Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes

Torsten Hoefler, Steven Gottlieb

EuroMPI 2010, Stuttgart, Germany, Sep. 13th 2010

UNIVERSITY OF LLUNOIS

Quick MPI Datatype Introduction

- (de)serialize arbitrary data layouts into a message stream
 - Contig., Vector, Indexed, Struct, Subarray, even Darray (HPF-like distributed arrays)
 - Recursive specification possible
 - Declarative specification of data-layout
 - "what" and not "how", leaves optimization to implementation (many unexplored possibilities!)
 - Arbitrary data permutations (with Indexed)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Datatype Terminology

- Size
 - Size of DDT signature (total occupied bytes)
 - Important for matching (signatures must match)
- Lower Bound
 - Where does the DDT start
 - Allows to specify "holes" at the beginning
- Extent
 - Size of the DDT
 - Allows to interleave DDT, relatively "dangerous"

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

What is Zero Copy?

- Somewhat weak terminology
 - MPI forces "remote" copy
- But:
 - MPI implementations copy internally
 - E.g., networking stack (TCP), packing DDTs
 - Zero-copy is possible (RDMA, I/O Vectors)
 - MPI applications copy too often
 - E.g., manual pack, unpack or data rearrangement
 - DDT can do both!

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Purpose of this Paper

- Demonstrate utility of DDT in practice
 - Early implementations were bad \rightarrow folklore
 - Some are still bad → chicken+egg problem
- Show creative use of DDTs
 - Encode local transpose for FFT
- Create realistic benchmark cases

 Guide optimization of DDT implementations

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2d-FFT State of the Art

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2d-FFT Optimization Possibilities

- 1. Use DDT for pack/unpack (obvious)
- Eliminate 4 of 8 steps
 - Introduce local transpose

2. Use DDT for local transpose

- After unpack
- Non-intuitive way of using DDTs
 - Eliminate local transpose

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

The Send Datatype

- 1. Type_struct for complex numbers
- 2. Type_contiguous for blocks
- 3. Type_vector for stride
 - Need to change extent to allow overlap (create_resized)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

The Receive Datatype

- Type_struct (complex)
- Type_vector (no contiguous, local transpose)
 - Needs to change extent (create_resized)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Experimental Evaluation

- Odin @ IU
 - 128 compute nodes, 2x2 Opteron 1354 2.1 GHz
 - SDR InfiniBand (OFED 1.3.1).
 - Open MPI 1.4.1 (openib BTL), g++ 4.1.2
- Jaguar @ ORNL
 - 150152 compute nodes, 2.1 GHz Opteron
 - Torus network (SeaStar).
 - CNL 2.1, Cray Message Passing Toolkit 3
- All compiled with "-O3 –mtune=opteron"

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Strong Scaling - Odin (8000²)

4 runs, report smallest time, <4% deviation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Strong Scaling – Jaguar (20k²)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Negative Results

- Blue Print Power5+ system
 - POE/IBM MPI Version 5.1
 - Slowdown of 10%
 - Did not pass correctness checks ③
- Eugene BG/P at ORNL
 - Up to 40% slowdown
 - Passed correctness check ©

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Example 2: MIMD Lattice Computation

- Gain deeper insights in fundamental laws of physics
- Determine the predictions of lattice field theories (QCD & Beyond Standard Model)
- Major NSF application
- Challenge:

 High accuracy (computationally intensive) required for comparison with results from experimental programs in high energy & nuclear physics

Communication Structure

- Nearest neighbor communication
 - 4d array \rightarrow 8 directions
 - State of the art: manual pack on send side
 - Index list for each element (very expensive)
 - In-situ computation on receive side
- Multiple different access patterns ③
 - su3_vector, half_wilson_vector, and su3_matrix
 - Even and odd (checkerboard layout)
 - Eight directions
 - 48 contig/hvector DDTs total (stored in 3d array)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

MILC Performance Model

- Designed for Blue Waters
 - Predict performance of 300000+ cores
 - Based in Power7
 MR testbed
 - Models manual pack overheads
 - ✤>10% pack time
 - >15% for small L

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Experimental Evaluation

- Weak scaling with L=4⁴ per process
 - Equivalent to NSF Petascale Benchmark on Blue Waters
- Investigate Conjugate Gradient phase
 - Is the dominant phase in large systems
- Performance measured in MFlop/s

 Higher is better ⁽²⁾
 - **I** 1867

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

MILC Results - Odin

18% speedup!

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

MILC Results - Jaguar

Nearly no speedup (even 3% decrease) ☺

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Conclusions

- MPI Datatypes allow zero-copy
 - Up to a factor of 3.8 or 18% speedup!
 - Requires some implementation effort
- Tool support for datatypes would be great!
 Declaration and extent tricks make it hard to debug
- Some MPI DDT implementations are slow
 - Some nearly surreal [©]
 - We define benchmarks to solve chicken+egg problem

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Acknowledgments & Support

- Thanks to
 - Bill Gropp
 - Jeongnim Kim
 - Greg Bauer
- Sponsored by

BLUE WATERS SUSTAINED PETASCALE COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Backup

Backup Slides

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2d-FFT State of the Art

- 1. perform N_x/P 1-d FFTs in y-dimension (N_y elements each)
- 2. pack the array into a sendbuffer for the all-to-all (A)
- 3. perform global all-to-all (B)
- 4. unpack the array to be contiguous in x-dimension (each process has now N_y/P x-pencils) (C)
- 5. perform N_y/P 1-d FFTs in x-dimension (N_x elements each)
- 6. pack the array into a sendbuffer for the all-to-all (D)
- 7. perform global all-to-all (E)
- 8. unpack the array to its original layout (F)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN