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Abstract

Collective operations and non-blocking point-to-point

operations are two important parts of MPI that each pro-

vide important performance and programmability benefits.

Although non-blocking collective operations are an obvious

extension to MPI, there have been no comprehensive stud-

ies of this functionality. This dissertation will study non-

blocking collective operations, integrating theory, practice,

and application. We use a well-understood network model

to found our theoretical analyses and we realize our com-

munication operations as a portable library layered on

MPI. A real-world quantum-mechanical application is used

as a deployment and evaluation vehicle for our approach.

1 Introduction

The performance of parallel scientific applications is de-

termined by per-CPU (sequential) performance and com-

munication costs. While it is well understood how to opti-

mize single-CPU performance, the task of minimizing com-

munication overhead is still challenging. Although commu-

nication networks have evolved in the last years and are ma-

turing quickly, the speed of light ultimately imposes a lower

bound on communication latency. Thus, common optimiza-

tions to lower latency and improve bandwidth will soon

find their natural limits—much like CPU frequency scal-

ing which has recently stagnated. Increased parallelization

can continue to provide performance improvements even

though single processing elements are not getting faster.

However, this only escalates the number of computing el-

ements used to solve scientific problems. Since commu-

nication overhead grows with the number of messages and

the number of messages often grows with the number of

nodes, a steady decrease in efficiency seems to be unavoid-

able. Our research aims to overcome the effect of growing

communication overhead due to those common limitations

and growing processor numbers.

A possible solution to this problem is to hide communi-

cation costs by overlapping them with computation. Thus,

we explore the benefits of non-blocking high-level commu-

nication operations. All implementations and tests are done

as extensions to the widely-used and mature Message Pass-

ing Interface (MPI) standard [50]. The blocking collective

operations currently defined byMPI offer a high-level inter-

face to the user, insulating the user from implementation de-

tails and giving MPI implementers the freedom to optimize

their implementations for specific architectures. That is, al-

though collective algorithms do not provide unique func-

tionality per se (they can be implemented manually with

basic point-to-point operations), collective operations pro-

vide important advantages in programmability, safety (with

regards to programming errors) and performance.

In this respect, collective operations can be compared

to BLAS [47] operations. For example a high-level BLAS

matrix multiply (e.g., DGEMM) operation could be easily

composed of three nested loops1, but the vendor supplied

DGEMM implementation, because of special machine op-

timized tuning (e.g., cache/register optimization), usually

provides much better performance. The same principle is

used for collective operations as these operations can be op-

timized for the communication subsystem of a specific ma-

chine. Thus, many research groups have provided machine-

optimized implementations and have investigated the opti-

mal and non-trivial implementation of collective algorithms

for particular machine architectures (cf. [29, 49, 54]).

The performance portability benefits of collective op-

erations have long been recognized and collective opera-

tions play an important role in many applications. Con-

sider, for example, a three-dimensional Fast Fourier Trans-

formation implemented for a central-switch-based architec-

ture (e.g., InfiniBandTM). If the developer does not use the

1or lower level BLAS operations



MPI Alltoall function, a fully connected send pattern (lit-

erally an all-to-all) should deliver the best performance2.

However, if this implementation were ported to torus-based

systems (e.g., an IBM BlueGene), the performance of the

send-pattern mentioned above would be much worse than

a torus-optimized MPI Alltoall on that machine. However,

because the collective operation interface is architecture in-

dependent, using it can avoid this performance decrease

transparently, i.e., without changes to the user application.

A second MPI feature that plays a significant role in par-

allel programming is non-blocking point-to-point commu-

nication. These operations potentially allow communica-

tion and computation to be overlapped and thus they lever-

age hardware parallelism. The parallelism exists because

most high-performance interconnect networks (like Infini-

Band, Quadrics, Myrinet, Portals, or Ethernet with TOE)

have their own communication co-processors that take the

burden of message processing from the main CPU. How-

ever, this parallelism does not decrease the latency signifi-

cantly, and it does not show its full potential if the program-

mer uses blocking send/receive. Non-blocking send/receive

techniques allow the programmer to leverage the CPU

during the asynchronous (and network-offloaded) message

transmission. Several studies showed that the performance

of parallel applications can be significantly enhanced with

overlapping techniques (cf. [5]).

The work investigates the possibility of combining the

advantages of collective operations with overlapped com-

munication and computation in modern communication ar-

chitectures. We propose a low-overhead and portable imple-

mentation of non-blocking collective operations that hides

all the complexity of the internal implementation from the

user. Furthermore, the research touches different neighbor-

ing areas such as network modeling, accurate measurement

and performance prediction of collective operations, opti-

mization of collective operations and general network opti-

mization. The benefits of the new approach are shown with

two real-world quantum mechanical applications, ABINIT

and Octopus. Both programs solve the Schrödinger equa-

tion within the Density-Functional Theory (DFT). However,

each program chooses a different approach for this solution

and the application of non-blocking collectives differs fun-

damentally.

2 Related Work

The benefits of overlapping communication and compu-

tation have been leveraged by several researchers. Practical

application performance has been shown to improve up to

a factor of 1.9 [3, 48]. Dimitrov [11] explains the gains of

overlapping on cluster systems while Kale et al. discusses

2in fact, many MPI implementations use this communication pattern to

implement MPI Alltoall on central-switch-based architectures

the applicability of a non-blocking collective personalized

communication for a set of applications in [44].

Further studies [42, 43, 46] analyze specific MPI im-

plementations in detail and assess the possible benefits of

overlapping on different systems. Some older studies (espe-

cially White et al. [43]) found that the investigated MPI im-

plementations did not support asynchronous progress suffi-

ciently. However, MPI implementations, as well intercon-

nect networks, have evolved in the last years and support

for overlap improved significantly [2, 46]. Brightwell et al.

[6] analyze the source of different performance advantages

and point out directions to further MPI optimization.

Several application studies have been conducted to ana-

lyze the possible benefits of overlapping for parallel appli-

cations. Sancho et al. [52] show a high potential of overlap

for a set of scientific applications. Brightwell et al. [4] state

clearly that many parallel applications could substantially

benefit from non-blocking collective communication.

Automatic and semi-automatic transformations to paral-

lel codes to enable overlapping of point-to-point communi-

cation have been proposed in many studies. However, none

of them investigated transformations to non-blocking col-

lective communication. Danalis et al. [10] even suggest

replacing collective calls with non-blocking send-receive

calls. This is clearly against the philosophy of MPI and

destroys performance portability and many possibilities of

optimization with special hardware support (cf. [28, 49])

completely.

Several parallel languages, like Split-C [9], UPC [41],

HPF [12] or Fortran-D [13], have compilers available that

are able to translate high-level language constructs into

message passing code. Automatic schemes to enable over-

lapping within those schemes have also been proposed [10].

However, these compilers are only able to perform simple

transformations and are not flexible enough for applications

with non-trivial data-dependencies. For example, they are

not able to handle a case where each process produces and

communicates a different unpredictable amount of data in

each iteration.

All approaches are either using overlapping techniques

for point-to-point messages or optimize their codes with

high-level communication routines. Some researchers even

replaced high level operations by manual point-to-point im-

plementation which is not portable among different ma-

chines. Our research however, investigates the non-trivial

implementation and applicability of non-blocking collective

operations and thus combines both non-trivial approaches.

3 Approach

A first step towards understanding the potential benefits

of non-blocking collective operations is to understand the

underlying communication networks in depth. However,



we do not want to limit our analysis to a particular network,

thus, we choose an abstract network model to represent all

needed properties of the networks. The choice of models

is rather big, and the most common, the simple Hockney

model [14] is not sufficient for our analyses because it only

models the network transmission and not the CPU interac-

tion. Kielmann’s pLogP model [45] is rather complex and

hard to use to model algorithms. Thus, we chose a modified

Log(G)P model [8, 1] to represent all network parameters

including the CPU overhead.

Most collective operations are implemented on top

of hardware-specialized point-to-point algorithms. Those

communication patterns can easily be modeled in LogGP

terms and analyzed in theory. Such analyses for blocking

collective operations have been done by Pjesivac-Grbovic

[51] and our previous work [17]. Looking at the share of the

CPU overhead and the LogGP parameters of modern com-

munication networks reveals that the theoretical potential

for overlapping in collective operations is very high. The

possible benefit typically grows with the message size and

first results show that modern networks can overlap more

than 99% of the commmunication latency for reasonably-

sized messages.

The next step is a prototypical implementation of collec-

tive operations that enables overlapping of communication

and computation. This implementation should support all

operations defined in the MPI standard and impose a very

low CPU overhead.

The hardest step is to apply this principle to parallel ap-

plications. A first implementation should comprise several

computational kernels to prove the benefits of overlapping.

Real-world applications are to be targeted in a second step

with the help of application developers. However, this task

often requires changes to the optimized core algorithms in

those applications and will thus be very time-consuming.

The adaptation of the reference implementation to a par-

ticular communication architecture will show several prin-

ciples to optimize the performance (minimize the overhead)

of non-blocking collective operations. This step might also

require changes to the applications.

4 Research Results

Our research results over the last two years are presented

in the following. The dissertation is expected to be finished

in 12 to 18 months.

An important technological development, and one that

has particular bearing on this work, is the observation that

many high-performance networks do a significant amount

of processing on the NICs, while the main CPU is only

marginally involved. Our theoretical results begin with the

LogP model family, which makes a clear distinction be-

tween time spent on the CPU (o) and time spent in the

network (g,G,L). We chose the InfiniBand Architecture as

an example network with which to implement our ideas.

We investigated the prediction accuracy of the LogP model

for small messages communicated with the Reliable Con-

nection transport type of the InfiniBand network in [31].

This work was awarded the German PARS/GI “Junior Re-

searcher Award 2005”. Our findings showed the relative in-

accuracy of the LogP predictions and we proposed a small

modification to the original model to correct this error at the

IPDPS 2006 conference in Rhodos, Greece [30]. Additional

measurements, presented at the Parelec conference [38],

showed that similar effects can be recorded with all Infini-

Band transport types. We introduced a new portable, accu-

rate, fast and congestion-free LogGP measurement method

at the IPDPS conference 2007 [24] to investigate different

networks. Our integration it in the open-source Netgauge

network performancemeasurement tool which was released

at the HPCC conference in Houston [27] 2007 allows other

researchers to use it.

In the course of our research, we also investigated opti-

mized collective communication for the InfiniBand network

and with separate hardware support. A custom low-cost bar-

rier for Open MPI was introduced at the ARCS 06 confer-

ence in Frankfurt [28, 37]. An overview and LogPmodeling

of several barrier implementations with practical validation

in OpenMPI is presented at the ICPP 05 in Oslo [17]. Novel

algorithms that use the InfiniBand hardware specialties for

implementation of MPI Barrier and MPI Bcast were in-
troduced at the IPDPS conference 2006 [29] and 2007 [33]

respectively. The work on MPI Barrier [15] was awarded

with the “Best Student Award 2005” of the Technical Uni-

versity of Chemnitz. We also stayed in close contact to the

Open MPI team and proposed a novel idea for Open MPI’s

collective framework in [35].

After we explored different optimization techniques for

blocking collectives and developed detailed network mod-

els which proved our theses, we took the first steps towards

non-blocking collective operations. The benefits of non-

blocking collective operations are discussed in [36] and a

standard proposal, as extension to the MPI-2 standard was

made [34]. We implemented LibNBC, a portable library

that offers support for non-blocking collective operations

[25]. The necessity of the standard extension is demon-

strated at the EuroPVM/MPI User’s group meeting 2007

[23] while the detailed performance of our implementation

will be presented as a talk on the Supercomputing 2007

conference [26]. The idea of non-blocking collectives was

presented at invited talks at the C&C Research Labs, NEC

Europe, the Technical University of Dresden [16] and the

HLRS Stuttgart. Our implementation achieves good overlap

on MPI based systems. We also implemented an InfiniBand

optimized version of LibNBC and developed a microbench-

mark strategy [32] based on the latest findings in collective



benchmarking. Microbenchmark results that compares the

overhead of our MPI based implementation with the Infini-

Band optimized version and the blocking MPI collectives

on 64 InfiniBand nodes is shown in Figure 1.
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Figure 1. Gather and Alltoall overheads on 64

InfiniBand nodes

Those ideas were quickly picked up and adapted to dif-

ferent platforms by other researchers [53].

We proved the general usability and benefits of non-

blocking collective operations in an article in the Elsevier

Journal of Parallel Computing [19]. The results of this work

show the benefits of non-blocking collective communica-

tion clearly. Figure 2 shows the speedup of a three di-

mensional Poisson solver and compares blocking to non-

blocking communication over Gigabit Ethernet directly.

The application ABINIT was analyzed for its parallel per-
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Figure 2. Parallel speedup of a 3d-Poisson

solver, using blocking and non-blocking

communication on Gigabit Ethernet

formance on different cluster systems in [21] and optimized

during a research visit at the “CINECA Consorzio Interuni-

versitario” in Bologna, Italy [20] and [22]. Current ongoing

work is to optimize three-dimensional Fast Fourier Trans-

forms. First results that have been gathered during a re-

search visit at the Guest Researcher at the “Commissariat a

l’EnergieAtomique (CEA)” in Paris, France can be found in

[40]. Parallelization strategies for ABINIT were discussed

in an invited talk at the “ 3rd International ABINIT Devel-

oper Workshop” in Liege, Belgium [39].

5 Future Plans

Even though the research results are already used in real-

world applications like Octopus [7], there are still many

open questions. Our LogGP benchmark methodology is

able to show the potential to overlap communication and

computation. However, the current method is only accu-

rate for blocking communication calls, To leverage overlap,

one has to use non-blocking communications. While is is

obvious that the parameters will not change significantly,

they might vary slightly depending on the implementation

and the underlying protocol. A more exact method to assess

non-blocking communications is to be developed to predict

communication performance accurately.

A detailed analysis of the new non-blocking collective

operations in theory (network models) as well as in practice

(applications) is planned for the near future. Using those re-

sults, LibNBC will be further optimized for the InfiniBand

network and performance and overlap potential of different

collective algorithms will be evaluated. To achieve max-

imum overlap, it is necessary to address the question of

message progression which is relatively undefined in the

MPI standard. We are planning to extend the InfiniBand

implementation with an asynchronous progress thread that

progresses outstanding messages.

Novel techniques to simplify the use of the new opera-

tions will also be investigated in detail. First steps in this

direction are described in [18]. New non-blocking collec-

tive operations which are defined on processor grids (e.g.,

Cartesian MPI topologies) are developed together with ap-

plication scientists to support novel architectures like Blue-

Gene/L efficiently.
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