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 I’m an HPC (systems) guy 

 

 

 

 

 

 

 

 

 

 Programming Models 

 Performance Models 

 Network (Models) 

Background 
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Massive networks 

needed to connect 

compute nodes of  

supercomputers! 
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HPC Systems / Networks 

1993: NWT (NAL) 

140 Nodes 

Crossbar Network 

2004: BG/L (LLNL) 

16,384 Nodes 

3D-Torus Network 

2011: K (RIKEN) 

82,944 Nodes 

6D Tofu Network 

2013: Tianhe-2 (NUDT) 

16,000 Nodes 

Fat-Tree 
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 Similarities to car traffic, … 

 Key requirements: low latency, 

high throughput, low congestion, 

fault-tolerant, deadlock-free 

 Static (or adaptive) 

 Highly depended 

on network topology 

and technology 
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Routing in HPC Networks 

SC’13 

SC’14 
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Topology-aware 

 Highest throughput 

 Fast calculation of  

 routing tables 

 Deadlock-avoidance  

 based on topology  

 characteristics 

 Designed only for  

 specific type of  

 topology 

 Limited fault-tolerance 

5 

Categories of Routing Algorithms 

Topology-agnostic 

  Can be applied to every   

 connected network 

  Fully fault-tolerant 

  Throughput depends  

 on algorithm/topology 

  Slow calculation of  

 routing tables 

  Complex deadlock- 

 avoidance (CDG/VLs or  

 prohibited turns) 

[Flich, 2011] 
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 LANL Cluster 2 (97–05) 

 Unknown size/config. 

 Deimos (07–12) 

 728 nodes; 108 IB 

switches; ≈1,600 links 

 TSUBAME2.0/2.5 (10–?) 

 1,555 nodes (1,408 

compute nodes); 

≈500 IB switches; 

≈7,000 links 

 Software more reliable 

 High MTTR 

 ≈1% annual failure rate 

 Repair/maintenance is  

expensive! 
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Empirical Data on Network Failures 
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 Common in storage systems 

 Example: IBM’s Flipstone  [Banikazemi, 2008] 

 uses RAID arrays; software disables failed HDD, migrates data 

 Replace only critical failures, and disable non-critical failed 

components 

 Usually applied when maintenance costs exceed maintenance 

benefits 

 

 Can we do the same in HPC networks? 
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Fail-in-Place Primer 
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 Extensively studied in literature, but ignores routing 

 E.g., (bisection) bandwidth, latency, diameter, degree 

     NP-complete for arbitrary/faulty networks 

 Topology resilience alone is not sufficient 

 Network connectivity does not ensure routing connectivity 

(especially for topology-aware algorithms) 
 

   

                We need different metrics for practical 

               fail-in-place networks! 
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Network Failure Metrics 
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 Important for availability estimation and 

timeout configuration for MPI, IB, … 

 Rerouting can take minutes  [Domke, 2011] 

 For small error counts it can be extrapolated by 

 

 

i.e., multiples of the 

avg. edge forwarding 

index πe 

 100 random fault      

patterns for each  

error count 
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(1) Disconnected Paths Metric 
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Intercept 
Slope 

 Fault-dependent degradation 

measurement for fixed traffic patterns 

 Multiple random faulty networks 

per failure percentage (seeded) 

 Linear regression to gather 

intercept, slope, R2 coeff. of 

determination 

 Good routing: high intercept, 

slope close to 0, R2 close to 1 

 Possible conclusions 

 Compare quality of routing algorithms 

 Change routing if two lin. regressions intersect 
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(2) Throughput Degradation Metric 
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 OMNet++ 4.2.2 

 Discrete event simulation environment 

 Widely used in academia and open-source 

 IBmodel for OMNet++  [Gran, 2011] 

 InfiniBand model developed by Mellanox, improved by Simula 

 4X QDR IB (32Gb/s peak); 7m copper cables (43ns propagation delay); 

36-port switches (cut-through switching); max. 8 VLs; 2,048 byte MTU, flit 

= 64 byte 

 Transport: unreliable connection (UC)  no ACK msg 

 Tuned all simulation parameters with a real testbed with 1 switch and 18 

HCAs 
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IB Flit-level Simulation 
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 Uniform random injection 

 Infinite traffic generation (message size: 1 MTU) 

 Show the max. network throughput (measure at sinks) 

 Seeded Mersenne twister for randomness/repeatability 

 Exchange pattern of varying shift distances 

 Finite traffic (message size: 1 or 10 MTU) 

 Determine distances between all HCAs 

 Send first to closest neighbors (w/ shift s=±1) 

 In-/decrements the shift distance up to ± 
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Traffic Injection 

#HCA

2
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 Default OMNet++ behaviour 

 Runs for configured time or until termination by user 

 Flow control packets in IBmodel  no termination 

 Steady state simulation (for uniform random) 

 Stop simulation if sink bandwidth is within a 99% confidence interval for at 

least 99% of the HCAs 
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Enhancement #1 (Steady State Detection) 

        …  Network  … 

Steady State Controller 

1st Sink/HCA 
nth Sink/HCA 

Report if steady state reached 
Sinks monitor 

avg. incoming 

bandwidth 
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 Send/receive controller (for exchange traffic) 

 Steady state controller not applicable 

 Generator/sink modules (of HCAs) report to global send/receive controller 

 Controller stops simulation after last message arrived 
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Enhancement #2 (Message Counting) 

             Network 

Send/Receive Controller 

Generator Sink 

Report after last flit of 

one message arrived 

Report message 

creation/destination 

Report after last 

message was created 

Send message 
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 Deadlock (DL) controller 

 Accurate DL detection too complex (runtime) 

 Low-overhead distributed DL-detection based on hierarchical DL-detection 

protocol [Ho, 1982] 

 Local DL controller observes switch ports (states: idle, sending, and 

blocked); reports to global DL controller;  

15 

Enhancement #3 (Deadlock Detection) 

          …  Network  … 

Global DL Controller 

1st Switch nth Switch Monitor all ports 

of one switch 

Report state changes 

of whole switch 

1st Local DL Controller nth Local DL Controller 

Stop sim. & report DL if no 

switch is sending and at 

least one is blocked 
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 Generate faulty topology based on artificial/real 

network (preserve physical connectivity) 

 Apply topology-[aware | agnostic] routing & check 

logical connectivity 

 Convert to OMNet++ readable format 

 Execute [random | all-2-all] traffic simulation 
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Open-Source Simulation Toolchain 
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Use toolchain to 

try all in OpenSM 

implemented 

routing algorithms 

with all topologies 

(small artificial 

and real HPC) 
 

DOR impl. in 

OpenSM is not 

really topology- 

aware 

   deadlocks for 

       some networks 
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Valid Combinations for Routing/Topology 
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1% link failures (= two faulty links) results in 30% performance 

degradation for topology-aware routing 

algorithms 
 

Whisker plots 

of consumption 

BW at sinks 

VL usage results 

in DFSSSP’s 

fan out 
 

 

(avg. values from 3 simulations 

  with seeds=[1|2|3] per failure 

  percentage ) 
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Result #1: Small Failure = Big Loss 
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Result #2: Balanced vs. Unbalanced 

1% link failures (= two faulty 

links) can yield up to 30% 

performance degradation 

Unbalanced network 

configuration (i.e., unequal 

#HCA/switch) can have same 

effect 
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For some topologies neither topology-aware nor topology-agnostic 

routing algorithms perform well. 
 

Topology-agnostic 

Low throughput 

Topology-aware 

Not resilient 

enough 

Solution: changing 

routing algorithm 

depending on failure rate 
 

(10 sim. with seeds=[1..10] 

  per failure percentage) 
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Result #3: Topology-aware vs. agnostic 
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Serious mismatch between static routing and traffic pattern results 

in low throughput for the fault-free case 

[Hoefler, 2008] 
 

 

 

 

 

 

 

 

Failures will change  

the deterministic 

routing leading to  

an improvement for  

the same pattern 
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Result #4: Failure = Throughput ??? 
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 DFSSSP & LASH failed to route the 3D torus 

 Kautz graph either very resilient or bad routing 
 

Working routing 

 3D torus 

 Torus-2QoS 

 Dragonfly 

 DFSSSP, LASH 

 Kautz graph 

 LASH 

 14-ary 3-tree 

 DFSSSP, LASH 

Fat-Tree, Up*/Down* 
 

(Only best routing shown) 
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Result #5: Routing at Larger Scales 
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Up*/Down* routing is default on TSUBAME2.0 
 

Changing to DFSSSP routing  

on TSUBAME2.0 improves the  

throughput by 2.1x for the  

fault- free network and increases  

TSUBAME’s fail-in-place  

characteristics 
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Case Study #1: TSUBAME2.0 (TiTech) 

• Simulation of 8 years of TSUBAME2.0’s 

lifetime (≈1% annual link/switch failure) 

• Upgrade TSUBAME2.0 to 2.5 did not 

change the network 

• No correlation between throughput using 

Up*/Down* and failures 

2.1x 



spcl.inf.ethz.ch 

@spcl_eth 

3x 

Improvement of 3x with 

DFSSSP over MinHop 

(default; deadlocks) 
 

No degradation even 

with fail-in-place approach 

No maintenance cost 

(except for replacing 

 critical components) 
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Case Study #2: Deimos (TU Dresden) 

• Sim. of 8 years of Deimos’ lifetime (0.2% 

annual link & 1.5% switch failure) 

• Deimos’ network is very sparse 
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Routing/Library Development 

 Test new routings via plugin interface 

 Improve MPI collectives to match oblivious routing 

HPC Design 

 Test topology/routing combinations 

 Extrapolate throughput degradation over time based on estimated failure 

rates and derive operation policies 

HPC System Management 

 Simulate current throughput w/o influencing the real system and decide if 

maintenance/action is needed 

25 

Other Toolchain Use Cases 
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 Topology-aware routing algorithms 

 Few failures can have big influence on throughput 

 Resilience/deadlock issues for large #failures 

 Problems with unbalanced networks (e.g., thru adding management 

nodes, damaged HCAs, …) 

 Topology-agnostic routing algorithms 

 Usually higher runtime  recovery takes longer 

 Potentially lower throughput for some regular topologies 

 Scaling issues if deadlock-freedom is required (i.e., known DL-free 

routings, based on VLs, exceed available number of virtual lanes for large 

scale networks) 

26 

Issues with current routings 
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What we can’t give you 

 Name the best topology or the best routing algorithm 

 Definitive answer which topology or routing is best for your needs 

 General estimation on cost savings: 

Depends on many variables: such as network size, failure rate, hardware 

costs, maintenance costs, … 

 However, we showed and can provide 

 Simulation framework helps to easily identify efficient topology/routing 

combination 

 Toolchain (see http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP) 

 Test system designs, topologies, routing algorithms 

 Evaluate throughput degradation of running system 

 

 Main Result: Fail-in-place networks can be beneficial!  
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Conclusion / Summary 
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 Eitan Zahavi (Mellanox) 

 Developed the initial IBmodel for OMNeT++ 

 Researchers at Simula Research Laboratory 

 Ported the IB module to newest OMNeT++ version 

 HPC system administrators at Los Alamos National Lab, 

Technische Universität Dresden, and Tokyo Institute of 

Technology 

 Collected highly detailed failure data 
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 DARE - Fast RDMA replicated  

state machines [1] 

 Access latency: 6/9 us  

(22-35x faster than Zookeeper) 

 Request throughput : 720/460kreq/s  

(1.7x faster than Zookeeper) 

 Available within 30ms of leader crash 

no interruption for server failure 

 All strongly consistent (linearizable) 

 

 HTM for distributed memory graph analytics [2] 

 Accelerates Graph500 & Galois by 10-50%, beats Hama by 100-1000x 

 

 Slim Fly and other diameter-2 topologies [3] 

 Including Ethernet routing options 

Related projects at SPCL@ETH 

[1]: M. Poke, TH: “DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’15 

[2]: M. Besta, TH: “Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages”, HPDC’15 

[3]: M. Besta, TH: “Slim Fly: A Cost Effective Low-Diameter Network Topology”, SC’14 
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