
Parallel Zero-Copy Algorithms for Fast Fourier 

Transform and Conjugate Gradient using MPI 

Datatypes

Torsten Hoefler, Steven Gottlieb

EuroMPI 2010, Stuttgart, Germany, Sep. 13th 2010



Quick MPI Datatype Introduction
• (de)serialize arbitrary data layouts into a 

message stream

– Contig., Vector, Indexed, Struct, Subarray, 

even Darray (HPF-like distributed arrays)

• Recursive specification possible

– Declarative specification of data-layout

• “what” and not “how”, leaves optimization to 

implementation (many unexplored possibilities!)

– Arbitrary data permutations (with Indexed)



Datatype Terminology
• Size

– Size of DDT signature (total occupied bytes)

– Important for matching (signatures must match)

• Lower Bound

– Where does the DDT start

• Allows to specify “holes” at the beginning

• Extent

– Size of the DDT

• Allows to interleave DDT, relatively “dangerous”



What is Zero Copy?
• Somewhat weak terminology

– MPI forces “remote” copy 

• But:

– MPI implementations copy internally

• E.g., networking stack (TCP), packing DDTs

• Zero-copy is possible (RDMA, I/O Vectors)

– MPI applications copy too often

• E.g., manual pack, unpack or data rearrangement

• DDT can do both!



Purpose of this Paper

• Demonstrate utility of DDT in practice

– Early implementations were bad → folklore

– Some are still bad → chicken+egg problem

• Show creative use of DDTs

– Encode local transpose for FFT

• Create realistic benchmark cases

– Guide optimization of DDT implementations



2d-FFT State of the Art



2d-FFT Optimization Possibilities

1. Use DDT for pack/unpack (obvious)

– Eliminate 4 of 8 steps

• Introduce local transpose

2. Use DDT for local transpose 

– After unpack

– Non-intuitive way of using DDTs

• Eliminate local transpose



The Send Datatype
1. Type_struct for complex numbers

2. Type_contiguous for blocks

3. Type_vector for stride

• Need to change extent to allow overlap (create_resized)

– Three hierarchy-layers 



The Receive Datatype

– Type_struct (complex)

– Type_vector (no contiguous, local transpose)

• Needs to change extent (create_resized)



Experimental Evaluation
• Odin @ IU

– 128 compute nodes, 2x2 Opteron 1354 2.1 GHz

– SDR InfiniBand (OFED 1.3.1). 

– Open MPI 1.4.1 (openib BTL), g++ 4.1.2 

• Jaguar @ ORNL

– 150152 compute nodes, 2.1 GHz Opteron

– Torus network (SeaStar). 

– CNL 2.1, Cray Message Passing Toolkit 3

• All compiled with “-O3 –mtune=opteron”



Strong Scaling - Odin (80002)

• 4 runs, report smallest time, <4% deviation

Reproducible

peak at P=192

Scaling stops 

w/o datatypes



Strong Scaling – Jaguar (20k2)

Scaling stops 

w/o datatypes

DDT increase

scalability



Negative Results

• Blue Print - Power5+ system

– POE/IBM MPI Version 5.1

– Slowdown of 10%

– Did not pass correctness checks 

• Eugene - BG/P at ORNL

– Up to 40% slowdown

– Passed correctness check 



Example 2: MIMD Lattice Computation

• Gain deeper insights in 

fundamental laws of physics

• Determine the predictions of 

lattice field theories (QCD & 

Beyond Standard Model)

• Major NSF application

• Challenge:

– High accuracy (computationally intensive) required for 

comparison with results from experimental programs in 

high energy & nuclear physics

14 Performance 

Modeling and 

Simulation on Blue 

Waters



Communication Structure
• Nearest neighbor communication

– 4d array → 8 directions

– State of the art: manual pack on send side

• Index list for each element (very expensive)

– In-situ computation on receive side

• Multiple different access patterns 

– su3_vector, half_wilson_vector, and su3_matrix

– Even and odd (checkerboard layout)

– Eight directions

– 48 contig/hvector DDTs total (stored in 3d array)



MILC Performance Model
• Designed for Blue Waters

– Predict performance 

of 300000+ cores

– Based in Power7

MR testbed

– Models manual

pack overheads

>10% pack time

• >15% for small L



Experimental Evaluation

• Weak scaling with L=44 per process 

– Equivalent to NSF Petascale Benchmark 

on Blue Waters

• Investigate Conjugate Gradient phase 

– Is the dominant phase in large systems

• Performance measured in MFlop/s

– Higher is better 



MILC Results - Odin

• 18% speedup!



MILC Results - Jaguar

• Nearly no speedup (even 3% decrease) 



Conclusions

• MPI Datatypes allow zero-copy

– Up to a factor of 3.8 or 18% speedup!

– Requires some implementation effort

• Tool support for datatypes would be great!

– Declaration and extent tricks make it hard to debug

• Some MPI DDT implementations are slow

– Some nearly surreal 

– We define benchmarks to solve chicken+egg problem



Acknowledgments & Support

• Thanks to 
• Bill Gropp

• Jeongnim Kim

• Greg Bauer

• Sponsored by



Backup

Backup Slides



2d-FFT State of the Art


