
1

Scalable High Performance 

Message Passing over 

Infiniband for Open MPI

Andrew Friedley, Torsten Hoefler

Matthew L. Leininger, Andrew Lumsdaine

December 12, 2007



2

Motivation

 MPI is the de facto standard for HPC

 InfiniBand growing in popularity

 Particularly on large-scale clusters

 June 2005 Top500: 3% of machines

 November 2007 Top500: 24% of machines

 Clusters growing in size

 Thunderbird, 4,500 node InfiniBand



3

InfiniBand (IB) Architecture

 Queue Pair concept (QP)

 Send a message by posting work to a queue

 Post receive buffers to a queue for use by 

hardware

 Completion Queue

 Signals local send completion

 Returns receive buffers filled with data

 Shared Receive Queue

 Multiple QPs share a single receive queue

 Reduces network resources



4

Reliable Connection (RC) Transport

 Traditional approach for MPI communication 
over InfiniBand

 Point-to-point connections

 Send/receive and RDMA semantics

 One queue pair per connection
 Out-of-band handshake required to establish

 Memory requirements scale with number of 
connections
 Memory buffer requirements reduced by using 

shared receive queue



5

Unreliable Datagram Transport

 Requires software (MPI) reliability protocol

 Memory-to-Memory, not HCA-to-HCA

 Message size limited to network MTU

 2 kilobytes on current hardware

 Connectionless model

 No setup overhead

 One QP can communicate with any peer

 Except for address information, memory 

requirement is constant



6

Open MPI Modular Component Architecture

 Framework consists of many components

 Component is instantiated into modules



7

PML Components

 OB1

 Implements MPI point-to-point semantics

 Fragmentation and scheduling of messages

 Optimized for performance in common use

 Data Reliability (DR)

 Extends OB1 with network fault tolerance

 Message reliability protocol

 Data checksumming



8

Byte Transport Layer (BTL)

 Components are interconnect specific

 TCP, shmem, GM, OpenIB, uDAPL, et. al.

 Send/Receive Semantics

 PML fragments, not MPI messages

 RDMA Put/Get Semantics

 Optional – not always supported!



9

Byte Transport Layer (BTL)

 Entirely Asynchronous
 Blocking is not allowed

 Progress made via polling

 Lazy connection establishment
 Point-to-point connections established as 

needed

 Option to multiplex physical interfaces in one 
module, or to provide many modules

 No MPI semantics
 Simple, peer-to-peer data transfer operations



10

UD BTL Implementation

 RDMA not supported

 Use with DR PML

 Receiver buffer management

 Messages dropped if no buffers available

 Allocate a large, static pool

 No flow control in current design



11

Queue Pair Striping

 Splitting sends across multiple queue pairs 

increases bandwidth

 Receive buffers still posted to one QP



12

Results

 LLNL Atlas

 1,152 quad dual-core (8 core) nodes

 InfiniBand DDR network

 Open MPI trunk r16080

 Code publicly available since June 2007

 UD results with both DR and OB1

 Compare DR reliability overhead

 RC with and without Shared Receive Queue



13

NetPIPE Latency



14

NetPIPE Bandwidth



15

Allconn Benchmark

 Each MPI process sends a 0-byte message 

to every other process

 Done in a ring-like fashion to balance load

 Measures time required to establish 

connections between all peers

 For connection-oriented networks, at least

 UD should only reflect time required to send 

messages – no establishment overhead



16

Allconn Startup Overhead



17

Allconn Memory Overhead



18

ABINIT



19

SMG2000 Solver



20

SMG2000 Solver Memory



21

Conclusion

 UD is an excellent alternative to RC

 Significantly reduced memory requirements
 More memory for the application

 Minimal startup/initialization overhead
 Helps with job turnaround on large, busy systems

 Advantage increases as scale increases
 Clusters will continue to increase in size

 DR-based reliability incurs penalty

 Minimal some some applications (ABINIT), 

significant for others (SMG2000)



22

Future Work

 Optimized reliability protocol in the BTL

 Initial implementation working right now

 Much lower latency impact

 Bandwidth optimization in progress

 Improved flow control & buffer management

 Hard problem



23

Flow Control Problems

 Lossy Network

 No guarantee flow control signals are received

 Probabilistic approaches are required

 Abstraction barrier

 PML hides packet loss from BTL

 Message storms are expected by PML, not BTL

 Throttling mechanisms

 Limited ability to control message rate

 Who do we notify when congestion occurs?



24

Flow Control Solutions

 Use throttle signals instead of absolute 

credit counts

 Maintain a moving average of receive 

completion rate

 Enable/disable endpoint striping to throttle 

message rate

 Use multicast to send throttle signals

 All peers receive information

 Scalable?


