However, this figure shows
that as failures become more likely (i.e., MTBF decreases) the
efficiency penalty becomes significant. This data suggests that
in this case, surviving processes are only able to make limited
progress during failure recovery.

Another consideration is that the occurrence of a collective
operation ends any independent progress (run-ahead) that a
process may be able to make. The time between collective
operations is therefore an upper-bound on the independent
progress the surviving processes can make. These interarrival
times necessarily vary from application to application; the
types and frequencies of collective operations will depend

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

LAM
M

PS SN
AP

LAM
M

PS LJ

C
TH

LU
LESH

m
iniFE (sm

all)

m
iniFE (large)

M
C
C
K

H
PC

C
G

In
te

rv
a

l
(s

e
c
.)

Fig. 3. Interarrival times for all MPI collective operations for LAMMPS SNAP and LJ, LULESH, HPCCG, miniFE, MCCK, and CTH. The candlesticks and
whiskerbars show the minimum, 25th percentile, mean, 75th percentile and maximum interarrival times.

on the application and the problem input. Fig. 3 shows the
interarrival time between MPI collective operations for several
applications. Many of the applications have outliers indicating
interarrival times for some collective operations in excess of
1 second. LAMMPS is extreme in this regard, with some
collective operations experiencing extremely long intervals
between occurrences. However, the 75th percentile for almost
all of the applications is near or below 0.01 second.

From this figure, it is clear that significant run-ahead is
possible in some applications. In general, however, surviving
application processes that are unaffected by rollback activity
will not be able to make much independent progress before
a collective operation occurs, forcing them to wait while
recovering processes catch up. While run-ahead may still yield
an energy benefit, there appears to be little potential benefit
available in terms of reducing solve time.

C. Message Logging Impact < Checkpoint Impact

Our next experiments set out to quantify the performance
overheads of message logging protocols to application solve
time for reasonable log write bandwidths. Many studies of
uCR have stressed the importance of minimizing message log
overheads, because saving message logs allows uCR protocols
to avoid cascading rollbacks when failures occur. To make this
viable, several research efforts have been directed toward dra-
matically reducing [28] or eliminating [29], [30] message log
overhead. Our study reveals a more significant contributor to
solve time that these efforts do not address: local checkpointing
activity.

To support this contention, we analyzed the overheads of
pessimistic message logging, where a communication oper-
ation cannot complete until the associated message has been
committed to a form of stable storage. We modeled this cost by
varying the CPU overhead per byte for send/receive operations
(the O parameter of the LogGOP model). By using increasing
values of O, we simulated pessimistic message logging to
memory and NVRAM (1ns/byte < O < 4ns/byte) as well
as to a parallel filesystem (4ns/byte < O < 1024ns/byte).

Fig. 4 shows the simulated performance of CTH and
LAMMPS for the largest simulation node counts as the over-
head per byte varies, broken down by operation—time spent
committing message log, committing local checkpoints, and
application solve time. As stable storage commit bandwidth
increases, message logging is a steadily decreasing proportion
of application run time for both CTH and LAMMPS. Overhead
associated with local checkpointing increases under these same
parameters. This result indicates that decreasing the overhead
of local checkpointing will have more beneficial effect on ap-
plications at scale than will optimizing the storage of message
logs.

D. Checkpoint Frequency Impact < Checkpoint Duration Im-
pact

Research on OS noise has shown that the duration of
CPU detours, rather than their frequency, has the greatest
impact on application performance. In the context of resilience
this suggests that checkpoint commit time rather than the
checkpoint interval will have the greatest impact on application
performance for uCR. Our results shown in Fig. III-C confirm
this intuition. We first hold the checkpoint interval constant and
vary the checkpoint commit time to satisfy Daly’s equation for
optimality (Fig. 5(a)). Fig. 5(b) shows the converse case, where
the checkpoint commit time is fixed and the checkpoint interval
varies to satisfy Daly’s equation. In both cases, we measured
simulated application completion time. These figures show that
changes to the checkpoint interval have very little impact on
application performance. On the other hand, increasing the
checkpoint commit time can significantly increase time-to-
solution.

E. Effect of Storage Bandwidth on uCR Efficiency

We also investigated the effect of varying storage band-
width on uCR efficiency in our sample applications. To provide
a baseline for this analysis, we simulated executions using uCR
with a 120 second checkpoint interval, a 2 GiB/process check-
point size, and a stable storage path with 2 GiB/second write

 0

 20

 40

 60

 80

 100

∞1G
i

512M
i

256M
i

128M
i

64M
i

32M
i

16M
i

8M
i

4M
i

2M
i

1M
i

P
e

rc
e

n
t

A
p

p
lic

a
ti
o

n
 T

im
e

 (
%

)

Message Log Bandwidth (B/s)

Solve Time local ckpts msglog

(a) CTH @ 65, 536 processes

 0

 20

 40

 60

 80

 100

∞1G
i

512M
i

256M
i

128M
i

64M
i

32M
i

16M
i

8M
i

4M
i

2M
i

1M
i

P
e

rc
e

n
t

A
p

p
lic

a
ti
o

n
 T

im
e

 (
%

)

Message Log Bandwidth (B/s)

Solve Time local ckpts msglog

(b) LAMMPS LJ @ 65, 536 processes

Fig. 4. Evaluating the percentage of time spent in solve, pessimistic message logging, and local checkpointing as stable storage commit bandwidth increases.
This is simulated by varying the O (CPU overhead/byte) parameter of the simulator.

τ = 154.4s
 Θnode = 25yr

τ = 119.5s
 Θnode = 15yr

τ = 68.7s
 Θnode = 5yr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LAMMPS CTH miniFE HPCCG

(a) Fixed Duration

δ = 0.603s
 Θnode = 25yr

δ = 1.01s
 Θnode = 15yr

δ = 3.10s
 Θnode = 5yr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

LAMMPS CTH miniFE HPCCG

(b) Fixed Frequency

Fig. 5. Checkpoint frequency vs. checkpoint duration for LAMMPS, CTH, miniFE and HPCCG.

bandwidth. This equates to a 1 second checkpoint commit
latency, or less than 1% of application execution time devoted
to checkpointing. These results, shown in Fig. 6, indicate that
LAMMPS degrades fairly gracefully with increasing applica-
tion scale. CTH, HPCCG, LULESH, and miniFE all exhibit
poor efficiency with dramatic degradation as scale increases.

A dominant performance factor for cCR is storage band-
width, and a number of recent studies in the literature ([31] is
a good example) have explored the effects of storage system
configuration on cCR performance. We simulated executions
of our sample applications with varying storage configurations
for both cCR and uCR to observe any corresponding effects
on uCR efficiency.

The first storage configuration approximates a current
petascale HPC system where all node checkpoints are stored
on a shared parallel file system, with 512 MiB/sec aggregate
bandwidth to stable storage. Improvements on this type of
design are now becoming common, with solid state drive
(SSD) storage being incorporated per-node in order to alleviate
contention for bandwidth to the shared file system. It has been
proposed that checkpoints be written to the SSD on each node
and “trickled” off-node to the filesystem as the application

continues execution. These “burst-buffer” designs are contem-
plated for exascale machines by DOE and other organizations.
Accordingly, our second storage configuration reflects such an
arrangement with a two GiB/sec local storage path. Note that
the per-node SSD effectively makes a coordinated checkpoint
a parallel operation as contention for the shared storage is
eliminated (at least from the application’s perspective).

Fig. 7 presents this comparison, plotting the difference
between uCR and cCR efficiencies (efficiency(uCR) − ef-
ficiency(cCR)) on its y-axis. For each application, a positive
data point indicates better uCR efficiency at that scale and
a negative data point indicates better cCR efficiency. Several
observations are of interest:

• Assuming unsaturated storage bandwidth, cCR may
be preferable and scalable. Higher effective storage
bandwidth results in better efficiency for cCR across
our application set, and increasing system scale does not
affect efficiency. The results are not as consistent when
scale, and therefore contention for storage bandwidth,
increases in the parallel file system case.

• Where dissemination-based operations dominate, cCR
may be more efficient. In both storage configurations,

E
ff
ic

ie
n
c
y
 (

%
)

Processes

 LAMMPS
 HPCCG

 CTH

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

(a) Apps

E
ff
ic

ie
n
c
y
 (

%
)

Processes

 MCCK
 miniFE (large)
 miniFE (small)

 LULESH

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

(b) Proxies

Fig. 6. Simulated uCR efficiency (the ratio of time spent performing work for the application and not the resilience mechanism) using the simulator for our
applications.

E
ff

ic
ie

n
c
y
 d

if
fe

re
n

c
e

 (
%

)

Processes

(a) Parallel File System

E
ff

ic
ie

n
c
y
 d

if
fe

re
n

c
e

 (
%

)

Processes

(b) Local Stable Storage

Fig. 7. Comparing coordinated checkpointing to a shared 512 MiB/sec aggregate parallel filesystem and uncoordinated to a local two GiB/sec stable storage
device and coordinated and uncoordinated both to that local storage.

the applications that are not completely compute-bound
and which rely on dissemination algorithms (underlying
MPI_Barrier() and MPI_Allreduce()) are more effi-
cient in our simulations when using cCR (we explain this
in greater detail in Section IV).

• As contention for storage bandwidth grows, uCR may
be more performance-competitive. uCR shows better
efficiency in our simulations for compute-bound apps as
system scale increases when using a shared file system.
The effect of dissemination algorithms is still clear in this
case, but in the largest systems even applications using
them trend toward higher efficiency with uCR.

IV. BREAKING DOWN APPLICATION/UCR PERFORMANCE

In the previous section, we made macro-level observations
about the performance and scalability of several application
workloads configured with uCR. We now perform more de-
tailed analyses to understand better the reasons for their
performance and scalability behaviors. In particular, we probe
to understand how application’s communication features (time
spent in communication, communication frequency, specific
communication operations) impact overall performance.

A. Communication/Computation Ratio

We experimented to determine the percentage of overall
application time spent either executing application-level com-
munication or computation operations. Our data shows that all
of our applications are computation-bound. At a system size
of 512 processes, for example, CTH spends about 40% and
LULESH spends about 20% of their time in communication.
At this system size, all other applications spend less than
10% of their time in communication, with LAMMPS and
HPCCG spending less than 3% of their time in communication.
Results from other tested system sizes are consistent with
these observations. However, from Section III we know that
all these applications show increased performance slowdowns
when used with uCR. Therefore, we can conclude that, at least
for the tested applications, communication-boundness is not
a significant determinant of performance for applications
configured to use uCR.

B. Communication Topology and uCR Performance

Next, we tried to understand precisely how an application’s
communication impacts its uCR-based performance. To exam-
ine this question, we used microbenchmarks that allow us to
control the type of communication operations (for example,
point-to-point or collective); the communication pattern (for

example, 3-D stencil); number of communication operations;
and volume of data transferred. Each microbenchmark calls a
particular MPI routine and then waits for a period, repeating
this process until a given amount of wall-clock time has
elapsed. The wait time is the average time step length for our
applications (approx. 0.5 seconds).

To help identify the set of relevant communication char-
acteristics to consider, we examined the percentage of time
each application spends in MPI communication operations. We
found that LAMMPS communication is dominated by MPI_-
Send() (a point-to-point operation). HPCCG, LULESH, and
miniFE communication is dominated by MPI_Allreduce().
MCCK communication is dominated by MPI_Allreduce()
and MPI_Reduce(). Finally, CTH uses a variety of operations,
namely MPI_Allreduce(), MPI_Bcast() and MPI_Send().
Additionally, we study MPI_Barrier(), MPI_Gather(),
MPI_Scan(), MPI_Allgather() and MPI_Scatter() since
these operations are found commonly in other HPC applica-
tions.

Based on the results of this inquiry, we constructed three
sets of microbenchmarks:

1) stencil-based microbenchmarks using point-to-point op-
erations (like MPI_Send()). In these microbenchmarks,
processes are organized into one to three dimensional
Cartesian topologies, and each process communicates
with its set of neighboring processes. For example, in a
one dimensional, three point stencil (1D/3PT), processes
are organized in a linear fashion and each process commu-
nicates with its two immediate neighbors in the line. We
implement a variety of stencil patterns: 1D/3PT, 2D/5PT,
3D/7PT, and 3D/27PT.

2) dissemination-based microbenchmarks used to implement
MPI_Allreduce(), MPI_Barrier(), MPI_Gather()
and MPI_Scan(). In dissemination algorithms, processes
exchange data in a butterfly-like pattern of logarithmic
depth [32], [33].

3) binomial-tree-based microbenchmarks used to implement
MPI_Allgather(), MPI_Bcast(), MPI_Reduce() and
MPI_Scatter(). In these microbenchmarks, binomial
trees rooted at process zero are used to exchange data.

Stencil-based communication patterns are found in many sci-
entific applications including CTH. For the binomial-tree and
dissemination-based microbenchmarks, the algorithm used to
implement each operations corresponds to the method com-
monly used in many MPI implementations [34].

Fig. 8 shows how the efficiency for collective operations
varies with scale for applications with uCR. For the stencil-
based microbenchmarks (Fig. 8(c)), we observed very good
efficiencies (∼ 70%) which did not degrade with scale.
Efficiencies remain constant since the number of communi-
cating neighbors in stencil-based patterns is independent of
scale. From Fig. 8(a), we see that for the dissemination-based
microbenchmarks (MPI_Allgather(), MPI_Allreduce(),
MPI_Barrier() and MPI_Scan()), even at small scales (128
nodes), efficiency is a modest 45%. Beyond these scales,
efficiency continues to degrade drastically. Fig. 8(b) shows
the results for the microbenchmarks that use a binomial tree
topology. MPI_Bcast() and MPI_Reduce() maintain good
performance independent of scale, while for MPI_Gather()

and MPI_Scatter(), as scale increases beyond 2Ki nodes,
declines. A surprising result to us is the difference in be-
havior between MPI_Bcast()/MPI_Reduce() and MPI_-
Gather()/MPI_Scatter(), particularly because they were
all implemented using the binomial tree topology. We verified
these performance behaviors on the Cray Cascade system using
a CR library. All measurements between 128 and 1,024 nodes
were within 6.7% of the simulation.

From these results, we were unable to draw definitive
conclusions about macro-level application performance based
on their operation composition. For instance, MCCK spends
a significant portion of its communication time in MPI_-
Allreduce(); the MPI_Allreduce() microbenchmark ex-
hibits increasingly poor performance as scale increases, but
MCCK does not.

C. Communication Frequency and uCR

While communication topology does have an impact on
uCR performance, the results of the previous section suggest
that factors other than the communication topology matter as
well. Reconsideration of Fig. I suggests an interplay between
the checkpoint duration and the interarrival time of messages
whose delays are likely propagated—in this case collective
operations.

We now probe how the frequency of communication op-
erations impacts uCR performance. Recall Fig. 3 that of-
fers summary statistics for the interarrival rate of collective
communication operations in our applications. In this data,
the mean interarrival rate in seconds for collective com-
munication operations were: LAMMPS: 1.81; MCCK: 0.79;
miniFE (large): 0.59; HPCCG: 0.19; LULESH: 0.13; miniFE
(small): 0.12; CTH: 0.04. Also, recall that for the applica-
tion efficiency results from Fig. 6, the checkpoint commit
time was one second. Based on our hypothesis, we would
expect the applications’ relative communication frequency to
dictate their relative performances, and we would expect their
absolute performances to be dictated by their communication
frequency/checkpoint duration ratio. Fig. 6 corroborates these
expectations: LAMMPS and MCCK exhibit relatively good
performance efficiencies, miniFE (large) is in the middle, and
HPCCG, LULESH, miniFE (small) and CTH exhibit very poor
performance efficiencies as the application size scales.

Finally, to corroborate further our hypothesis on the com-
munication frequency/checkpoint duration ratio, we look at the
effect of varying checkpoint duration with respect to collective
interarrival times. Fig. 9 shows the results of an experiment in
which two different checkpoint durations were used for each
of LAMMPS/SNAP and LAMMPS/LJ. One duration of each
pair was chosen to be close to the collective interarrival time of
the problem, and the other was chosen to be far less than the
interarrival time. Each application instance spends the same
total local time on checkpointing, but their efficiency results
are very different. Where the checkpoint duration is close to
the collective interarrival time, efficiency for both LAMMPS
potentials suffers noticeably as the application size scales.

V. DEGREE OF COORDINATION & PERFORMANCE

At this point, we have only considered the two extremes
of coordination: complete coordination (cCR) and a complete

E
ff
ic

ie
n
c
y
 (

%
)

Processes

 MPI_Barrier
 MPI_Allreduce

 MPI_Scan
 MPI_Allgather

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

(a) Dissemination-based Microbenchmarks

E
ff
ic

ie
n
c
y
 (

%
)

Processes

 MPI_Bcast
 MPI_Reduce
 MPI_Gather
 MPI_Scatter

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

(b) Binomial Tree-based Microbenchmarks

E
ff
ic

ie
n
c
y
 (

%
)

Processes

 3D/27PT Stencil
 3D/7PT Stencil
 2D/5PT Stencil
 1D/3PT Stencil

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

(c) Stencil-based Microbenchmarks

Fig. 8. Collective microbenchmark results: performance with uncoordinated checkpointing grouped by the used algorithm (dissemination, binomial tree and
stencils). All message sizes are eight bytes, checkpoints are taken every 120 seconds and each checkpoint takes one second to complete. Note that we use SI
metrics in that Ki means 210 and K would mean 103.

E
ff
ic

ie
n
c
y
 (

%
)

Processes

SNAP τ=120, δ=6.0
SNAP τ=8000, δ=400

LJ τ=6, δ=0.05
LJ τ=120, δ=1.0

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

Fig. 9. Demonstrating the performance influence of checkpoint durations
for LAMMPS/SNAP and LAMMPS/LJ with checkpoint durations both near
and far from the collective (MPI_Allreduce()) interarrival rate of the
problem (1 second for LAMMPS/LJ and 400 seconds for LAMMPS/SNAP).
The same local total time is dedicated to checkpointing (5% and 1%,
respectively) for each frequency/duration pair. Checkpoint durations nearer
to the collective interarrival times produce greater efficiency impacts.

lack of explicit coordination (uCR). In this section, we consider
the implications of a third option: hierarchical checkpoint-
ing [28], [35]. Hierarchical checkpointing allows us to consider
a mix of the two within a single application. This technique
works by grouping application processes into clusters. The
processes within a cluster collectively use cCR; messages

 0

 16

 32

 48

 64

 80

 96

 112

 128

 0 16
 32

 48
 64

 80
 96

 112
 128

R
e

c
e

iv
in

g
 M

P
I

P
ro

c
e

s
s

Sending MPI Process

collective
point-to-point

Fig. 10. An example of the naive clustering algorithm for CTH on 128
nodes. The cluster size in this example is 32 nodes. A dot at (x, y) represents
one or more messages sent from the process whose MPI rank is x to the
process whose MPI rank is y. The red rectangles represent cluster boundaries.
Messages within the rectangles are intra-cluster messages that are not logged.
Messages outside of the rectangles are inter-cluster messages that are logged.

between clusters are logged. When a failure occurs, all of the
processes in the cluster containing the failed node rollback to
the last checkpoint. Inter-cluster messages are replayed from
message logs. Because intra-cluster messages need not be
logged, one of the key benefits of hierarchical checkpointing
is that the total volume of messages that must be logged is
reduced.

In this section, we examine the impact of hierarchical
checkpointing on application performance. For our experi-
ments, we use a naive hierarchical checkpointing technique.
Although more sophisticated clustering techniques exist (e.g.,
[29]), we observe that even our naive approach yields sig-
nifcant improvements in application performance. We group
application processes by their MPI rank. If C is the number
of clusters, then a process whose MPI rank is r will belong to
cluster br/Cc. For example, consider Fig. 10. For our naive
approach, this figure shows the relationship between clusters
and application communication for CTH running on 128 pro-
cesses. Each point (x, y) in the graph represents one or more
messages sent from the process with MPI rank x to the process
with MPI rank y. The blue points represent point-to-point
messages and the green points represent collective messsages.
The red rectangles represent cluster boundaries. Messages
within the rectangles are intra-cluster messages and messages
outside of the rectangles are inter-cluster messages. Because
checkpoints are not coordinated between clusters delays can
propagate and accumulate along inter-cluster dependencies.
Within clusters, checkpoint coordination prevents delays from
propagating. For the example shown in Fig. 10, the majority of
the communication occurs within a cluster: 68.6% of process
pairs that communicate with point-to-point messages are in
the same cluster, and 71.7% of the process pairs that directly
exchange messages during collective communication are in the
same cluster. As the cluster size increases, the fraction of inter-
cluster communication also increases.

Given this approach, we can control the degree of coordi-
nation by changing the number of clusters. Qualitatively, the
number of clusters is inversely proportional to the degree of
coordination. Including all of the processes in a single cluster
reduces to cCR. When the number of clusters is equal to the
total number of application processes, the approach reduces to
uCR. As a result, we can explore the impact that the degree
of coordination has on application performance by conducting
a series of experiments where we vary the size of the clusters.

For our experiments, we examine the following scenario.
We consider a system comprised of 65,536 nodes. Based on
projections of future systems [36], we assume that the parallel
filesystem will support a minimum per-process bandwidth of
32 MiB/second. We further assume that the I/O bandwidth
on each node will support a maximum per-process bandwidth
of 16 GiB/second. Finally, we assume that each process will
produce a 2 GiB checkpoint.

One of the principal costs of cCR is filesystem contention.
Because of the inter-process coordination, every application
process is attempting to write their checkpoints to the parallel
filesystem at the same time. As a result, contention for filesys-
tem resources reduces per-process bandwidth. One potential
advantage of hierarchical checkpointing is that checkpoints are
not coordinated between clusters. Therefore, a smaller fraction
of the application processes will be contending for filesystem
resources while they are committing their checkpoints. For
these experiments, we assume that, subject to the maximum
per-process bandwidth stated in the previous paragraph, the re-
duction in per-process filesystem bandwidth due to contention
for I/O resources is proportional to the number of simultaneous
writers to the parallel filesystem.

Given these system characteristics, we performed several

E
ff

ic
ie

n
c
y
 (

%
)

Number of Clusters

 miniFE (large)
 HPCCG

 LAMMPS lj
 CTH st

 LULESH
 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

Fig. 11. The performance impact of clustering when the cost of file contention
is considered. Based on recent projections [36], we assume that the minimum
per-process share of the filesystem bandwidth is 32 MiB/s and that per-
process bandwidth to the parallel file system is proportional to the number of
simultaneous writers. Further, we assume a 2 GiB checkpoint and a maximum
per-process bandwidth of 16 GiB/s. The knee that appears at 512 clusters
is due to the maximum per-process bandwidth in our model of filesystem
performance.

experiments to explore the relationship between cluster size
and application performance. The results are shown in Fig. 11.
For most of the applications that we considered, we observe
that if we start with complete coordination (i.e., cCR) then
relaxing the degree of coordination (and consequently improv-
ing per-process filesystem bandwdith) improves application
performance until the number of clusters reaches 512. When
there are more than 512 clusters, filesystem bandwidth is no
longer the bottleneck; checkpoint commit time is dictated by
local I/O bandwidth. As a result, dividing our system into
more than 512 clusters provides no additional reduction in
checkpoint commit time. Therefore, as the costs of accu-
mulated checkpoint delays continue to increase, application
performance begins to decrease. This figure demonstrates that,
for miniFE, HPCCG, LULESH and CTH, when checkpoint
commit time is dominated by the per-process share of parallel
filesystem bandwidth, reducing the degree of coordination has
the potential to significantly improve application performance.
One exception to this trend is LAMMPS. As we demonstrated
in Section III, LAMMPS is relatively insensitive to delays
introduced by checkpointing. Therefore, performance improves
significantly due to improved filesystem performance as the
degree of coordination decreases. Moreover, for more than
512 clusters, the increased cost of checkpointing delays due
to decreased coordination yields small decreases in application
performance.

VI. RELATED WORK

In this work, we study how the interplay between uCR
protocol activity and application communication affects overall
application performance. Here, we provide an overview of
related projects that consider how application communication
affects the performance of resilience mechanisms. We also
discuss analogous OS noise research that shows how system
activity can perturb distributed application performance.

CR Background. Checkpoint/restart protocols in HPC sys-
tems have been studied for some time. There are many descrip-
tions of the foundations of both coordinated and uncoordinated
CR protocols available in the literature [37]–[39].

Application Communication and CR Protocols. Alvisi et
al. examined the impact of coarse-grained communication
patterns on the performance of three communication-induced
checkpoint/restart (ciCR) algorithms [40]. ciCR uses the ap-
plication’s communication patterns to avoid checkpoints that
cannot be used to recover a consistent global state. They
showed that such protocols perform best when the total volume
of communication is low and the pattern of communication
is random. In addition, they demonstrated that performance
decreases for applications that rely on large volumes of com-
munication and regular access patterns.

We are unaware of other works that study the impact
of communication on checkpointing protocol performance.
However, researchers have used applications’ communication
patterns to optimize CR protocols. Cappello, Guermouche
and Snir observed that many HPC applications are send-
deterministic: for a given set of inputs, the sequence of sent
messages is deterministic [41]. Based on this observation,
Guermouche et al. proposed a technique for reducing the
volume of message log data that must be stored by excluding
messages that will be deterministically replayed [28]. Monnet,
Morin and Badrinath observed that for many applications
the volume of inter-process communication is unevenly dis-
tributed [35] and proposed a hierarchical CR approach in
which processes that communicate frequently use cCR and
processes that communicate infrequently use ciCR. In our
work, we study the impact of delay propagation uCR protocol
activity via application communication.

Operating System Noise. Our study has antecedents in pre-
viously published work [4], [5] that characterizes application
behavior in the presence of OS noise. Those works show that
the pattern of the OS noise determines the effect that noise will
have on application performance. Similarly, we show how the
noise pattern caused by uCR protocols can impact application
performance and show how strategies that can change this
noise pattern can be used to improve application performance.

VII. CONCLUSION

Using a simulation-based approach, we showed that with
sufficiently high ratios of communication frequency to check-
point duration, uCR can yield good performance. Also, ap-
plication communication activity can propagate and amplify
even extremely low local checkpoint overheads, resulting in
prohibitively poor overall application performance. We also
show that increasing the degree of local checkpointing co-
ordination can mitigate overhead amplification and improve
overall application behavior. Lastly, we show that (1) for many
useful applications, in practice message logging overhead
likely contributes little to overall application performance; (2)
with uCR, the frequency of checkpoint activity matters less
than each checkpoint’s duration; and (3) while uCR protocols
allow surviving processes to make independent progress in
execution, application communication patterns likely will limit
any consequent benefits for overall application performance.

As researchers continue to explore the software/hardware
design space for exascale HPC systems, these results can
help to inform their decision processes. Additionally, these
results lend to the resilience community new insights about the
behavior and performance of applications using uCR protocols.

Finally, our simulation framework is available for others to use
or extend to perform other studies on application performance
at extreme scale using different fault-tolerance strategies.

REFERENCES

[1] K. Bergman et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO),
Tech. Rep., Sep. 2008.

[2] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[3] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[4] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the Influ-
ence of System Noise on Large-Scale Applications by Simulation,” in
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC’10), Nov. 2010.

[5] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing appli-
cation sensitivity to os interference using kernel-level noise injection,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 19.

[6] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Gener. Comput. Syst., vol. 22, no. 3, pp.
303–312, 2006.

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[8] G. Bronevetsky, “Communication-sensitive static dataflow for paral-
lel message passing applications,” in Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization. IEEE Computer Society, 2009, pp. 1–12.

[9] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proceedings of
the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, Jun. 2010, pp. 597–604.

[10] S. Levy, B. Topp, K. B. Ferreira, D. Arnold, T. Hoefler, and P. Widener,
“Using simulation to evaluate the performance of resilience strategies
at scale,” in High Performance Computing, Networking, Storage and
Analysis (SCC), 2013 SC Companion:. IEEE, 2013.

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: towards a realistic model
of parallel computation,” SIGPLAN Not., vol. 28, no. 7, pp. 1–12, Jul.
1993.

[12] S. Levy, B. Topp, K. B. Ferreira, D. Arnold, P. Widener, and T. Hoefler,
“Using simulation to evaluate the performance of resilience strategies
and process failures,” Sandia National Laboratories, Technical Report
SAND2014-0688, 2014.

[13] “Trace repository,” http://htor.inf.ethz.ch:8888/, retrieved 16 Jan 2014.
[14] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm, “Netgauge: A

Network Performance Measurement Framework,” in Proceedings of
High Performance Computing and Communications, HPCC’07, vol.
4782. Springer, Sep. 2007, pp. 659–671.

[15] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3D PCRAM technologies to reduce checkpoint overhead
for future exascale systems,” in ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2009.

[16] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent, “A
flexible checkpoint/restart model in distributed systems,” in Proceedings
of the 8th International Conference on Parallel Processing and
Applied Mathematics: Part I, ser. PPAM’09. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 206–215. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1882792.1882818

[17] G. Gibson, B. Schroeder, and J. Digney, “Failure tolerance in petascale
computers,” CTWatch Quarterly, vol. 3, no. 4, November 2007.
[Online]. Available: http://www.ctwatch.org/quarterly/articles/2007/11/
failure-tolerance-in-petascale-computers/

[18] J. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I.
Kerley, J. M. McGlaun, S. V. PetneY, S. A. Silling, P. A. Taylor, and
L. Yarrington, “CTH: A software family for multi-dimensional shock
physics analysis,” in Proceedings of the 19th Intl. Symp. on Shock
Waves, Jul. 1993, pp. 377–382.

[19] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratory, Tech. Rep. SAND2009-5574, 2009.

[20] S. J. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal Computation Physics, vol. 117, pp. 1–19, 1995.

[21] Argonne National Laboratory, “Proxy-apps for neutronics,” https://cesar.
mcs.anl.gov/content/software/neutronics, retrieved 17 Jan 2014.

[22] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke,
S. Lloyd, J. McGraw, R. Neely, D. Richards, M. Schulz, C. H. Still,
F. Wang, and D. Wong, “Lulesh programming model and performance
ports overview,” Tech. Rep. LLNL-TR-608824, December 2012.

[23] Exascale Co-Design Center for Materials in Extreme Environments
(ExMatEx), http://exmatex.lanl.gov/, retrieved 16 Jan 2014.

[24] Center for Exascale Simulation of Advanced Reactors (CESAR), https:
//cesar.mcs.anl.gov/, retrieved 16 Jan 2014.

[25] Sandia National Laboratory, “Mantevo project home page,” http://
mantevo.org, Jan. 10 2014.

[26] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, no. 1, p.
012022, 2007.

[27] G. Gibson, B. Schroeder, and J. Digney, “Failure tolerance in petascale
computers,” CTWatch Quarterly, vol. 3, 2007.

[28] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
MPI applications,” in International Parallel Distributed Processing
Symposium (IPDPS), May 2011, pp. 989–1000.

[29] T. Ropars, A. Guermouche, B. Uçar, E. Meneses, L. V. Kalé, and
F. Cappello, “On the use of cluster-based partial message logging to
improve fault tolerance for mpi hpc applications,” in Euro-Par (1),
ser. Lecture Notes in Computer Science, E. Jeannot, R. Namyst, and
J. Roman, Eds., vol. 6852. Springer, 2011, pp. 567–578.

[30] A. Guermouche, T. Ropars, M. Snir, and F. Cappello, “HydEE: Failure
containment without event logging for large scale send-deterministic
mpi applications,” in IPDPS. IEEE Computer Society, 2012, pp. 1216–

1227.
[31] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “De-

sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’10), 2010, pp. 1–11.

[32] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier
synchronization,” Int. J. Parallel Program., vol. 17, no. 1, pp. 1–17,
Feb. 1988. [Online]. Available: http://dx.doi.org/10.1007/BF01379320

[33] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Bandwidth-
optimal all-to-all exchanges in fat tree networks,” in Proceedings of the
27th International ACM International Conference on Supercomputing,
ser. ICS ’13. New York, NY, USA: ACM, 2013, pp. 139–148.
[Online]. Available: http://doi.acm.org/10.1145/2464996.2465434

[34] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[35] S. Monnet, C. Morin, and R. Badrinath, “A hierarchical checkpointing
protocol for parallel applications in cluster federations,” in Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional. IEEE, 2004, p. 211.

[36] S. G. Challenges, “Architectures and technology for extreme scale
computing,” in US Department of Energy Workshop Report, 2009.

[37] A. Maloney and A. Goscinski, “A survey and review of the current state
of rollback-recovery for cluster systems,” Concurrency and Computa-
tion: Practice and Experience, Apr. 2009.

[38] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems
using asynchronous message logging and checkpointing,” in Proceed-
ings of the seventh annual ACM Symposium on Principles of distributed
computing, 1988, pp. 171–181.

[39] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic,
causal, and optimal,” IEEE Trans. Softw. Eng., vol. 24, no. 2, pp. 149–
159, Feb. 1998.

[40] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. de Mel, “An
analysis of communication induced checkpointing,” in Fault-Tolerant
Computing, 1999. Digest of Papers. Twenty-Ninth Annual International
Symposium on, 1999, pp. 242–249.

[41] F. Cappello, A. Guermouche, and M. Snir, “On communication deter-
minism in parallel HPC applications,” in Computer Communications
and Networks (ICCCN), 2010 Proceedings of 19th International Con-
ference on. IEEE, 2010, pp. 1–8.

