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Abstract. For generality, MPI collective operations support arbitrary
dense communication patterns. However, in many applications where
collective operations would be beneficial, only sparse communication
patterns are required. This paper presents one such application: Octo-
pus, a production-quality quantum mechanical simulation. We introduce
new sparse collective operations defined on graph communicators and
compare their performance to MPI Alltoallv. Besides the scalability im-
provements to the collective operations due to sparsity, communication
overhead in the application was reduced by overlapping communication
and computation. We also discuss the significant improvement to pro-
grammability offered by sparse collectives.

1 Introduction

Ab-initio quantum mechanical simulations play an important role in nano and
material sciences as well as many other scientific areas, e. g., the understanding of
biological or chemical processes. Solving the underlying Schrödinger equation for
systems of hundreds or thousands of atoms requires a tremendous computational
effort that can only be mastered by highly parallel systems and algorithms.

Density functional theory (DFT) [10, 11] is a computationally feasible method
to calculate properties of quantum mechanical systems like molecules, clusters,
or solids. The basic equations of DFT are the static and time-dependent Kohn-
Sham equations:1

Hϕj = εjϕj i
∂

∂t
ϕj(t) = H(t)ϕj(t) (1)

The electronic system is described by the Hamiltonian operator

H = −1

2
∇2 + V , (2)

where the derivative accounts for kinetic energy and V for the atomic potentials
and electron-electron interaction. The vectors ϕj , j = 1, . . . , N , are the Kohn-
Sham orbitals each describing one of N electrons.

1
i denotes the imaginary unit i =

√
−1 and t is the time parameter.
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The scientific application octopus [3] solves the eigenvalue problem of Eq.
(1, left) by iterative diagonalization for the lowest N eigenpairs (εj , ϕj) and Eq.
(1, right) by explicitly evolving the Kohn-Sham orbitals ϕj(t) in time. The essen-
tial ingredient of iterative eigensolvers as well as of most real-time propagators
[2] is the multiplication of the Hamiltonian with an orbital Hϕj . Since octopus
relies on finite-difference grids to represent the orbitals, this operation can be
parallelized by dividing the real-space mesh and assigning a certain partition
(domain) to each node as shown in Fig. 1(a).

The potential V is a diagonal matrix, so the product V ϕj can be calculated
locally on each node. The Laplacian operator of (2) is implemented by a finite-
difference stencil as shown in Fig. 1(b). This technique requires to send values
close to the boundary (gray shading in Fig. 1(b)) from one partition (orange) to
a neighboring one (green).

(a) A benzene ring dis-
tributed on six nodes.

(b) Boundary values for a third or-
der stencil.

Fig. 1. Partitions of octopus’ real-space finite-difference mesh.

The original implementation of Hϕj is:

1. Exchange boundary values between partitions
2. ϕj ← − 1

2∇
2
ϕj (apply kinetic energy operator)

3. ϕj ← ϕj + V ϕj (apply potential)

In this article, we describe a simplified and efficient way to implement and
optimize the neighbor exchange with non-blocking collective operations that are
defined on topology communicators.

2 Parallel Implementation

This section gives a detailed analysis of the communication and computation
behavior of the domain parallelization and presents alternative implementations
using non-blocking and topology-aware colletives that provide higher perfor-
mance and better programmability.

2.1 Domain parallelization

The application of the Hamiltonian to an orbital Hϕj can be parallelized by
a partitioning of the real-space grid. The best decomposition depends on the
distribution of grid-points in real-space which depends on the atomic geometry
of the system under study. We use the library METIS [9] to obtain partitions
that are well balanced in the number of points per node.



III

(a) An area V enlarged by d. (b) Rhombic dodecahedrons, consisting of
twelve rhombic faces, stacked to fill up space.

Fig. 2. Message sizes and number of neighbors.

The communication overhead of calculating Hϕj is dominated by the neigh-
bor exchange operation on the grid. To determine a model to assess the scaling
of the communication time which can be used to predict the application’s run-
ning time and scalability, we need to assess the message-sizes, and the average
number of neighbors of every processor. Both parameters are influenced by the
discretization order d that affects how far the stencil leaks into neighbouring do-
mains, and by the number of points in each partition. Assuming a nearly optimal
domain decomposition, NP points in total, and P processors we can consider the
ratio V = NP/P as “volume” per node. The number of communicated points is
p(P ) = Vd−V with Vd being the volume V increased by the discretization order
d and reads

p(P ) = αd3 + βd2
√

V (P ) + γd 3

√

V (P )2 (3)

with coefficients α, β, γ depending on the actual shape of the partitions. The
derivation of (3) is sketched schematically in Fig. 2(a) for a 2D situation: an
area V is increased by d in each direction. The enlargement is proportional to d2

(green) and d
√

V (red). In 3D, the additional dimension causes these terms to

be multiplied by d and leads to one more term proportional to d
3
√

V 2. Fig. 3(a)
shows the number of exchanged points measured for a cylindrical grid of 1.2
million points and the analytical expression (3) fitted to the data-points.
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Fig. 3. Communicated points and neighbor-count for different numbers of processors.

Since the average number of neighbors (ν) depends on the structure of the
input system, we cannot derive a generic formula for this quantity but instead
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give the following estimate: METIS minimizes edge-cut which is equivalent to
minimization of surfaces. This can be seen in Fig. 1(a) where the partition bor-
ders are almost between the gray Carbon atoms, the optimum in this case. In
general, the minimal surface a volume can take on is spherical. Assuming the
partitions to be stacked rhombic dodecahedrons as approximation to spheres,
shown in Fig. 2(b), we conclude that, for larger P , ν is clearly below P because
each dodecahedron has at maximum twelve neighbors. This consideration, of
course, assumes truly minimum surfaces that METIS can only approximate. In
practice, we observe an increasing number of neighbors for larger P , see Fig. 3(b).
Nevertheless, the number of neighbors is an order of magnitude lower than the
number of processors.

Applying the well-know LogGP model [4] to our estimations of the scaling
of the message sizes and the number of neighbors ν, we can derive the following
model of the communication overhead (each point is represented by an 8 byte
double value):

tcomm = L + oν + g(ν − 1) + G(ν · 8 p(P )) (4)

We assume a constant number of neighbors ν at large scale. Thus, the com-

munication overhead scales with O
(

√

NP/P
)

in P . The computational cost of

steps 2 and 3 that determines the potential to overlap computation and com-
munication scales with NP/P for the potential term and αd3 + βd2

√

NP/P +

γd
3

√

(NP/P )
2
+δNP/P for the kinetic term.2 We observe that our computation

has a similar scaling behaviour as the communication overhead, cf. Eq. (4). We
therefore conclude that overlapping the neighbor exchange communication with
steps 2 and 3 should show a reasonable performance benefit at any scale.

Overlapping this kind of communication has been successfully demonstrated
on a regular grid in [1]. We expect the irregular grid to achieve similar perfor-
mance improvements which could result in a reduction of the communication
overhead.

Practical benchmarks show that there are two calls that dominate the com-
munication overhead of octopus. On 16 processors, about 13% of the application
time is spent in many 1 real or complex value MPI Allreduce calls caused by dot-
products and the calculation of the atomic potentials. This communication can
not be optimized or overlapped easily and is thus out of the scope of this article.
The second biggest source of communication overhead is the neighbor communi-
cation which causes about 8.2% of the communication overhead. Our work aims
at efficiently implementing the neighbor exchange and reducing its communica-
tion overhead with new non-blocking collective operations that act on a process
topology.

2.2 Optimization with Non-blocking Collective Operations

Non-blocking collective operations that would support efficient overlap for this
kind of communication are not available in the current MPI standard. We used
2 The derivation of this expression is similar to (3) except that we shrink the volume

by the discretzation order d.
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the open-source implementation LibNBC [6] that offers a non-blocking interface
for all MPI-defined collective operations.

Implementation with NBC Ialltoallv The original implementation used
MPI Alltoallv for the neighbor exchange. The transition to the use of non-blocking
collective operations is a simple replacing of MPI Alltoall with NBC Ialltoallv and
the addition of a handle. Furthermore, the operation has to be finished with a
call to NBC Wait before the communicated data is accessed.

However, to achieve the best performance improvement, several additional
steps have to be performed. The first step is to maximize the time to overlap, i. e.,
to move the NBC Wait as far behind the respective NBC Ialltoallv as possible in
order to give the communication more time to proceed in the background. Thus,
to overlap communication and computation we change the original algorithm to:

1. Initiate neighbor exchange (NBC Ialltoallv)

2. ϕj ← vϕj (apply potential)

3. ϕj ← ϕj − 1
2∇

2
ϕ

inner
j (apply kinetic energy operator to inner points)

4. Wait for the neighbor exchange to finish (NBC Wait)

5. ϕj ← ϕj − 1
2∇

2
ϕ

edge
j (apply kinetic energy operator to edge points)

We initiate the exchange of neighboring points (step 1) and overlap it with
the calculation of the potential term (step 2) and the inner part of the kinetic
energy, which is the derivative of all points that can be calculated solely by local
points (step 3). The last step is waiting for the neighbor-exchange to finish (step
4) and calculation of the derivatives for the edge points (step 5).

A usual second step to optimize for overlap is to introduce NBC Test() calls
that give LibNBC the chance to progress outstanding requests. This is not nec-
essary if the threaded version of LibNBC is running on the system. We have
shown in [5] that the a naively threaded version performs worse, due to the loss
of a computational core. However, for this work, we use the InfiniBand optimized
version of LibNBC [7] which does not need explicit progression with NBC Test()
if there is only a single communication round (which is true for all non-blocking
operations used in octopus).

As shown in Sec. 2.1, the maximum number of neighbors is limited. Thus, the
resulting communication pattern for large-scale runs is sparse. The MPI Alltoallv
function, however, is not suitable for large-scale sparse communication patterns
because it is not scalable due to the four index arrays which have to be filled for
every process in the communicator regardless of the communication pattern. This
results in arrays mostly filled with zeros that still have to be generated, stored
and processed in the MPI call and is thus a performance bottleneck at large-scale.
Filling those arrays correctly is also complicated for the programmer and a source
of common programming errors. To tackle the scalability and implementation
problems, we propose new collective operations [8] that are defined on the well
known MPI process topologies. The following section describes the application
of one of the proposed collective operations to the problem described above.
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Topological Collective Operations We define a new class of collective oper-
ations defined on topology communicators. The new collective operation defines
a neighbor exchange where the neighbors are defined by the topology. MPI offers
a regular (cartesian) topology as well as a graph topology that can be used to
reflect arbitrary neighbor relations. We use the graph communicator to repre-
sent the neighborship of partitions generated by METIS for the particular input
system. MPI Graph create is used to create the graph communicator. We im-
plemented our proposal in LibNBC, the functions NBC Get neighbors count and
NBC Comm neighbors return the neighbor count and the order of ranks for the
send/receive buffers respectively. The operation NBC Ineighbor xchg performs a
non-blocking neighbor exchange in a single step.

Programmability It seems more natural to the programmer to map the out-
put of a graph partitioner (e. g., an adjacency list that represents topological
neighbors) to the creation of a graph communicator and simply perform collec-
tive communication on this communicator rather than performing the Alltoallv
communication. To emphasize this, we demonstrate pseudocodes that perform
a similar communication operation to all graph neighbors indicated in an undi-
rected graph (list[i][0] represents the source and list[i][1] the destination
vertex of edge i and is sorted by source node).

1 rdpls = malloc(p*sizeof(int)); sdpls = malloc(p*sizeof(int));

rcnts = malloc(p*sizeof(int)); scnts = malloc(p*sizeof(int));

for(i=0; i<p; i++) { scnts[i] = rcnts[i] = 0; }

for(i=0; i<len(list); i++) if(list[i][0] == rank)

scnts[list[i][1]] = count; rcnts[list[i][1]] = count;

6 sdispls[0] = rdispls[0] = 0;

for(i=1; i<p; i++) {

sdpls[i] = sdpls[i-1] + scnts[i];

rdpls[i] = rdpls[i-1] + rcnts[i]; }

NBC_Ialltoallv(sbuf, scnts, sdpls, dt, rcnts, rdpls, dt, comm, req);

11 /* computation goes here */

NBC_Wait(req, stat);

Listing 1.1. NBC Ialltoall Implementation.

Listing 1.1 shows the NBC Ialltoall implementation which uses four different ar-
rays to store the adjacency information. The programmer is fully responsible
for administering those arrays. Listing 1.2 shows the implementation with our
newly proposed operations that acquire the same information from the MPI li-
brary (topology communicator layout). The processes mapping in the created
graph communicator might be rearranged by the MPI library to place tightly
coupled processes on close processors (e. g. on the same SMP system). The col-
lective neighbor exchange operation allows other optimizations (e. g. starting
off-node communication first to overlap local memory copies of on-node commu-
nication). Due to the potentially irregular grid (depending on the input system),
the number of points communicated with each neighbor might vary. Thus, we
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used the vector variant NBC Ineighbor xchgv to implement the neighbor exchange
for octopus.

last = list[0][0]; counter = 0; // list is sorted by source

for(i=0; i<len(list); i++) {

3 if(list[i][0] != last) index[list[i][0]] = counter;

edges[counter++] = list[i][1];

}

MPI_Graph_create(comm, nnodes, index, edges, 1, topocomm);

NBC_Ineighbor_xchg(sbuf, count, dt, rbuf, count, dt, topocomm, req);

8 /* computation goes here */

NBC_Wait(req, stat);

Listing 1.2. NBC Ineighbor xchg Implementation.

3 Performance Analysis

We benchmarked our implementation on the CHiC supercomputer system, a
cluster computer consisting of nodes equipped with dual socket dual-core AMD
2218 2.6 GHz CPUs, connected with SDR InfiniBand and 4 GB memory per
node. We use the InfiniBand-optimized version of LibNBC [7] to achieve highest
performance and overlap. Each configuration was ran three times on all four
cores per node (4-16 nodes were used) and the average values are reported.
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Fig. 4. LibNBC and octopus communication overhead.

Fig. 4(a) shows the microbenchmark results for the overhead of NBC Ialltoallv
and NBC Ineigbor xchgv of NBCBench [6] with 10 neighbors under th assumption
that the whole communication time can be overlapped. The overhead of the new
neighbor exchange operation is slightly lower than the NBC Ialltoallv overhead
because the implementation does not evaluate arrays of size P . Fig. 4(b) shows
the communication overhead of a fixed-size ground state calculation of a chain of
Lithium and Hydrogene atoms. The overhead varies (depending on the technique
used) between 22% and 25% on 16 processes. The bars in Fig. 4(b) show the total
communication overhead and the tackled neighbor exchange overhead (lower
part). We analyze only the overhead-reduction and easier implementation of
the neighbor exchange in this work. The application of non-blocking neighbor
collective operations efficiently halves the neighbor exchange overhead and thus
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improves the performance of octopus by about 2%. The improvement is smaller
on 64 processes because the time to overlap is due to the strong scaling problem
much smaller than in the 32 or 16 process case. The gain of using the nearest
neighbor exchange collective is marginal at this small scale. Memory restrictions
prevented bigger strong-scaling runs.

4 Conclusions and Future Work

We proposed a new class of collective operations that enable collective communi-
cation on a processor topology defined by an MPI graph communicator and thus
simplify the implementation significantly. We showed the application of the new
operations to the quantum mechanical simulation program octopus. The com-
munication overhead of the neighbor exchange operation was efficiently halved
by overlapping of communication and computation improved the application
performance.
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IX

A Formula for the message size

Given an arbitray surface S described by a function r = r(ϕ, θ) in sperical
coordinates. The volume V of S is the integral

V =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ r(ϕ,θ)

0

dr′r′2(ϕ, θ). (5)

Enlarging this volume by a constant offset d in each direction, i. e. performing
the transformation r(ϕ, θ)→ r(ϕ, θ) + d yields the new volume integral

Vd =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ r(ϕ,θ)+d

0

dr′r′2(ϕ, θ)

=

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

[

1

3
r′3(ϕ, θ)

]r(ϕ,θ)+d

0

=

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
1

3

[

r3(ϕ, θ) + 3r2(ϕ, θ)d + 3r(ϕ, θ)d2 + d3
]

. (6)

Subtracting equation (5) from (6) we get the expression

Vd − V =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
1

3

[

3r2(ϕ, θ)d + 3r(ϕ, θ)d2 + d3
]

(7)

for the enlargement which we rewrite in terms of V = V (r(ϕ, θ)3):

Vd − V =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
1

3

[

3
3
√

V d + 3r
√

V d2 + d3
]

(8)

Substituting NP
P

for V and introducing the shape-dependent constants α, β, γ,
we obtain equation (3).

About the δ: V =
∫ 2π

0 dϕ
∫ π

0 dθ sin θ
∫ r(ϕ,θ)

0 dr′r′2(ϕ, θ) =
∫ 2π

0
dϕ

∫ π

0
dθ sin θ

[

1
3r′3(ϕ, θ)

]r(ϕ,θ)

0
. Subtracting this expression from (6)

yields the expression (8) for the enlargement. So, there is no δ. I admit, the final
step is a bit handwavy. It just states that, for a given r(ϕ, θ) the expression
for Vd − V is composed of a term proportional to the surface of V , to the
circumference of V and the the cube of the enlargement d. One can see it like
this: Let’s assume V is a cube with side length a, then the enlargement is
(a + d)3 − a3 = a3 + 3a2d + 3ad2 + d3 − a3. With a = 3

√
V , a2 =

3
√

V 2, we

get α
3
√

V 2d + β
√

V d2 + γd3 and α = 3, β = 3 and γ = 1. As every volume
can be thought of as composed of infinitesimal cubes, one can generalize this
statement, but I have not done the precise mathematical steps for this, i. e.
doing the lima→0 etc.


