
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER, JENS DOMKE

Fail-in-Place Network Design

(paper at ACM/IEEE SC14 with Jens Domke and Satoshi Matsuoka)

Images belong to their creator!

spcl.inf.ethz.ch

@spcl_eth

 I’m an HPC (systems) guy

 Programming Models

 Performance Models

 Network (Models)

Background

2

spcl.inf.ethz.ch

@spcl_eth

Massive networks

needed to connect

compute nodes of

supercomputers!

3

HPC Systems / Networks

1993: NWT (NAL)

140 Nodes

Crossbar Network

2004: BG/L (LLNL)

16,384 Nodes

3D-Torus Network

2011: K (RIKEN)

82,944 Nodes

6D Tofu Network

2013: Tianhe-2 (NUDT)

16,000 Nodes

Fat-Tree

spcl.inf.ethz.ch

@spcl_eth

 Similarities to car traffic, …

 Key requirements: low latency,

high throughput, low congestion,

fault-tolerant, deadlock-free

 Static (or adaptive)

 Highly depended

on network topology

and technology

4

Routing in HPC Networks

SC’13

SC’14

spcl.inf.ethz.ch

@spcl_eth

Topology-aware

 Highest throughput

 Fast calculation of

 routing tables

 Deadlock-avoidance

 based on topology

 characteristics

 Designed only for

 specific type of

 topology

 Limited fault-tolerance

5

Categories of Routing Algorithms

Topology-agnostic

 Can be applied to every

 connected network

 Fully fault-tolerant

 Throughput depends

 on algorithm/topology

 Slow calculation of

 routing tables

 Complex deadlock-

 avoidance (CDG/VLs or

 prohibited turns)

[Flich, 2011]

spcl.inf.ethz.ch

@spcl_eth

 LANL Cluster 2 (97–05)

 Unknown size/config.

 Deimos (07–12)

 728 nodes; 108 IB

switches; ≈1,600 links

 TSUBAME2.0/2.5 (10–?)

 1,555 nodes (1,408

compute nodes);

≈500 IB switches;

≈7,000 links

 Software more reliable

 High MTTR

 ≈1% annual failure rate

 Repair/maintenance is

expensive!

6

Empirical Data on Network Failures

spcl.inf.ethz.ch

@spcl_eth

 Common in storage systems

 Example: IBM’s Flipstone [Banikazemi, 2008]

 uses RAID arrays; software disables failed HDD, migrates data

 Replace only critical failures, and disable non-critical failed

components

 Usually applied when maintenance costs exceed maintenance

benefits

 Can we do the same in HPC networks?

7

Fail-in-Place Primer

spcl.inf.ethz.ch

@spcl_eth

 Extensively studied in literature, but ignores routing

 E.g., (bisection) bandwidth, latency, diameter, degree

 NP-complete for arbitrary/faulty networks

 Topology resilience alone is not sufficient

 Network connectivity does not ensure routing connectivity

(especially for topology-aware algorithms)

 We need different metrics for practical

 fail-in-place networks!

8

Network Failure Metrics

spcl.inf.ethz.ch

@spcl_eth

 Important for availability estimation and

timeout configuration for MPI, IB, …

 Rerouting can take minutes [Domke, 2011]

 For small error counts it can be extrapolated by

i.e., multiples of the

avg. edge forwarding

index πe

 100 random fault 

patterns for each

error count

9

(1) Disconnected Paths Metric

spcl.inf.ethz.ch

@spcl_eth

Intercept
Slope

 Fault-dependent degradation

measurement for fixed traffic patterns

 Multiple random faulty networks

per failure percentage (seeded)

 Linear regression to gather

intercept, slope, R2 coeff. of

determination

 Good routing: high intercept,

slope close to 0, R2 close to 1

 Possible conclusions

 Compare quality of routing algorithms

 Change routing if two lin. regressions intersect

10

(2) Throughput Degradation Metric

spcl.inf.ethz.ch

@spcl_eth

 OMNet++ 4.2.2

 Discrete event simulation environment

 Widely used in academia and open-source

 IBmodel for OMNet++ [Gran, 2011]

 InfiniBand model developed by Mellanox, improved by Simula

 4X QDR IB (32Gb/s peak); 7m copper cables (43ns propagation delay);

36-port switches (cut-through switching); max. 8 VLs; 2,048 byte MTU, flit

= 64 byte

 Transport: unreliable connection (UC)  no ACK msg

 Tuned all simulation parameters with a real testbed with 1 switch and 18

HCAs

11

IB Flit-level Simulation

spcl.inf.ethz.ch

@spcl_eth

 Uniform random injection

 Infinite traffic generation (message size: 1 MTU)

 Show the max. network throughput (measure at sinks)

 Seeded Mersenne twister for randomness/repeatability

 Exchange pattern of varying shift distances

 Finite traffic (message size: 1 or 10 MTU)

 Determine distances between all HCAs

 Send first to closest neighbors (w/ shift s=±1)

 In-/decrements the shift distance up to ±

12

Traffic Injection

#HCA

2

spcl.inf.ethz.ch

@spcl_eth

 Default OMNet++ behaviour

 Runs for configured time or until termination by user

 Flow control packets in IBmodel  no termination

 Steady state simulation (for uniform random)

 Stop simulation if sink bandwidth is within a 99% confidence interval for at

least 99% of the HCAs

13

Enhancement #1 (Steady State Detection)

 … Network …

Steady State Controller

1st Sink/HCA
nth Sink/HCA

Report if steady state reached
Sinks monitor

avg. incoming

bandwidth

spcl.inf.ethz.ch

@spcl_eth

 Send/receive controller (for exchange traffic)

 Steady state controller not applicable

 Generator/sink modules (of HCAs) report to global send/receive controller

 Controller stops simulation after last message arrived

14

Enhancement #2 (Message Counting)

 Network

Send/Receive Controller

Generator Sink

Report after last flit of

one message arrived

Report message

creation/destination

Report after last

message was created

Send message

spcl.inf.ethz.ch

@spcl_eth

 Deadlock (DL) controller

 Accurate DL detection too complex (runtime)

 Low-overhead distributed DL-detection based on hierarchical DL-detection

protocol [Ho, 1982]

 Local DL controller observes switch ports (states: idle, sending, and

blocked); reports to global DL controller;

15

Enhancement #3 (Deadlock Detection)

 … Network …

Global DL Controller

1st Switch nth Switch Monitor all ports

of one switch

Report state changes

of whole switch

1st Local DL Controller nth Local DL Controller

Stop sim. & report DL if no

switch is sending and at

least one is blocked

spcl.inf.ethz.ch

@spcl_eth

 Generate faulty topology based on artificial/real

network (preserve physical connectivity)

 Apply topology-[aware | agnostic] routing & check

logical connectivity

 Convert to OMNet++ readable format

 Execute [random | all-2-all] traffic simulation

16

Open-Source Simulation Toolchain

spcl.inf.ethz.ch

@spcl_eth

Use toolchain to

try all in OpenSM

implemented

routing algorithms

with all topologies

(small artificial

and real HPC)

DOR impl. in

OpenSM is not

really topology-

aware

  deadlocks for

 some networks

17

Valid Combinations for Routing/Topology

spcl.inf.ethz.ch

@spcl_eth

1% link failures (= two faulty links) results in 30% performance

degradation for topology-aware routing

algorithms

Whisker plots

of consumption

BW at sinks

VL usage results

in DFSSSP’s

fan out

(avg. values from 3 simulations

 with seeds=[1|2|3] per failure

 percentage)

18

Result #1: Small Failure = Big Loss

spcl.inf.ethz.ch

@spcl_eth

19

Result #2: Balanced vs. Unbalanced

1% link failures (= two faulty

links) can yield up to 30%

performance degradation

Unbalanced network

configuration (i.e., unequal

#HCA/switch) can have same

effect

spcl.inf.ethz.ch

@spcl_eth

For some topologies neither topology-aware nor topology-agnostic

routing algorithms perform well.

Topology-agnostic

Low throughput

Topology-aware

Not resilient

enough

Solution: changing

routing algorithm

depending on failure rate

(10 sim. with seeds=[1..10]

 per failure percentage)

20

Result #3: Topology-aware vs. agnostic

spcl.inf.ethz.ch

@spcl_eth

Serious mismatch between static routing and traffic pattern results

in low throughput for the fault-free case

[Hoefler, 2008]

Failures will change

the deterministic

routing leading to

an improvement for

the same pattern

21

Result #4: Failure = Throughput ???

spcl.inf.ethz.ch

@spcl_eth

 DFSSSP & LASH failed to route the 3D torus

 Kautz graph either very resilient or bad routing

Working routing

 3D torus

 Torus-2QoS

 Dragonfly

 DFSSSP, LASH

 Kautz graph

 LASH

 14-ary 3-tree

 DFSSSP, LASH

Fat-Tree, Up*/Down*

(Only best routing shown)

22

Result #5: Routing at Larger Scales

spcl.inf.ethz.ch

@spcl_eth

Up*/Down* routing is default on TSUBAME2.0

Changing to DFSSSP routing

on TSUBAME2.0 improves the

throughput by 2.1x for the

fault- free network and increases

TSUBAME’s fail-in-place

characteristics

23

Case Study #1: TSUBAME2.0 (TiTech)

• Simulation of 8 years of TSUBAME2.0’s

lifetime (≈1% annual link/switch failure)

• Upgrade TSUBAME2.0 to 2.5 did not

change the network

• No correlation between throughput using

Up*/Down* and failures

2.1x

spcl.inf.ethz.ch

@spcl_eth

3x

Improvement of 3x with

DFSSSP over MinHop

(default; deadlocks)

No degradation even

with fail-in-place approach

No maintenance cost

(except for replacing

 critical components)

24

Case Study #2: Deimos (TU Dresden)

• Sim. of 8 years of Deimos’ lifetime (0.2%

annual link & 1.5% switch failure)

• Deimos’ network is very sparse

spcl.inf.ethz.ch

@spcl_eth

Routing/Library Development

 Test new routings via plugin interface

 Improve MPI collectives to match oblivious routing

HPC Design

 Test topology/routing combinations

 Extrapolate throughput degradation over time based on estimated failure

rates and derive operation policies

HPC System Management

 Simulate current throughput w/o influencing the real system and decide if

maintenance/action is needed

25

Other Toolchain Use Cases

spcl.inf.ethz.ch

@spcl_eth

 Topology-aware routing algorithms

 Few failures can have big influence on throughput

 Resilience/deadlock issues for large #failures

 Problems with unbalanced networks (e.g., thru adding management

nodes, damaged HCAs, …)

 Topology-agnostic routing algorithms

 Usually higher runtime  recovery takes longer

 Potentially lower throughput for some regular topologies

 Scaling issues if deadlock-freedom is required (i.e., known DL-free

routings, based on VLs, exceed available number of virtual lanes for large

scale networks)

26

Issues with current routings

spcl.inf.ethz.ch

@spcl_eth

What we can’t give you

 Name the best topology or the best routing algorithm

 Definitive answer which topology or routing is best for your needs

 General estimation on cost savings:

Depends on many variables: such as network size, failure rate, hardware

costs, maintenance costs, …

 However, we showed and can provide

 Simulation framework helps to easily identify efficient topology/routing

combination

 Toolchain (see http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP)

 Test system designs, topologies, routing algorithms

 Evaluate throughput degradation of running system

 Main Result: Fail-in-place networks can be beneficial! 

27

Conclusion / Summary

spcl.inf.ethz.ch

@spcl_eth

 Eitan Zahavi (Mellanox)

 Developed the initial IBmodel for OMNeT++

 Researchers at Simula Research Laboratory

 Ported the IB module to newest OMNeT++ version

 HPC system administrators at Los Alamos National Lab,

Technische Universität Dresden, and Tokyo Institute of

Technology

 Collected highly detailed failure data

 References:
[Banikazemi, 2008]: M. Banikazemi, J. Hafner, W. Belluomini, K. Rao, D. Poff, and B. Abali, “Flipstone: Managing Storage

with Fail-in-place and Deferred Maintenance Service Models,” SIGOPS Oper. Syst. Rev., vol. 42, no. 1, pp. 54–62, Jan. 2008.

[Domke, 2011]: J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-Free Oblivious Routing for Arbitrary Topologies,” in

Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium. Washington, DC, USA

[Flich, 2011]: J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato, M. Koibuchi, T. Rokicki, and J. C. Sancho,

“A Survey and Evaluation of Topology-Agnostic Deterministic Routing Algorithms,” IEEE Trans. Parallel Distrib. Syst.

[Gran, 2011]: E. G. Gran and S.-A. Reinemo, “InfiniBand congestion control: modelling and validation,” in Proceedings of

the 4th International ICST Conference on Simulation Tools and Techniques, ser. SIMUTools ’11.

[Ho, 1982]: G. Ho and C. Ramamoorthy, “Protocols for Deadlock Detection in Distributed Database Systems,” IEEE

Transactions onSoftware Engineering, vol. SE-8, no. 6, pp. 554–557, 1982.

[Hoefler, 2008]: T. Hoefler, T. Schneider, and A. Lumsdaine, “MultistageSwitches are not Crossbars: Effects of Static

Routing in High-Performance Networks,” in Proceedings of the 2008 IEEE International Conference on Cluster Computing.

IEEE Computer Society, Oct. 2008.

28

Acknowledgements

spcl.inf.ethz.ch

@spcl_eth

 DARE - Fast RDMA replicated

state machines [1]

 Access latency: 6/9 us

(22-35x faster than Zookeeper)

 Request throughput : 720/460kreq/s

(1.7x faster than Zookeeper)

 Available within 30ms of leader crash

no interruption for server failure

 All strongly consistent (linearizable)

 HTM for distributed memory graph analytics [2]

 Accelerates Graph500 & Galois by 10-50%, beats Hama by 100-1000x

 Slim Fly and other diameter-2 topologies [3]

 Including Ethernet routing options

Related projects at SPCL@ETH

[1]: M. Poke, TH: “DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’15

[2]: M. Besta, TH: “Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages”, HPDC’15

[3]: M. Besta, TH: “Slim Fly: A Cost Effective Low-Diameter Network Topology”, SC’14

29

