
Overlapping Communication and Computation with High Level Communication

Routines

Torsten Hoefler and Andrew Lumsdaine

Open Systems Lab

Indiana University

150 S Woodlawn Ave,

47405 Bloomington, IN, USA

Abstract

Collective operations and non-blocking point-to-point

operations are two important parts of MPI that each pro-

vide important performance and programmability benefits.

Although non-blocking collective operations are an obvious

extension to MPI, there have been no comprehensive stud-

ies of this functionality. This dissertation will study non-

blocking collective operations, integrating theory, practice,

and application. We use a well-understood network model

to found our theoretical analyses and we realize our com-

munication operations as a portable library layered on

MPI. A real-world quantum-mechanical application is used

as a deployment and evaluation vehicle for our approach.

1 Introduction

The performance of parallel scientific applications is de-

termined by per-CPU (sequential) performance and com-

munication costs. While it is well understood how to opti-

mize single-CPU performance, the task of minimizing com-

munication overhead is still challenging. Although commu-

nication networks have evolved in the last years and are ma-

turing quickly, the speed of light ultimately imposes a lower

bound on communication latency. Thus, common optimiza-

tions to lower latency and improve bandwidth will soon

find their natural limits—much like CPU frequency scal-

ing which has recently stagnated. Increased parallelization

can continue to provide performance improvements even

though single processing elements are not getting faster.

However, this only escalates the number of computing el-

ements used to solve scientific problems. Since commu-

nication overhead grows with the number of messages and

the number of messages often grows with the number of

nodes, a steady decrease in efficiency seems to be unavoid-

able. Our research aims to overcome the effect of growing

communication overhead due to those common limitations

and growing processor numbers.

A possible solution to this problem is to hide communi-

cation costs by overlapping them with computation. Thus,

we explore the benefits of non-blocking high-level commu-

nication operations. All implementations and tests are done

as extensions to the widely-used and mature Message Pass-

ing Interface (MPI) standard [50]. The blocking collective

operations currently defined byMPI offer a high-level inter-

face to the user, insulating the user from implementation de-

tails and giving MPI implementers the freedom to optimize

their implementations for specific architectures. That is, al-

though collective algorithms do not provide unique func-

tionality per se (they can be implemented manually with

basic point-to-point operations), collective operations pro-

vide important advantages in programmability, safety (with

regards to programming errors) and performance.

In this respect, collective operations can be compared

to BLAS [47] operations. For example a high-level BLAS

matrix multiply (e.g., DGEMM) operation could be easily

composed of three nested loops1, but the vendor supplied

DGEMM implementation, because of special machine op-

timized tuning (e.g., cache/register optimization), usually

provides much better performance. The same principle is

used for collective operations as these operations can be op-

timized for the communication subsystem of a specific ma-

chine. Thus, many research groups have provided machine-

optimized implementations and have investigated the opti-

mal and non-trivial implementation of collective algorithms

for particular machine architectures (cf. [29, 49, 54]).

The performance portability benefits of collective op-

erations have long been recognized and collective opera-

tions play an important role in many applications. Con-

sider, for example, a three-dimensional Fast Fourier Trans-

formation implemented for a central-switch-based architec-

ture (e.g., InfiniBandTM). If the developer does not use the

1or lower level BLAS operations

MPI Alltoall function, a fully connected send pattern (lit-

erally an all-to-all) should deliver the best performance2.

However, if this implementation were ported to torus-based

systems (e.g., an IBM BlueGene), the performance of the

send-pattern mentioned above would be much worse than

a torus-optimized MPI Alltoall on that machine. However,

because the collective operation interface is architecture in-

dependent, using it can avoid this performance decrease

transparently, i.e., without changes to the user application.

A second MPI feature that plays a significant role in par-

allel programming is non-blocking point-to-point commu-

nication. These operations potentially allow communica-

tion and computation to be overlapped and thus they lever-

age hardware parallelism. The parallelism exists because

most high-performance interconnect networks (like Infini-

Band, Quadrics, Myrinet, Portals, or Ethernet with TOE)

have their own communication co-processors that take the

burden of message processing from the main CPU. How-

ever, this parallelism does not decrease the latency signifi-

cantly, and it does not show its full potential if the program-

mer uses blocking send/receive. Non-blocking send/receive

techniques allow the programmer to leverage the CPU

during the asynchronous (and network-offloaded) message

transmission. Several studies showed that the performance

of parallel applications can be significantly enhanced with

overlapping techniques (cf. [5]).

The work investigates the possibility of combining the

advantages of collective operations with overlapped com-

munication and computation in modern communication ar-

chitectures. We propose a low-overhead and portable imple-

mentation of non-blocking collective operations that hides

all the complexity of the internal implementation from the

user. Furthermore, the research touches different neighbor-

ing areas such as network modeling, accurate measurement

and performance prediction of collective operations, opti-

mization of collective operations and general network opti-

mization. The benefits of the new approach are shown with

two real-world quantum mechanical applications, ABINIT

and Octopus. Both programs solve the Schrödinger equa-

tion within the Density-Functional Theory (DFT). However,

each program chooses a different approach for this solution

and the application of non-blocking collectives differs fun-

damentally.

2 Related Work

The benefits of overlapping communication and compu-

tation have been leveraged by several researchers. Practical

application performance has been shown to improve up to

a factor of 1.9 [3, 48]. Dimitrov [11] explains the gains of

overlapping on cluster systems while Kale et al. discusses

2in fact, many MPI implementations use this communication pattern to

implement MPI Alltoall on central-switch-based architectures

the applicability of a non-blocking collective personalized

communication for a set of applications in [44].

Further studies [42, 43, 46] analyze specific MPI im-

plementations in detail and assess the possible benefits of

overlapping on different systems. Some older studies (espe-

cially White et al. [43]) found that the investigated MPI im-

plementations did not support asynchronous progress suffi-

ciently. However, MPI implementations, as well intercon-

nect networks, have evolved in the last years and support

for overlap improved significantly [2, 46]. Brightwell et al.

[6] analyze the source of different performance advantages

and point out directions to further MPI optimization.

Several application studies have been conducted to ana-

lyze the possible benefits of overlapping for parallel appli-

cations. Sancho et al. [52] show a high potential of overlap

for a set of scientific applications. Brightwell et al. [4] state

clearly that many parallel applications could substantially

benefit from non-blocking collective communication.

Automatic and semi-automatic transformations to paral-

lel codes to enable overlapping of point-to-point communi-

cation have been proposed in many studies. However, none

of them investigated transformations to non-blocking col-

lective communication. Danalis et al. [10] even suggest

replacing collective calls with non-blocking send-receive

calls. This is clearly against the philosophy of MPI and

destroys performance portability and many possibilities of

optimization with special hardware support (cf. [28, 49])

completely.

Several parallel languages, like Split-C [9], UPC [41],

HPF [12] or Fortran-D [13], have compilers available that

are able to translate high-level language constructs into

message passing code. Automatic schemes to enable over-

lapping within those schemes have also been proposed [10].

However, these compilers are only able to perform simple

transformations and are not flexible enough for applications

with non-trivial data-dependencies. For example, they are

not able to handle a case where each process produces and

communicates a different unpredictable amount of data in

each iteration.

All approaches are either using overlapping techniques

for point-to-point messages or optimize their codes with

high-level communication routines. Some researchers even

replaced high level operations by manual point-to-point im-

plementation which is not portable among different ma-

chines. Our research however, investigates the non-trivial

implementation and applicability of non-blocking collective

operations and thus combines both non-trivial approaches.

3 Approach

A first step towards understanding the potential benefits

of non-blocking collective operations is to understand the

underlying communication networks in depth. However,

we do not want to limit our analysis to a particular network,

thus, we choose an abstract network model to represent all

needed properties of the networks. The choice of models

is rather big, and the most common, the simple Hockney

model [14] is not sufficient for our analyses because it only

models the network transmission and not the CPU interac-

tion. Kielmann’s pLogP model [45] is rather complex and

hard to use to model algorithms. Thus, we chose a modified

Log(G)P model [8, 1] to represent all network parameters

including the CPU overhead.

Most collective operations are implemented on top

of hardware-specialized point-to-point algorithms. Those

communication patterns can easily be modeled in LogGP

terms and analyzed in theory. Such analyses for blocking

collective operations have been done by Pjesivac-Grbovic

[51] and our previous work [17]. Looking at the share of the

CPU overhead and the LogGP parameters of modern com-

munication networks reveals that the theoretical potential

for overlapping in collective operations is very high. The

possible benefit typically grows with the message size and

first results show that modern networks can overlap more

than 99% of the commmunication latency for reasonably-

sized messages.

The next step is a prototypical implementation of collec-

tive operations that enables overlapping of communication

and computation. This implementation should support all

operations defined in the MPI standard and impose a very

low CPU overhead.

The hardest step is to apply this principle to parallel ap-

plications. A first implementation should comprise several

computational kernels to prove the benefits of overlapping.

Real-world applications are to be targeted in a second step

with the help of application developers. However, this task

often requires changes to the optimized core algorithms in

those applications and will thus be very time-consuming.

The adaptation of the reference implementation to a par-

ticular communication architecture will show several prin-

ciples to optimize the performance (minimize the overhead)

of non-blocking collective operations. This step might also

require changes to the applications.

4 Research Results

Our research results over the last two years are presented

in the following. The dissertation is expected to be finished

in 12 to 18 months.

An important technological development, and one that

has particular bearing on this work, is the observation that

many high-performance networks do a significant amount

of processing on the NICs, while the main CPU is only

marginally involved. Our theoretical results begin with the

LogP model family, which makes a clear distinction be-

tween time spent on the CPU (o) and time spent in the

network (g,G,L). We chose the InfiniBand Architecture as

an example network with which to implement our ideas.

We investigated the prediction accuracy of the LogP model

for small messages communicated with the Reliable Con-

nection transport type of the InfiniBand network in [31].

This work was awarded the German PARS/GI “Junior Re-

searcher Award 2005”. Our findings showed the relative in-

accuracy of the LogP predictions and we proposed a small

modification to the original model to correct this error at the

IPDPS 2006 conference in Rhodos, Greece [30]. Additional

measurements, presented at the Parelec conference [38],

showed that similar effects can be recorded with all Infini-

Band transport types. We introduced a new portable, accu-

rate, fast and congestion-free LogGP measurement method

at the IPDPS conference 2007 [24] to investigate different

networks. Our integration it in the open-source Netgauge

network performancemeasurement tool which was released

at the HPCC conference in Houston [27] 2007 allows other

researchers to use it.

In the course of our research, we also investigated opti-

mized collective communication for the InfiniBand network

and with separate hardware support. A custom low-cost bar-

rier for Open MPI was introduced at the ARCS 06 confer-

ence in Frankfurt [28, 37]. An overview and LogPmodeling

of several barrier implementations with practical validation

in OpenMPI is presented at the ICPP 05 in Oslo [17]. Novel

algorithms that use the InfiniBand hardware specialties for

implementation of MPI Barrier and MPI Bcast were in-
troduced at the IPDPS conference 2006 [29] and 2007 [33]

respectively. The work on MPI Barrier [15] was awarded

with the “Best Student Award 2005” of the Technical Uni-

versity of Chemnitz. We also stayed in close contact to the

Open MPI team and proposed a novel idea for Open MPI’s

collective framework in [35].

After we explored different optimization techniques for

blocking collectives and developed detailed network mod-

els which proved our theses, we took the first steps towards

non-blocking collective operations. The benefits of non-

blocking collective operations are discussed in [36] and a

standard proposal, as extension to the MPI-2 standard was

made [34]. We implemented LibNBC, a portable library

that offers support for non-blocking collective operations

[25]. The necessity of the standard extension is demon-

strated at the EuroPVM/MPI User’s group meeting 2007

[23] while the detailed performance of our implementation

will be presented as a talk on the Supercomputing 2007

conference [26]. The idea of non-blocking collectives was

presented at invited talks at the C&C Research Labs, NEC

Europe, the Technical University of Dresden [16] and the

HLRS Stuttgart. Our implementation achieves good overlap

on MPI based systems. We also implemented an InfiniBand

optimized version of LibNBC and developed a microbench-

mark strategy [32] based on the latest findings in collective

benchmarking. Microbenchmark results that compares the

overhead of our MPI based implementation with the Infini-

Band optimized version and the blocking MPI collectives

on 64 InfiniBand nodes is shown in Figure 1.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300

C
o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 (

u
s
e
c
)

Message Size (kilobytes)

MPI_Alltoall
NBC_Ialltoall, MPI

NBC_Ialltoall, IB
MPI_Gather

NBC_Igather, MPI
NBC_Igather, IB

Figure 1. Gather and Alltoall overheads on 64

InfiniBand nodes

Those ideas were quickly picked up and adapted to dif-

ferent platforms by other researchers [53].

We proved the general usability and benefits of non-

blocking collective operations in an article in the Elsevier

Journal of Parallel Computing [19]. The results of this work

show the benefits of non-blocking collective communica-

tion clearly. Figure 2 shows the speedup of a three di-

mensional Poisson solver and compares blocking to non-

blocking communication over Gigabit Ethernet directly.

The application ABINIT was analyzed for its parallel per-

 0

 20

 40

 60

 80

 100

 8 16 24 32 40 48 56 64 72 80 88 96

S
p

e
e

d
u

p

Number of CPUs

Eth blocking
Eth non-blocking

Figure 2. Parallel speedup of a 3d-Poisson

solver, using blocking and non-blocking

communication on Gigabit Ethernet

formance on different cluster systems in [21] and optimized

during a research visit at the “CINECA Consorzio Interuni-

versitario” in Bologna, Italy [20] and [22]. Current ongoing

work is to optimize three-dimensional Fast Fourier Trans-

forms. First results that have been gathered during a re-

search visit at the Guest Researcher at the “Commissariat a

l’EnergieAtomique (CEA)” in Paris, France can be found in

[40]. Parallelization strategies for ABINIT were discussed

in an invited talk at the “ 3rd International ABINIT Devel-

oper Workshop” in Liege, Belgium [39].

5 Future Plans

Even though the research results are already used in real-

world applications like Octopus [7], there are still many

open questions. Our LogGP benchmark methodology is

able to show the potential to overlap communication and

computation. However, the current method is only accu-

rate for blocking communication calls, To leverage overlap,

one has to use non-blocking communications. While is is

obvious that the parameters will not change significantly,

they might vary slightly depending on the implementation

and the underlying protocol. A more exact method to assess

non-blocking communications is to be developed to predict

communication performance accurately.

A detailed analysis of the new non-blocking collective

operations in theory (network models) as well as in practice

(applications) is planned for the near future. Using those re-

sults, LibNBC will be further optimized for the InfiniBand

network and performance and overlap potential of different

collective algorithms will be evaluated. To achieve max-

imum overlap, it is necessary to address the question of

message progression which is relatively undefined in the

MPI standard. We are planning to extend the InfiniBand

implementation with an asynchronous progress thread that

progresses outstanding messages.

Novel techniques to simplify the use of the new opera-

tions will also be investigated in detail. First steps in this

direction are described in [18]. New non-blocking collec-

tive operations which are defined on processor grids (e.g.,

Cartesian MPI topologies) are developed together with ap-

plication scientists to support novel architectures like Blue-

Gene/L efficiently.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and

C. Scheiman. LogGP: Incorporating Long Messages into

the LogP Model. Journal of Parallel and Distributed Com-

puting, 44(1):71–79, 1995.

[2] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Hus-

bands, C. Iancu, M. Welcome, and K. Yelick. An Evalua-

tion of Current High-Performance Networks. In IPDPS ’03:

Proceedings of the 17th International Symposium on Paral-

lel and Distributed Processing, page 28.1, Washington, DC,

USA, 2003. IEEE Computer Society.

[3] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Op-

timizing Bandwidth Limited Problems Using One-Sided

Communication and Overlap. In Proceedings, 20th In-

ternational Parallel and Distributed Processing Symposium

IPDPS 2006 (CAC 06), April 2006.

[4] R. Brightwell, S. Goudy, A. Rodrigues, and K. Underwood.

Implications of application usage characteristics for collec-

tive communication offload. Internation Journal of High-

Performance Computing and Networking, 4(2), 2006.

[5] R. Brightwell, R. Riesen, and K. D. Underwood. Analyzing

the impact of overlap, offload, and independent progress for

message passing interface applications. Int. J. High Perform.

Comput. Appl., 19(2):103–117, 2005.

[6] R. Brightwell and K. D. Underwood. An analysis of the

impact of MPI overlap and independent progress. In ICS

’04: Proceedings of the 18th annual international confer-

ence on Supercomputing, pages 298–305, New York, NY,

USA, 2004. ACM Press.

[7] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade,

F. Lorenzen, M. A. L. Marques, E. K. U. Gross, and A. Ru-

bio. Octopus: a tool for the application of time-dependent

density functional theory. PsiK Newsletter, 73:145–173,

2006.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP: to-

wards a realistic model of parallel computation. In Princi-

ples Practice of Parallel Programming, pages 1–12, 1993.

[9] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Kr-

ishnamurthy, S. Lumetta, T. von Eicken, and K. A. Yelick.

Parallel programming in Split-C. In Supercomputing, pages

262–273, 1993.

[10] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany. Transfor-

mations to parallel codes for communication-computation

overlap. In SC ’05: Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, page 58, Washington, DC,

USA, 2005. IEEE Computer Society.

[11] R. Dimitrov. Overlapping of Communication and Computa-

tion and Early Binding: Fundamental Mechanisms for Im-

proving Parallel Performance on Clusters of Workstations.

PhD thesis, Mississippi State University, 2001.

[12] High Performance Fortran Forum. High Performance For-

tran Language Specification, version 1.0. Houston, Tex.,

1993.

[13] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluation

of compiler optimizations for fortran d on mimd distributed

memory machines. In ICS ’92: Proceedings of the 6th inter-

national conference on Supercomputing, pages 1–14, New

York, NY, USA, 1992. ACM.

[14] R. Hockney. The communication challenge for MPP: Intel

Paragon and Meiko CS-2. Parallel Computing, 20(3):389–

398, March 1994.

[15] T. Hoefler. Evaluation of publicly available Barrier-

Algorithms and Improvement of the Barrier-Operation

for large-scale Cluster-Systems with special Attention on

InfiniBandTMNetworks. Master’s thesis, Chemnitz Univer-

sity of Technology, 2004.

[16] T. Hoefler. Non-blocking Collectives for MPI-2, 10 2007.

Invited talk at the Dresden University of Technology, Center

for Information Services and High Performance Computing

(ZIH).

[17] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, andW. Rehm.

A practical Approach to the Rating of Barrier Algorithms

using the LogP Model and Open MPI. In Proceedings of

the 2005 International Conference on Parallel Processing

Workshops (ICPP’05), pages 562–569, June 2005.

[18] T. Hoefler, P. Gottschling, and A. Lumsdaine. Transforma-

tions for enabling non-blocking collective communication in

high-performance applications. Technical report, Open Sys-

tems Lab, Indiana University, 10 2007.

[19] T. Hoefler, P. Gottschling, A. Lumsdaine, andW. Rehm. Op-

timizing a Conjugate Gradient Solver with Non-Blocking

Collective Operations. Elsevier Journal of Parallel Com-

puting (PARCO), 33(9):624–633, 9 2007.

[20] T. Hoefler, R. Janisch, and W. Rehm. Improving the paral-

lel scaling of ABINIT. In Science and Supercomputing in

Europe - Report 2005, pages 551–559. CINECA Conzorzio

Interuniversitario, 12 2005.

[21] T. Hoefler, R. Janisch, and W. Rehm. A Performance Analy-

sis of ABINIT on a Cluster System. In K. H. Hoffmann and

A. Meyer, editors, Parallel Algorithms and Cluster Comput-

ing, pages 37–51. Springer, Lecture Notes in Computational

Science and Engineering, 2006.

[22] T. Hoefler, R. Janisch, and W. Rehm. Parallel scaling of

Teter’s minimization for Ab Initio calculations. 11 2006.

Presented at the workshop HPC Nano in conjunction with

SC’06.

[23] T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, and

A. Lumsdaine. A Case for Standard Non-Blocking Collec-

tive Operations. In Recent Advances in Parallel Virtual Ma-

chine and Message Passing Interface, EuroPVM/MPI 2007,

volume 4757, pages 125–134. Springer, 10 2007.

[24] T. Hoefler, A. Lichei, and W. Rehm. Low-Overhead LogGP

Parameter Assessment for Modern Interconnection Net-

works. In Proceedings of the 21st IEEE International Par-

allel & Distributed Processing Symposium. IEEE Computer

Society, 03 2007.

[25] T. Hoefler and A. Lumsdaine. Design, Implementation, and

Usage of LibNBC. Technical report, Open Systems Lab,

Indiana University, 08 2006.

[26] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation

and Performance Analysis of Non-Blocking Collective Op-

erations forMPI. In In proceedings of the 2007 International

Conference on High Performance Computing, Networking,

Storage and Analysis, SC07. IEEE Computer Society/ACM,

11 2007.

[27] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.

Netgauge: A Network Performance Measurement Frame-

work. In High Performance Computing and Communica-

tions, Third International Conference, HPCC 2007, Hous-

ton, USA, September 26-28, 2007, Proceedings, volume

4782, pages 659–671. Springer, 9 2007.

[28] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Adding

Low-Cost Hardware Barrier Support to Small Commodity

Clusters. In 19th International Conference on Architecture

and Computing Systems - ARCS’06, pages 343–350, March

2006.

[29] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Fast Barrier

Synchronization for InfiniBand. In Proceedings, 20th In-

ternational Parallel and Distributed Processing Symposium

IPDPS 2006 (CAC 06), April 2006.

[30] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. LogfP -

A Model for small Messages in InfiniBand. In Proceedings,

20th International Parallel and Distributed Processing Sym-

posium IPDPS 2006 (PMEO-PDS 06), April 2006.

[31] T. Hoefler and W. Rehm. A Communication Model for

Small Messages with InfiniBand. In Proceedings PARS

Workshop 2005 (PARS Mitteilungen), pages 32–41. PARS,

6 2005. (Awarded with the PARS Junior Researcher Prize).

[32] T. Hoefler, T. Schneider, and A. Lumsdaine. Accurately

Measuring Collective Operations at Massive Scale. In Ac-

cepted to the PMEO-PDS 08 workshop in conjunction with

the 22nd International Parallel and Distributed Processing

Symposium (IPDPS), April 2008.

[33] T. Hoefler, C. Siebert, and W. Rehm. A practically constant-

time MPI Broadcast Algorithm for large-scale InfiniBand

Clusters with Multicast. In Proceedings of the 21st IEEE In-

ternational Parallel & Distributed Processing Symposium,

page 232. IEEE Computer Society, 03 2007.

[34] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine,

and W. Rehm. Non-Blocking Collective Operations for

MPI-2. Technical report, Open Systems Lab, Indiana Uni-

versity, 08 2006.

[35] T. Hoefler, J. Squyres, G. Fagg, G. Bosilca, W. Rehm, and

A. Lumsdaine. A New Approach to MPI Collective Com-

munication Implementations. In Distributed and Parallel

Systems - From Cluster to Grid Computing, pages 45–54.

Springer, 09 2006.

[36] T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine. A Case

for Non-Blocking Collective Operations. In Frontiers of

High Performance Computing and Networking - ISPA 2006

Workshops, volume 4331/2006, pages 155–164. Springer

Berlin / Heidelberg, 12 2006.

[37] T. Hoefler, J. M. Squyres, T. Mehlan, F. Mietke, and

W. Rehm. Implementing a Hardware-based Barrier in Open

MPI. In Proceedings of 2005 KiCC Workshop, Chemnitzer

Informatik Berichte, November 2005.

[38] T. Hoefler, C. Viertel, T. Mehlan, F. Mietke, and W. Rehm.

Assessing Single-Message and Multi-Node Communication

Performance of InfiniBand. In Proceedings of IEEE Inerna-

tional Conference on Parallel Computing in Electrical En-

gineering, PARELEC 2006, pages 227–232. IEEE Computer

Society, 9 2006.

[39] T. Hoefler and G. Zerah. Optimization of a parallel 3d-FFT

with non-blocking collective operations, 01 2007. Invited

talk at the 3rd International ABINIT Developer Workshop.

[40] T. Hoefler and G. Zerah. Transforming the high-

performance 3d-FFT in ABINIT to enable the use of non-

blocking collective operations. Technical report, Commis-

sariat a l’Energie Atomique - Direction des applications mil-

itaires (CEA-DAM), 2 2007.

[41] P. Husbands, C. Iancu, and K. Yelick. A performance analy-

sis of the berkeley upc compiler. In ICS ’03: Proceedings of

the 17th annual international conference on Supercomput-

ing, pages 63–73, New York, NY, USA, 2003. ACM.
[42] C. Iancu, P. Husbands, and P. Hargrove. Hunting the overlap.

In PACT ’05: Proceedings of the 14th International Confer-

ence on Parallel Architectures and Compilation Techniques

(PACT’05), pages 279–290, Washington, DC, USA, 2005.

IEEE Computer Society.
[43] J. W. III and S. Bova. Where’s the Overlap? - An Analysis

of Popular MPI Implementations, 1999.
[44] L. V. Kale, S. Kumar, and K. Vardarajan. A Framework for

Collective Personalized Communication. In Proceedings of

IPDPS’03, Nice, France, April 2003.
[45] T. Kielmann, H. E. Bal, and K. Verstoep. Fast Measure-

ment of LogP Parameters for Message Passing Platforms. In

IPDPS ’00: Proceedings of the 15 IPDPS 2000 Workshops

on Parallel and Distributed Processing, pages 1176–1183,

London, UK, 2000. Springer-Verlag.
[46] W. Lawry, C. Wilson, A. B. Maccabe, and R. Brightwell.

COMB: A Portable Benchmark Suite for Assessing MPI

Overlap. In 2002 IEEE International Conference on Clus-

ter Computing (CLUSTER 2002), 23-26 September 2002,

Chicago, IL, USA, pages 472–475. IEEE Computer Society,

2002.
[47] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh.

Basic Linear Algebra Subprograms for FORTRAN usage.

In In ACM Trans. Math. Soft., 5 (1979), pp. 308-323, 1979.
[48] G. Liu and T. Abdelrahman. Computation-communication

overlap on network-of-workstation multiprocessors. In

Proc. of the Int’l Conference on Parallel and Distributed

Processing Techniques and Applications, pages 1635–1642,

July 1998.
[49] J. Liu, A. Mamidala, and D. Panda. Fast and Scalable

MPI-Level Broadcast using InfiniBand’s Hardware Multi-

cast Support. Technical report, OSU-CISRC-10/03-TR57,

2003.
[50] Message Passing Interface Forum. MPI: AMessage Passing

Interface Standard. 1995.
[51] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,

E. Gabriel, and J. J. Dongarra. Performance Analysis of MPI

Collective Operations. In Proceedings of the 19th Interna-

tional Parallel and Distributed Processing Symposium, 4th

International Workshop on Performance Modeling, Evalua-

tion, and Optimization of Parallel and Distributed Systems

(PMEO-PDS 05), Denver, CO, April 2005.
[52] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis.

MPI tools and performance studies—Quantifying the poten-

tial benefit of overlapping communication and computation

in large-scale scientific applications. In SC ’06: Proceed-

ings of the 2006 ACM/IEEE conference on Supercomputing,

page 125, New York, NY, USA, 2006. ACM Press.
[53] J. C. Sancho, D. J. Kerbyson, and K. J. Barker. Efficient

offloading of collective communications in large-scale sys-

tems. In 2007 IEEE International Conference on Clus-

ter Computing (CLUSTER 2007), 17-20 September 2002,

Austin, TX, USA. IEEE Computer Society, 2007.
[54] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically

tuned collective communications. In Supercomputing ’00:

Proceedings of the 2000 ACM/IEEE conference on Super-

computing (CDROM), page 3, Washington, DC, USA, 2000.

IEEE Computer Society.

