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Abstract—The implementation and optimization of collective
communication operations is an important field of active re-
search. Such operations directly influence application perfor-
mance and need to map the communication requirements in
an optimal way to steadily changing network architectures. In
this work, we define an abstract domain-specific language to
express arbitrary group communication operations. We show
the universality of this language and how all existing collective
operations can be implemented with it. By design, it readily
lends itself to blocking and nonblocking execution, as well
as to off-loaded execution of complex group communication
operations. We also define several offline and online optimizations
(compiler transformations and scheduling decisions, respectively)
to improve the overall performance of the operation. Performance
results show that the overhead to express current collective
operations is negligible in comparison to the potential gains in a
highly optimized implementation.

I. INTRODUCTION

It is well understood that the abstraction level of collective

group operations, such as Multicast [1] or MPI collective

operations [2], assists developers of parallel and distributed

programs to write portable and efficient code. Common group

operations are typically offered by additional communication

libraries or as part of the operating system functionality. This

separation enables implementers to make them as efficient as

possible for particular target architectures. After decades of

research, many implementations already use advanced algo-

rithms based on several parameters, like topology/hierarchies

(e.g., hypercubes/SMPs), features (e.g., multicast or RDMA),

bandwidth/latency, message sizes/distribution, number of par-

ticipants, arrival patterns, and many more. A prominent ex-

ample are today’s implementations of blocking MPI collective

operations (e.g., [3]). However, the static nature of common

implementations often considers only few parameters (e.g.,

runtime behavior is often ignored). In addition, many simplify-

ing assumptions are made to ensure a manageable complexity

(like idle interconnect and processors). As target systems grow

in their complexity and size, such simple and too restricting

schemes are not sufficient anymore. If some of those simpli-

fying assumptions are not guaranteed, the statically scheduled

version can easily degenerate (e.g., due to a bad process arrival

pattern, trees could degenerate to lists). Thus, we propose

to delay important optimization decisions in order to utilize

the most and up-to-date information (e.g., including current

network load). One necessity is the adaptation of the actual

execution order of the individual building blocks that forms the

operation. Dynamic scheduling strategies at runtime are a well-

understood concept to address these issues, and a promising

candidate to gain the desired optimizations. However, dynamic

scheduling itself is a separate complex topic [4]. It is possible

to implement dynamic scheduling in existing libraries, but it

is certainly a non-trivial effort, which would need to be done

for every target architecture.

Based on those observations, we propose a scheme to sepa-

rate the definition and the execution of group communication

operations. We will specify a complete domain specific lan-

guage that enables implementers to describe currently known

group operation algorithms. Based on this language, we will

discuss the (optimized) translation into an efficient binary

representation. Finally, we also present an interpreter, which

dynamically schedules and executes the group operations.

Because such a more general description and specification

of a group operation does not fix as many parameters as

a direct implementation, the interpreter is quite flexible in

the way it executes the operation. For example, it allows

refinement of earlier scheduling decisions (e.g., using runtime

information), or the utilization of alternative and additional

resources. We discuss different levels of the specification and

give first optimization examples that can be performed during

the different translation steps.

A. Historical Background

Several decades ago, a general shift started from machine-

dependent assembly programming to the general use of high-

level languages such as Fortran. This level of abstraction

started a new era of portable, optimized and highly-productive

programming. Given that the first compiler for Fortran (1957)

produced optimized code whose performance was compara-

ble to that of hand-coded assembly language, this approach

quickly gained acceptance. It can be argued that due to this

abstraction, several optimization possibilities vanish. However,

because modern compilers are typically tuned by experts that

have an excellent knowledge of the target architecture (e.g., the

processor manufacturers), the compilers nowadays generate

machine-code which is likely even better than self-written

assembly code. Those evolutions continue in the shift towards

still higher level languages such as C++, Java, or C# today.

Our proposal lifts the low-level network programming to

this new abstraction layer. Defining simple communication

patterns or even complex group operations in an abstract



way allows a more rapid development whereas increasing

portability. Future translation systems could take the burden

of applying general optimization techniques from the imple-

menter (similar to transformations like loop unrolling), and

additionally enable sophisticated optimizations that might be

target specific (like SSE utilization). The independence to

execute such a group operation (i.e., detached from the main

CPU) even allows the complete offloading of the operations

to a dedicated network card. This plays a special role because

it enables true asynchronous progression (i.e., packets are for-

warded without main CPU involvement) and reduces resource

contention as well as the influence of OS jitter.

Without loss of extensibility, we consider simple network

primitives as basic building blocks for complex group com-

munication operations. Our proposed language can be used

to implement such operations and to compile them into an

optimized (possibly target-specific) representation that is even-

tually executed while being dynamically scheduled at runtime.

B. Universal Group Communication Operations

In order to design a general specification language for

group communication algorithms, we characterize possible

transformations that can be applied to data in a parallel system.

Our definition bases on process-local data items denoting non-

overlapping memory regions, identified by di
j .

Definition 1. A group G is a set of p individual processes,

where each process can be identified by a unique rank number.

The rank is given as an integral value in the interval [0, p).
Each process i in the group possesses a set of data items Di.

The set S = ∪p−1

i=0
Di that consists of the sets of data items

of all processes is called (group) state.

Definition 2. A universal group communication is described

by an initial starting state Ss and a final state Sf .

For example, a broadcast’s starting state would be a data

item dr
0

on a designated root process r and no data items

on the other processes, i.e., Dr = {dr
0
} and Ss = {Dr}.

The broadcast replicates this data to all other processes of the

specified group, i.e., Sf = {D0, D1, . . . , Dp−1| ∀ 0 ≤ i < p :
Di = {dr

0
}}.

Definition 3. A group communication operation F(S1) ⇒
S2 describes a communication function that realizes the state

transition from S1 to S2.

A group communication operation F(S1) ⇒ S2 can itself

be constructed from the strictly ordered application of other

group communication operations: F(S1) = F2(F1(S1)) with

F1(S1) ⇒ Sx and F2(Sx) ⇒ S2. The simplest group com-

munication operation consists of a single primitive function.

Theorem 1. Any state change S1 ⇒ S2 can be expressed with

a strictly ordered sequence of primitive operations. The min-

imally needed primitive operations are transmission of data

items between a pair of processes, and local transformations

of process-local data items.

Proof: Any data item d can simply be transmitted to all

processes and then transformed locally. Local transformations

can copy, transform, or delete data items. Thus, any state

change can be modeled.

We showed that any group operation can be modeled

as a ordered sequence of message transmissions and local

transformations. We will relax this definition in Section II.

C. Background and Related Work

Well-established communication libraries, such as MPI [2],

show that a limited set of group operations is very useful to

support application developers in the development of appli-

cations that communicate in regular patterns. In addition to

that, it is shown by newer developments that it can be very

useful to extend group communication operations to irregular

communication algorithms, such as parallel sparse matrix

computations. A specific proposal for inclusion in the next

generation MPI standard are sparse collective operations [5].

Such operations allow the definition of arbitrary independent

communication relations among a group of processes. This

allows more flexibility than the well-known set of static

collective operations and has a good optimization potential.

Another field of research are nonblocking collective op-

erations. Such operations discern start and completion of a

collective operation, and therefore allow to execute a prede-

fined group communication operation simultaneously to other

computations on the main CPU. Asynchronous progression

makes an abstraction of the group operation necessary and

typical implementations [6], [7] use communication schedules

to represent the communication. However, as far as our expe-

rience goes there is currently no efficient way to create and

handle the necessary schedules. The existing implementations

rely on too simple description and execution schemes that

certainly limit flexibility and prevent better optimizations.

Efficient online work scheduling algorithms for a set of

given resources has been studied in detail in the context of

operating systems. Findings in this area can be applied in order

to implement an efficient scheduler for group operations.

Based on Moore’s law [8], it is clear that parallelism in

computer architectures will continue to emerge and it is easy

to conclude that new concepts have to be found to utilize this

parallelism efficiently. Our concept to separate complex group

communication from the computation enables an additional

level of functional parallelism. If we have an abstract and

versatile definition of communication operations, then it is ob-

vious that those operations can be executed on different units,

e.g., a spare core or a network interface card. New nonblocking

interfaces, such as nonblocking collectives or asynchronous

collective file I/O provide a mighty tool to the developer

that allows full exploitation of the additional resources. Well-

known issues like missing asynchronous progression [9] will

also be solved implicitly by our approach.

II. A UNIVERSAL DEFINITION FOR GROUP OPERATIONS

Theorem 1 shows that we can define a language for uni-

versal group communication operations that is based on two



primitives and a strict ordering among operations. Schemes

implemented in LibNBC [6] and IBM’s Collective Component

Messaging Interface [7] already rely on such a strict ordering.

In order to improve the efficiency of the scheduler, we show

how this ordering can be relaxed to provide more degrees of

freedom at each given scheduling decision.

Theorem 2. Strict ordering is only necessary relative to each

data item.

Proof: All data items denote non-overlapping memory

regions at a specific process. We can introduce dependencies

that are required for a semantically correct execution of a

group communication operation. For each data item, the order

of: transformations, receives, receives and sends, receives and

transformations, and transformations and sends has to be

preserved to ensure correct execution of the group operation.

The relative ordering of transformations and transmissions

between different data items is not required for semantical

correctness because they identify distinct memory locations.

We note that different intermediate states are possible while

the operation is running. Those different possible states form

the pool where the scheduler can choose from.

An example is given in the following (a
c−→ b stands for the

transmission of item c from process a to b, and c = f(g, h)
represents the local transformation (reduction) of g and h to c).

Example 1. Given the state transition

Ss = {D0 = {d0

0
, d0

1
}, D1 = {d1

0
}, D2 = {d2

0
}} to

Sf = {D0 = {d0

0
· d1

0
, d0

1
· d2

0
}, D1 = {d1

0
}, D2 = {d2

0
}}, then

F(Ss) ⇒ Sf : 1
d1

0−→ 0 ◦ 2
d2

0−→ 0 ◦ f(d0

0
, d1

0
) ◦ f(d0

1
, d2

0
) would

be a possible group communication operation.

It is easy to see that transformations can be applied to

this operation as long as the order relative to the data items

is preserved. The transmissions 1
d1

0−→ 0 and 2
d2

0−→ 0 can

for example be exchanged or even executed simultaneously

(which is likely to happen in a communication network).

Also the local computations f(d0

0
, d1

0
) and f(d0

1
, d2

0
) can be

executed independently. However, the order relative to data

items has to be preserved, in this case, data must be received

before the transformation can be applied. This simple example

shows that many possibilities exist to actually implement

group communication operations (typically the number of al-

ternatives grows exponentially with the number of primitives).

On a given target architecture, some of them allow faster

execution (e.g., in parallel) or achieve a better overall message

schedule than others.

In the following section, we propose a formal language

to express arbitrary group communication operations, without

implicitly limiting the number of possible implementations.

III. THE GROUP OPERATIONS ASSEMBLY LANGUAGE

In this section, we specify our Group Operations Assembly

Language (GOAL) that can be used to describe arbitrary group

communication operations. A group communication operation

(global view) is split into the corresponding process-individual

parts (local view), which is then implemented using GOAL.

First, we present a human-readable form of the GOAL, which

can be directly generated, e.g., by profiling tools. We present a

particular example language that can easily be adjusted to the

user’s need and which should be extended to support target-

specific features. Higher-level languages that for instance

directly support collective operations should be layered above

such an assembly language - even though this paper will focus

on the ground work and only envisions follow-up products.

An assembler is used to translate a GOAL source code into

a binary object code (e.g. by creating op-codes and resolving

symbolic names). This intermediate representation could also

be created directly through a library interface whenever the

performance critical assembly step should be avoided.

Next, all primitives in the described group operation will be

pre-scheduled taking the attached dependencies into account

(e.g., by running a topological sort on the resulting DAG),

optimized and transformed into a suitable representation for

an efficient execution.

A. The textual GOAL specification

The textual GOAL is designed as a simple domain specific

language that can be processed by an LR(1) parser. In order

to enable simple evaluation schemes, we require that local

transformations are free of side effects and are guaranteed to

terminate.

In our language, a buffer is a consecutive area of memory

that is simply identified by its starting address and a size. Such

a buffer is conceptually similar to a data item, although buffers

are allowed to have overlapping memory regions. Processes

are simply identified by an integer, and the actual translation

to a hardware address is left to the implementation. Local

transformations are defined on two buffers and are called tasks.

Figure 1 shows the Extended Backus-Naur Form (EBNF)

of the GOAL language. Primitives for local transformations

(function) and data transmission (send/recv) are available. All

these primitive operations can be executed in arbitrary order

or in parallel as long as no restricting dependency is specified.

Such a dependency is necessary if an action can only be started

after another action has been completed. A dependency can

be defined between any pair of primitive operations and is

specified as requ A -> B, which means that A requires B to

be finished before it is allowed to be executed. Dependencies

might also become necessary if buffers overlap and have to

be defined by the user of GOAL. Additionally to ensuring

semantical correctness, dependencies can be used to restrict

scheduling decisions (e.g., the order of sends in a binomial

tree is crucial for its runtime as opposed to a binary tree).

Note that terminal symbols that denote action types or

parametrize actions, such as send, recv, requ, exec, to, with,

from and user are not allowed as identifiers. An arbitrary num-

ber of whitespaces (newline, tab, space) is allowed between

any tokens in the language. Everything between a # sign and

the end of a source line is ignored (e.g., for comments).



<GOAL> ::= ( (<operation> | <dependency>) ’;’ )+

<letter> ::= ’a’|’b’|..|’y’|’z’ | ’A’|’B’|..|’Y’|’Z’

<digit> ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’

<integer> ::= <digit>+

<identifier> ::= <letter> { <letter> | <digit> | ’_’ }

<function> ::= (* will be defined below *)

<buffer> ::= <integer> ’,’ <integer>

<target> ::= <integer> (* unique identifier for other processes *)

<sendop> ::= ’send’ <buffer> ’to’ <target>

<recvop> ::= ’recv’ <buffer> ’from’ <target>

<task> ::= ’exec’ <function> ’with’ <buffer> ’,’ <buffer>

<operation> ::= [ <identifier> ’:’ ] ( <sendop> | <recvop> | <task> )

<dependency> ::= ’requ’ <identifier> ’->’ <identifier>

Fig. 1. Extended Backus-Naur Form of GOAL

The semantics of a send/receive pair is clear, they simply

transmit a message from one process to another. Local opera-

tions can either be chosen from a set of predefined operations

or from arbitrary user-supplied functions. The former have

the advantage that they only define semantics and therefore

allow execution on all units that support this operation. For

predefined operations, both buffers must contain the same

number of basic elements. This restriction does not apply to

user-defined operations where the user is free to use the two

buffers arbitrarily. The set of element-wise reduction functions

is predefined as follows.

<opcode> ::= (’max’|’min’|’sum’|’prod’) |

(’l’|’b’)(’and’|’or’|’xor’) | ’copy’

(* logical, bitwise and copy *)

<datatype> ::= (’Int’|’UInt’|’Float’)

(’8’|’16’|’32’|’64’)

<function> ::= <opcode> <datatype> |

’user’ <integer> (* function ident. *)

The user can define own functions that accept two buffer

arguments with the keyword user. The interpreter will then

ensure that the function at the supplied pointer will be executed

by the main CPU with the arguments (*func)(void *buf1,

int size1, void* buf2, int size2).

If we assume 1 byte integer data items beginning at address

500 and sum as operation, Example 1 could be expressed in

textual GOAL on the three participating processes as follows:

Example 2.

rank #0 {

r1: recv 503,1 from 1;

r2: recv 504,1 from 2;

e1: exec sumInt8 with 501,1 503,1;

e2: exec sumInt8 with 502,1 504,1;

requ e1 -> r1;

requ e2 -> r2;

}

rank #1, #2 {

send 501,1 to 0;

}

B. GOAL Library Interface

Our EBNF description can be turned into a library interface

that retains all optimization and transformation possibilities

of the original language. However, there are many ways

to implement such an interface. Our implementation in

LibNBC [6] uses the following functions:

goal GOAL_Create() = creates an opaque GOAL object

fid GOAL_Reg_func(goal, func) = register user function

id GOAL_Send(goal, sbuf, size, dest) ≡ <sendop>

id GOAL_Recv(goal, rbuf, size, src) ≡ <recvop>

id GOAL_Exec(goal, fid, buf1, s1, buf2, s2) ≡ <task>

GOAL_Requ(goal, A, B) ≡ <dependency>

sched GOAL_Compile(goal) = assembly step

GOAL_Sched_run(sched) = execute schedule

Example 3. Example 2 could be expressed as follows:

GOAL_Create()

if (rank = 0) {

r1 = GOAL_Recv(g,503,1,1)

r2 = GOAL_Recv(g,504,1,2)

e1 = GOAL_Exec(g,sumInt8,501,1,503,1)

e2 = GOAL_Exec(g,sumInt8,502,1,504,1)

GOAL_Requ(g,e1,r1)

GOAL_Requ(g,e2,r2)

}

elif ((rank = 1) or (rank = 2)) {

GOAL_Send(g,501,1,0)

}

sched = GOAL_Compile(g)

C. The GOAL Schedule

The GOAL language (both the textual version as well as

the library version) define an architecture-independent way

of expressing group operations. For performance reasons,

GOAL is translated into a machine-dependent format, just like

other languages, such as C/C++ and Java which are compiled

into machine language (or bytecode respectively). This final

representation, called schedule, should be carefully adapted

to execute efficiently on the target (network) architecture.

We call the particular description for a specific architecture



Network Instruction Set Architecture (NISA). In this paper

we define the NISA that we used to implement our first

prototype for execution on a separate CPU core. This NISA

can be extended or adapted to different network architectures

(e.g., InfiniBand [10] targets could split a send operation into

a memory-registration task and an RDMA write operation,

thus enabling more parallelism and automatic/pipelined pre-

registration such as in [11]).

All group communication operations in a GOAL description

form a Directed Acyclic Graph (DAG) G = (V, E) where the

set of vertices V includes all actions and the set of edges

E includes all dependencies. Such a DAG can be serialized

into a stream of actions that retains all properties of the DAG.

Multiple different streams are often possible and thus enable

dynamic scheduling. We use the following binary format to

hold the resulting schedule:

<SCHEDULE> ::= <independent> <action>+

<count> ::= (* unsigned 32-bit integer *)

<offset> ::= (* unsigned 32-bit integer *)

<num sources> ::= (* unsigned 16-bit integer *)

<type> ::= (* unsigned 16-bit integer *)

<independent> ::= <count> <offset>+

<dependent> ::= <count> <offset>*
<action> ::= <num sources> <operation> <dependent>

<operation> ::= <type> <parameters>

<parameters> ::= (* operation-specific parameters *)

This representation embeds all topological sorts of the DAG,

thus enabling efficient dependency-driven scheduling. All in-

dependent actions (i.e., actions that can be started immediately

without waiting for anything) are listed at the beginning of the

schedule (offsets are given relative to the start of the schedule).

All other actions in the schedule depend on at least one other

action. Actions start with a counter representing the number of

incoming edges in the DAG, followed by the actual operation

with its specific parameters, and close with references to all

dependent actions.

Such techniques have been explored for DAG-driven com-

putations in the past [12], [13], and we want to establish

an equivalent for the more general group communication

operations. Our execution model represents the data-driven

execution in the established models. Demand-driven execution

would cause many control messages (each process would have

to request data from remote processes instead of just receiving

it) and is thus not considered.

Example 4. Figure 2(a) shows our Example in form of

a DAG representation. The independent actions r1 and r2
(num sources = 0) have e1 and e2 as dependent actions

respectively. The actions e1 and e2 both depend on exactly

one other action and therefore have a sources counter of 1

in the schedule. Figure 2 (b-e) shows some possible orders of

execution of this graph. The online scheduler can choose the

best execution order based on the availability of either data

item c or d (cf. Example 1). Also note, that (e.g., on a multi-

core CPU) e1 and e2 can be executed in parallel, and (e.g.,

on a multi-port network), r1 and r2 can received in parallel.

Therefore, the scheduler is free to execute the whole DAG

e1

r1

e2

r2

(a) Dependencies

r2

e2

r1

e1

(b)

e1

r2

e2

r1

(c)

e2

e1

r1

r2

(d)

e1

e2

r1

r2

(e)

Fig. 2. Dependency DAG (a) and some possible execution orders (b-e)

based on the available resources.

Local optimization is enabled in that the associated compu-

tation can be executed immediately as soon as any receive is

completed. This is possible because the scheduler can choose

from any valid topological ordering of the graph, and can

thus (dynamically) select a suitable path based on the current

progress of the individual elements.

Global optimization can be performed in a superordinate

compilation step. If all processes of a group are known at

compile time, then the compiler can collect the communi-

cation schedules from all processes and compose a global

communication graph. Now, the compiler can map this graph

to a particular network architecture and compute a better

communication schedule. After the graph mapping, a good

scheduling could be achieved with multi-graph coloring as

described in [5]. The schedule transformation can be done by

adding more dependencies which limits the dynamic sched-

uler’s flexibility. For example, if the compiler knows that

all processes can communicate with process 0 independently,

an artificial dependency that makes the communication with

process 0 dependent on some other communication (which

needs to be executed first then) might reduce the load at

process 0 and improve overall performance. Such scheduling

algorithms are an open field of research similar to scheduling

of DAG-driven computations [14]. However, GOAL enables

and encourages the use of such techniques for group commu-

nication operations.

D. Execution of a GOAL schedule

The dependency-driven execution of the schedule can be im-

plemented with well-known techniques from task-scheduling

systems. The scheduler can either be centralized and assign

work to the network and the main CPU, or it can be distributed

and work-stealing techniques, well-known from TBB [15] or

Cilk [16], could be employed. These greedy (“keep everything

busy”) scheduling strategies perform well in practice, and are

even theoretically competitive (e.g., the List Scheduling algo-

rithm published in 1966 by Graham is (2 − 1

p
)-competitive).

Today’s computer systems typically have a single network

interface but many CPU cores. Thus, we propose to run a

centralized scheduler (e.g., one on each compute node in a

cluster), which interprets the schedule and assigns work to the

network and other CPU cores, on a separate CPU core. This



technique can be changed if it turns out to limit performance

(e.g., if the number of cores or network interfaces becomes

too large to be managed by a single thread).

We also pay special attention to a simple execution in

minimalistic environments. This enables the implementation

of a scheduler in hardware (for example on a network card

or another appliance with access to the host memory). In the

following, we show how a simple and efficient scheduler can

be implemented that interprets GOAL schedules.

Our proposed centralized scheduling scheme, representing

GOAL_Sched_run(), is described in the following. Let R
be the set of running (or outstanding) action items, and let α
and δ represent single actions. λ is an integral number.

1 R = ∅
2 foreach independent action α
3 start action α
4 R ⇐ R ∪ α
5 end for
6 while (R 6= ∅)
7 α ⇐ next completed action in R
8 R ⇐ R \ α
9 foreach dependent action δ of α

10 λ ⇐ decrease sources counter of δ
11 i f (λ = 0)
12 start action δ
13 R ⇐ R ∪ δ
14 end i f
15 end for
16 end while

Listing 1. Pseudocode for a centralized scheduler

The scheduling/execution algorithm in Listing 1 starts inde-

pendent actions, waits for any completion and starts a depen-

dent action when all its dependencies are satisfied. A blocking

implementation waits until a next action is completed. A

nonblocking implementation, however, needs to remember R,

leaves the loop at Line 7, and resumes at the same position

whenever the operation is progressed.

With some modifications, a schedule can be executed in a

limited memory environment by using a sliding window, much

like a superscalar CPU uses an instruction window. However,

some additional memory is needed in the case where an action

gets completed but its corresponding dependent actions are not

yet in the current window.

Theorem 3. A schedule with n actions can be executed using

a sliding window of size O(1) and O(n) additional space.

Proof: The number of edges f from finished actions to

another action a that is not in the window yet can be stored in

a table H [a] → f . When the action a enters the window, its

incoming count is decremented by f . The maximum size of

H is limited by the total number of actions n. With a schedule

resulting from an adversary DAG where for 1 ≤ i < n, action

i has an edge to action i + 1, and for 1 ≤ j ≤ n/2, action j
has an edge to action j + n/2, it can be shown that this bound

is tight. Such an adversary DAG is shown in Figure 3 for 10
actions. We observe that with a window size of 2, storage of
n/2 is needed to remember the completed actions for all items

that are to the right of the sliding window.

sliding window

done = {6:1,7:1,8:1,9:1,10:1}

1 2 63 74 85 9 10

Fig. 3. Illustration of a schedule with 10 actions and a window size of 2

This might cause concern in a hardware implementation,

e.g., an implementation where a schedule is streamed to a

network interface for asynchronous execution. We argue that

every schedule can be adapted to run with constant space.

Theorem 4. The space requirements to execute a schedule

can be reduced to O(1) if dummy actions are added.

Proof: Inserted dummy actions, which are not executed

(i.e., they represent NOPs), can be used to introduce additional

dependencies, such that:

• all actions between two consecutive dummy actions i and

j (i < j) depend on the completion of i, and

• dummy action j depends on all actions between i and j.

Such a transformed schedule needs to remember at most

j − i − 1 action items (equidistant dummies). The order of

actions must be a valid order according to the topological

sort of the original graph. All spare dependencies crossing the

dummy actions can now be removed safely while retaining

(restricting) the original dependencies. Thus, it is possible to

limit any window-based scheme to have a maximum number

of unreachable actions during execution.

This transformation allows every schedule to be broken up

into smaller pieces by the compiler. Our modified example

schedule is show in Figure 4. However, this restriction in

parallelism is likely affecting performance adversely, and our

experience suggests to support at least a number in the order

of log p where p is the targeted number of processes.

1 2 3 4 5 6 7 8 9 10

Fig. 4. Transformed DAG with a maximum memory demand of 3 items,
independent of the window size

IV. COMMON COLLECTIVE ALGORITHMS IN GOAL

In this section, we explain how to implement some classes

of algorithms in GOAL that reflect commonly used group

communication operations. GOAL itself is a simple domain-

specific language to express such operations. However, it is not

mighty enough to define these operations in a dynamic way,

i.e., independent of a particular data and process layout. Thus,

a definition of an algorithm in GOAL has to be generated

in a preprocessing step before it can be compiled. If the

preprocessing language is Turing complete, like for example

the template system of C++, then arbitrary communication and

computation operations can be expressed with GOAL.



A. Tree Algorithms

Tree-based algorithms are important to minimize the run-

ning time of latency-bound operations. Typical examples are

broadcast and reduction on binomial trees [17]. The following

pseudocode can be used to generate a broadcast operation in

GOAL (i = process rank and p = # of processes, see Def. 1).

recv = -1 // valid identifiers are ≥ 0

for r = 0 to ⌈log2 p⌉-1
send = -1

i f ((i+2r

< p) and (i < 2r

))

send = GOAL_Send(g, buf, size, i+2r

)

end i f
i f ((send ≥ 0) and (recv ≥ 0))

GOAL_Requ(g, send, recv)

end i f

i f ((i ≥ 2r

) and (i < 2r+1
))

recv = GOAL_Recv(g, buf, size, i-2r

)

end i f
end for

Listing 2. Generating a broadcast tree rooted at process 0 in GOAL

A reduction tree can be built in a similar way. The main

difference is that data has to be transformed after it is

received and before it is sent. This replaces the requ clause

(GOAL_Requ) with a function that requires the receive to

finish and must complete before the send is started.

B. Dissemination Algorithm

The dissemination algorithm is often used to implement

operations that do not have a single root but where infor-

mation can be computationally reduced or combined during

the communication [17]. We show how to generate a general

n-way dissemination [18] pattern with a reduction operation.

The n-way dissemination algorithm degenerates to the original

algorithm by Hengsen [19] for n = 1.

for r = 0 to ⌈log
n+1 p⌉-1

for w = 1 to n

send[w-1] = GOAL_Send(g,localbuf,size,

(i + w · (n + 1)r

) mod p)

end for
i f (r > 0)

prev = recv[0]

for w = 1 to n-1

red = GOAL_Exec(g,op,buf[w-1],size,buf[w],size)

GOAL_Requ(g,red,recv[w])

GOAL_Requ(g,red,prev)

prev = red

end for
red = GOAL_Exec(g,op,buf[n-1],size,localbuf,size)

GOAL_Requ(g,red,recv[0])

GOAL_Requ(g,send[n-1],prev)

for w = 1 to n

GOAL_Requ(g,send[w-1],red)

end for
end i f
for w = 1 to n

recv[w-1] = GOAL_Recv(g,buf[w-1],size,

(i − w · (n + 1)r

) mod p)

end for
end for

Listing 3. Generating a n-way dissemination pattern with a
reduction operation

C. Other Algorithms and Schedule Size

The size of the schedule clearly depends on the implemented

algorithm. For dissemination and tree based algorithms, the

size is stree = O(log p). For other algorithms, such as a

pipelined broadcast operation of with k data fragments, the

schedule size scales with spipe = O(k), which could be

problematic. Although this number of fragments is typically

rather small for a reasonable segment size (i.e., one that

leads to a good performance). The maximum size of a useful

schedule is also trivially bounded by the proof of Theorem 1

to s = O(k · p). Average schedules are considerably smaller,

often bounded by O(
√

n + log p) for some message size n.

We note that many algorithms generate well-structured

GOAL schedules. For example in a pipelined chain broadcast

with a message size of n, every node sends ⌈n/s⌉ fragments

with a segment size of s to its neighbor. It is possible to

find domain-specific compression schemes for such regular

schedules with a much lower resource usage even during

execution. We are considering such features as worthwhile

candidates for future GOAL extensions.

Those theoretical considerations show that only a minimal

overhead is added for storing schedules. We will show with

practical experiments in the next section that storing, creating,

and interpreting the schedules only adds negligible runtime

overhead.

V. IMPLEMENTATION AND RESULTS

In order to show the applicability of our approach, we

implemented a compiler/assembler, a library interface and the

scheduler/executor outlined in Listing 1 with and without a

separate communication thread. We compared our binomial

tree broadcast implementation that is similar to Listing 2 with

the optimized tuned collective implementation in Open MPI

1.3 [3]. The tuned collective implementation in Open MPI

chooses a binomial broadcast tree for small messages. Figure 5

shows the MPI Bcast latency for both implementations. We

see that the addition of our scheme is very comparable to

highly optimized implementations.
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Our abstract implementation can also be executed on a

separate core, independently of the main CPU. This is very

interesting for the implementation of nonblocking collective

operations because group operations expressed in GOAL can

be executed either blocking or nonblocking and either in the

main thread or in a separate thread. We also compare our

results to the only available open-source implementation for

nonblocking collective operations LibNBC [6]. We compared

the minimal CPU overhead (i.e., the fraction of communica-

tion that cannot be overlapped) of LibNBC with a manually

progressed GOP implementation (i.e., the main thread has to

call the scheduler from time to time) and an implementation in

a separate thread. We used the time-based overlap benchmark

as described in [20].
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We showed that GOAL and the proposed framework has

the potential to express blocking and nonblocking group

operations similarly and also enables execution on separate

processing elements. We also demonstrated that offloading the

scheduler to a separate thread can easily lead to a low-overhead

implementation.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that an abstract definition of group commu-

nication operations enables easy definition of such operations

for blocking and nonblocking execution. We outlined how

such a scheme can be used to implement all MPI collective

operations in a blocking and nonblocking interface with mini-

mal performance impact. On the contrary, our language-based

approach enables compiler-based transformations, which can

more easily make use of many general optimizations. Com-

munication schemes can be further enhanced with a better

mapping to the underlying communication network (global

optimization) and can be more efficiently executed due to

the utilization of dynamic scheduling (local optimization).

To express maximum parallelism, we employed a data-driven

DAG model which is well known from the architecture and

functional programming world. We suspect that our work is

a first step towards defining a high-level language to express

optimized group communication algorithms.

Our future work aims to analyze the use of different

scheduling strategies and compiler optimizations that can be

applied to improve the execution. We will also investigate

different compression schemes in order to enable smarter

resource consumption. We showed that an implementation of

the scheduler in a separate thread allows for fast execution,

high overlap, and asynchronous progression. We will also

investigate the implementation of schedulers on network in-

terface cards to make those cards capable of handling such

group operations directly.
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