
Nonblocking and Sparse Collective

Operations on Petascale Computers

Torsten Hoefler

Presented at Argonne National Laboratory

on June 22nd 2010

Disclaimer

• The views expressed in this talk are those of the

speaker and not his employer or the MPI Forum.

• Appropriate papers are referenced in the lower

left to give co-authors the credit they deserve.

• All mentioned software is available on the

speaker’s webpage as “research quality” code to

reproduce observations.

• All pseudo-codes are for demonstrative purposes

during the talk only

Introduction and Motivation

Abstraction == Good!
Higher Abstraction == Better!

• Abstraction can lead to higher performance

– Define the “what” instead of the “how”

– Declare as much as possible statically

• Performance portability is important

– Orthogonal optimization (separate network and CPU)

• Abstraction simplifies

– Leads to easier code

Abstraction in MPI

• MPI offers persistent or predefined:

– Communication patterns
• Collective operations, e.g., MPI_Reduce()

– Data sizes & Buffer binding
• Persistent P2P, e.g., MPI_Send_init()

– Synchronization
• e.g., MPI_Rsend()

What is missing?

• Current persistence is not sufficient!

– Only predefined communication patterns

– No persistent collective operations

• Potential collectives proposals:

– Sparse collective operations (pattern)

– Persistent collectives (buffers & sizes)

– One sided collectives (synchronization)

AMP’10: “The Case for

Collective Pattern Specification”

Sparse Collective Operations
• User-defined communication patterns

– Optimized communication scheduling

• Utilize MPI process topologies

– Optimized process-to-node mapping

MPI_Cart_create(comm, 2 /* ndims */, dims,

periods, 1 /*reorder*/, &cart);

MPI_Neighbor_alltoall(sbuf, 1, MPI_INT,

rbuf, 1, MPI_INT, cart, &req);

HIPS’09: “Sparse Collective

Operations for MPI”

What is a Neighbor?
MPI_Cart_create() MPI_Dist_graph_create()

Creating a Graph Topology

Decomposed

Benzene (P=6)

+13 point stencil

=Process Topology

EuroMPI’08: “Sparse Non-Blocking

Collectives in Quantum Mechanical

Calculations”

All Possible Calls
• MPI_Neighbor_reduce()

– Apply reduction to messages from sources

– Missing use-case

• MPI_Neighbor_gather()

– Sources contribute a single buffer

• MPI_Neighbor_alltoall()

– Sources contribute personalized buffers

• Anything else needed … ?

HIPS’09: “Sparse Collective

Operations for MPI”

Advantages over Alternatives

1. MPI_Sendrecv() etc. – defines “how”

– Cannot optimize message schedule

– No static pattern optimization (only buffer & sizes)

2. MPI_Alltoallv() – not scalable

– Same as for send/recv

– Memory overhead

– No static optimization (no persistence)

An simple Example
• Two similar patterns

– Each process has 2 heavy and 2 light neighbors

– Minimal communication in 2 heavy+2 light rounds

– MPI library can schedule accordingly!

HIPS’09: “Sparse Collective

Operations for MPI”

A naïve user implementation
for (direction in (left,right,up,down))

MPI_Sendrecv(…, direction, …);

33%

20%

33%

10%

NEC SX-8 with 8 processes IB cluster with 128 4-core nodes

HIPS’09: “Sparse Collective

Operations for MPI”

More possibilities

• Numerous research opportunities in the

near future:

– Topology mapping

– Communication schedule optimization

– Operation offload

– Taking advantage of persistence (sizes?)

– Compile-time pattern specification

– Overlapping collective communication

Nonblocking Collective Operations
• … finally arrived in MPI

– I would like to see them in MPI-2.3 (well …)

• Combines abstraction of (sparse)

collective operations with overlap

– Conceptually very simple:

– Reference implementation: libNBC

MPI_Ibcast(buf, cnt, type, 0, comm, &req);

/* unrelated comp & comm */

MPI_Wait(&req, &stat)

SC’07: “Implementation and

Performance Analysis of Non-Blocking

Collective Operations for MPI”

“Very simple”, really?
• Implementation difficulties

1. State needs to be attached to request

2. Progression (asynchronous?)

3. Different optimization goals (overhead)

• Usage difficulties

1. Progression (prefer asynchronous!)

2. Identify overlap potential

3. Performance portability (similar for NB P2P)

Collective State Management
• Blocking collectives are typically

implemented as loops

• Nonblocking collectives can use schedules

– Schedule records send/recv operations

– The state of a collective is simply a pointer into the

schedule

for (i=0; i<log_2(P); ++i) {

MPI_Recv(…, src=(r-2^i)%P, …);

MPI_Send(…, tgt=(r+2^i)%P, …);

}

SC’07: “Implementation and

Performance Analysis of Non-Blocking

Collective Operations for MPI”

NBC_Ibcast() in libNBC 1.0

compile to

binary schedule

SC’07: “Implementation and

Performance Analysis of Non-Blocking

Collective Operations for MPI”

Progression
MPI_Ibcast(buf, cnt, type, 0, comm, &req);

/* unrelated comp & comm */

MPI_Wait(&req, &stat)

Synchronous Progression Asynchronous Progression

Cluster’07: “Message Progression

in Parallel Computing –

To Thread or not to Thread?”

Progression - Workaround

• Problems:

– How often to test?

– Modular code

– It’s ugly!

MPI_Ibcast(buf, cnt, type, 0, comm, &req);

/* comp & comm with MPI_Test() */

MPI_Wait(&req, &stat)

Threaded Progression

• Two obvious options:

– Spare communication core

– Oversubscription

• It’s hard to

spare a core!

– might change

Oversubscribed Progression
• Polling == evil!

• Threads are not

suspended until

their slice ends!

• Slices are >1 ms

– IB latency: 2 us!

• RT threads force

Context switch

– Adds costs

Cluster’07: “Message Progression

in Parallel Computing –

To Thread or not to Thread?”

A Note on Overhead Benchmarking

• Time-based scheme (bad):
1. Benchmark time t for blocking communication

2. Start communication

3. Wait for time t (progress with MPI_Test())

4. Wait for communication

• Work-based scheme (good):
1. Benchmark time for blocking communication

2. Find workload w that needs t to be computed

3. Start communication

4. Compute workload w (progress with MPI_Test())

5. Wait for communication

K. McCurley:“There are lies,

damn lies, and benchmarks.”

Work-based Benchmark Results

Spare Core Oversubscribed

32 quad-core nodes with InfiniBand and libNBC 1.0

Low overhead

with threads

Normal threads perform worst!

Even worse man manual tests!

RT threads can help.

CAC’08: “Optimizing non-blocking

Collective Operations for InfiniBand”

An ideal Implementation
• Progresses collectives independent of

user computation (no interruption)

– Either spare core or hardware offload!

• Hardware offload is not that hard!

– Pre-compute communication schedules

– Bind buffers and sizes on invocation

• Group Operation Assembly Language

– Simple specification/offload language

Group Operation Assembly Language

• Low-level collective specification
– cf. RISC assembler code

• Translate into a machine-dependent form
– i.e., schedule, cf. RISC bytecode

• Offload schedule into NIC (or on spare core)

ICPP’09: “Group Operation Assembly

Language - A Flexible Way to Express

Collective Communication”

A Binomial Broadcast Tree

ICPP’09: “Group Operation Assembly

Language - A Flexible Way to Express

Collective Communication”

Optimization Potential
• Hardware-specific schedule layout

• Reorder of independent operations

– Adaptive sending on a torus network

– Exploit message-rate of multiple NICs

• Fully asynchronous progression

– NIC or spare core process and forward messages

independently

• Static schedule optimization

– cf. sparse collective example

A User’s Perspective
1. Enable overlap of comp & comm

– Gain up to a factor of 2

– Must be specified manually though

– Progression issues

2. Relaxed synchronization

– Benefits OS noise absorption at large scale

3. Nonblocking collective semantics

– Mix with p2p, e.g., termination detection

Patterns for Communication Overlap

• Simple code transformation, e.g.,

Poisson solver various CG solvers

– Overlap inner matrix product with halo

exchange

PARCO’07: “Optimizing a Conjugate

Gradient Solver with Non-Blocking

Collective Operations”

Poisson Performance Results

InfiniBand (SDR) Gigabit Ethernet

128 quad-core Opteron nodes, libNBC 1.0 (IB optimized, polling)

PARCO’07: “Optimizing a Conjugate

Gradient Solver with Non-Blocking

Collective Operations”

Simple Pipelining Methods

• Parallel linear array transformation:

• With pipelining and NBC:

for(i=0; i<N/P; ++i) transform(i, in, out);

MPI_Gather(out, N/P, …);

for(i=0; i<N/P; ++i) {

transform(i, in, out);

MPI_Igather(out[i], 1, …, &req[i]);

}

MPI_Waitall(req, i, &statuses);

SPAA’08: “Leveraging Non-blocking

Collective Communication in

High-performance Applications”

Problems

• Many outstanding requests

– Memory overhead

• Too fine-grained communication

– Startup costs for NBC are significant

• No progression

– Rely on asynchronous progression?

Workarounds

• Tile communications

– But aggregate how many messages?

• Introduce windows of requests

– But limit to how many outstanding requests?

• Manual progression calls

– But how often should MPI be called?

Final Optimized Transformation

for(i=0; i<N/P/t; ++i) {

for(j=i; j<i+t; ++j) transform(j, in, out);

MPI_Igather(out[i], t, …, &req[i]);

for(j=i; j>0; j-=f) MPI_Test(&req[i-f], &fl, &st);

if(i>w) MPI_Wait(&req[i-w]);

}

MPI_Waitall(&req[N/P-w], w, &statuses);

for(i=0; i<N/P; ++i) transform(i, in, out);

MPI_Gather(out, N/P, …);

Inputs: t – tiling factor, w – window size, f – progress frequency

SPAA’08: “Leveraging Non-blocking

Collective Communication in

High-performance Applications”

Parallel Compression Results
for(i=0; i<N/P; ++i) size += bzip2(i, in, out);

MPI_Gather(size, 1, …, sizes, 1, …);

MPI_Gatherv(out, size, …, outbuf, sizes, …);

Optimal tiling factor

Parallel Fast Fourier Transform
• Data already transformed in y-direction

Parallel Fast Fourier Transform
• Transform first y plane in z

Parallel Fast Fourier Transform
• Start ialltoall and transform second plane

Parallel Fast Fourier Transform
• Start ialltoall (second plane) and transform third

Parallel Fast Fourier Transform
• Start ialltoall of third plane and …

Parallel Fast Fourier Transform
• Finish ialltoall of first plane, start x transform

Parallel Fast Fourier Transform
• Finish second ialltoall, transform second plane

Parallel Fast Fourier Transform
• Transform last plane → done

Performance Results

• Weak scaling 400³-720³ double complex

process count window size (P=120)

80%

20%

Again, why Collectives?
• Alternative: One-Sided/PGAS implementation

• This trivial implementation will cause congestion

– An MPI_Ialltoall would be scheduled more effectively

• e.g., MPI_Alltoall on BG/P uses pseudo-random permutations

• No support for message scheduling

– e.g., overlap copy on same node with remote comm

• One-sided collectives are worth exploring

for(x=0; x<NX/P; ++x) 1dfft(&arr[x*NY], ny);

for(p=0; p<P; ++p) /* put data at process p */

for(y=0; x<NY/P; ++y) 1dfft(&arr[y*NX], nx);

Bonus: New Semantics!
• Quick example: Dynamic Sparse Data Exchange

• Problem:

– Each process has a set of messages

– No process knows from where it receives how much

• Found in:

– Parallel graph computations

– Barnes Hut rebalancing

– High-impact AMR

PPoPP’10: “Scalable Communication

Protocols for Dynamic Sparse

Data Exchange”

DSDE Algorithms

• Alltoall ()

• Reduce_scatter ()

• One-sided Accumulate ()

• Nonblocking Barrier ()

– Combines NBC and MPI_Ssend()

– Best if numbers of neighbors is very small

– Effectively constant-time on BG/P (barrier)

The Algorithm

Some Results
Six random neighbors per process:

BG/P (DCMF barrier) Jaguar (libNBC 1.0)

Parallel BFS Example
Well-partitioned clustered ER graph, six remote edges per process.

Big Red (libNBC 1.0) BG/P (DCMF barrier)

Perspectives for Future Work
• Optimized hardware offload

– Separate core, special core, NIC firmware?

• Schedule optimization for sparse colls

– Interesting graph-theoretic problems

• Optimized process mapping

– Interesting NP-hard graph problems

• Explore application use-cases

– Overlap, OS Noise, new semantics

Thanks and try it out!
• LibNBC (1.0 stable, IB optimized)

http://www.unixer.de/NBC

• Some of the referenced articles:
http://www.unixer.de/publications

Questions?

http://www.unixer.de/NBC
http://www.unixer.de/NBC
http://www.unixer.de/NBC
http://www.unixer.de/publications

Bonus: 2nd note on benchmarking!

• Collective operations are often

benchmarked in loops:
start= time();

for(int i=0; i<samples; ++i) MPI_Bcast(…);

end=time();

return (end-start)/samples

• This leads to pipelining and thus wrong

benchmark results!

Pipelining? What?
Binomial tree with 8 processes and 5 bcasts:

start

end

SIMPAT’09: “LogGP in Theory and

Practice […]”

Linear broadcast algorithm!

This bcast must be really fast, our benchmark says so!

Root-rotation! The solution!

• Do the following (e.g., IMB)

start= time();

for(int i=0; i<samples; ++i)

MPI_Bcast(…,root= i % np, …);

end=time();

return (end-start)/samples

• Let’s simulate …

D’oh!

• But the linear bcast will work for sure!

Well … not so much.

But how bad is it really? Simulation can show it!

Absolute Pipelining Error
• Error grows with the number of processes!

SIMPAT’09: “LogGP in Theory and

Practice […]”

