
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Theory and practice in HPC:

Modeling, Programming, and Networking

spcl.inf.ethz.ch

@spcl_eth

1 ~103 ~104 ~106 ~108 ~1010 ~1011

2

~4x

dgemm("N", "N", 50, 50, 50, 1.0, A, 50, B, 50, 1.0, C, 50);

>2x

High Performance Computing Practice

spcl.inf.ethz.ch

@spcl_eth

3

HPC is used to solve complex problems!

Image credit: Serena Donnin, Sarah Rauscher, Ivo Kabashow

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Performance Engineering

1) Observe
2) Model

3) Understand
4) Build

spcl.inf.ethz.ch

@spcl_eth

5

Part I: Observe

Measure systems

Collect data

Examine documentation

Gather statistics

Document process

Experimental design

Factorial design

spcl.inf.ethz.ch

@spcl_eth

 Stratified random sample of three top HPC conferences for four years

HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)

10 random papers from each (10-50% of population)

120 total papers, 20% (25) did not report performance (were excluded)

6

Observe the state of the art in performance measurement

Performance results are often nearly impossible to reproduce! Thus, we need to provide

enough information to allow scientists to understand the experiment, draw own

conclusions, assess their certainty, and possibly generalize results.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15



spcl.inf.ethz.ch

@spcl_eth

7

The latency of

Piz Dora is

1.77us!

How did you get

this number?

I averaged 106

runs, it must be

right!

u
s
e
c

sample

Why do you

think so? Can I

see the data?

Example: Simple ping-pong latency benchmark

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

~1.77us

~1.2ms

spcl.inf.ethz.ch

@spcl_eth

Dealing with variation

8

The 99.9% confidence

interval is 1.765us to

1.775us

Did you assume

normality?

Can we test for

normality?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

What? Isn’t that always

the case with many

measurements?

Ugs, the data is not normal at

all. The nonparametric

99.9% CI is much wider:

1.6us to 1.9us!

spcl.inf.ethz.ch

@spcl_eth

9

Looking at the data in detail

This CI makes

me nervous.

Let’s check!

Clearly, the

mean/median are

not sufficient!

Try quantile

regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

10

Scientific benchmarking of parallel computing systems

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as

well as the absolute execution performance of the base case.
Rule 2: Specify the reason for only reporting subsets of

standard benchmarks or applications or not using all system

resources.Rule 3: Use the arithmetic mean only for summarizing costs.

Use the harmonic mean for summarizing rates.
Rule 4: Avoid summarizing ratios; summarize the costs or

rates that the ratios base on instead. Only if these are not

available use the geometric mean for summarizing ratios.
Rule 5: Report if the measurement values are deterministic.

For nondeterministic data, report confidence intervals of the

measurement.Rule 6: Do not assume normality of collected data (e.g.,

based on the number of samples) without diagnostic checking.
Rule 7: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.
Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

Rule 9: Document all varying factors and their levels as well

as the complete experimental setup (e.g., software, hardware,

techniques) to facilitate reproducibility and provide

interpretability.

Rule 10: For parallel time measurements, report all

measurement, (optional) synchronization, and summarization

techniques.
Rule 11: If possible, show upper performance bounds to

facilitate interpretability of the measured results.
Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if

they indicate trends and the interpolation is valid.

ACM/IEEE Supercomputing 2015 (SC15)

spcl.inf.ethz.ch

@spcl_eth

11

Simplifying Measuring and Reporting: LibSciBench

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

 Simple MPI-like C/C+ interface

 High-resolution timers

 Flexible data collection

 Controlled by environment variables

 Tested up to 512k ranks

 Parallel timer synchronization

 R scripts for data analysis and visualization

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

spcl.inf.ethz.ch

@spcl_eth

13

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

t(n=1510)?

t(n=2100)?

Matrix Multiply

t(n) = a*n3

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

14

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

The adjusted R2 of the model fit is 0.99

t(n=1510)=0.248s

t(n=2100)=0.667s

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

15

Part II: Model

Burnham, Anderson: “A model is a simplification or approximation of

reality and hence will not reflect all of reality. ... Box noted that “all

models are wrong, but some are useful.” While a model can never

be “truth,” a model might be ranked from very useful, to useful, to

somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.

We focus on performance modeling in the following!

Model

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements Model

spcl.inf.ethz.ch

@spcl_eth

17

Requirements modeling I: Six-step performance modeling

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11

[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

Input
parameters

Describe application
kernels

Communication
pattern

Communication /
computation overlap

Fit sequential
baseline

Communication
parameters

10-20% speedup [2]



spcl.inf.ethz.ch

@spcl_eth

 Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

 Idea: Automatically select best (scalability) model from predefined search space

18

Requirements modeling II: Automated best-fit modeling

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13





n

k

ji

k ppcpf kk

1

2)(log)(n Î

ik Î I

jk Î J

I, J Ì

n =1

I = 0,1, 2{ }

J = {0,1}

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Number of

processes

(model) constant

number of terms

spcl.inf.ethz.ch

@spcl_eth

 Manual kernel selection and hypothesis generation is time consuming (and boring)

 Idea: Automatically select best model from predefined space

19

Requirements modeling II: Automated best-fit modeling

f (p) = ck × pik × log2

jk (p)
k=1

n

å
n Î

ik Î I

jk Î J

I, J Ì

n = 2

I = 0,1, 2{ }

J = {0,1}

c1 + c2 × p

c1 + c2 × p2

c1 + c2 × log(p)

c1 + c2 × p × log(p)

c1 + c2 × p2 × log(p)

)log(

)log()log(

)log(

)log(

)log(

)log()log(

)log(

)log()log(

)log(

2

2

2

1

2

21

2

21

2

21

2

21

21

2

21

2

21

21

21

ppcpc

ppcppc

pcppc

ppcpc

pcpc

ppcpc

ppcpc

pcpc

ppcpc

pcpc





















[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13

spcl.inf.ethz.ch

@spcl_eth

20

Tool support: Extra-P for automated best-fit modeling [1]

[1] Download Extra-P at: http://www.scalasca.org/software/extra-p/download.html

[2] A. Calotoiu, D. Beckingsale, C. W. Earl TH, I. Karlin, M. Schulz, F. Wolf: Fast Multi-Parameter Performance Modeling, IEEE Cluster 2016

Tutorial: Insighful Automatic Performance Modeling

A. Calotoiu, F. Wolf, TH, M. Schulz

Sunday, November 13th

1:30pm - 5pm

Lulesh JUSPICSweep3d Milc HOMME NEST UG4 MP2CBLASTXNS

http://www.scalasca.org/software/extra-p/download.html

spcl.inf.ethz.ch

@spcl_eth

 Extra-P selects model based on best fit to the data

 What if the data is not sufficient or too noisy?

 Back to first principles

 The source code describes all possible executions

 Describing all possibilities is too expensive, focus on counting loop iterations symbolically

21

Requirements modeling III: Source-code analysis [1]

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

OperationInBody(j,k);

2log)1(2  nnnN

Parallel program
Loop extraction









p

p

ND

NW
1

Requirements Models
Number of iterations

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements ModelInput
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

spcl.inf.ethz.ch

@spcl_eth

24

Capability models for network communication

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/

[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

The LogP model family and the LogGOPS model [1]

Finding LogGOPS parameters

Netgauge [2], model from first principles, fit to data

using special

kernels

Large scale LogGOPS Simulation

LogGOPSim [1], simulates LogGOPS with 10

million MPI ranks

<5% error

Source

Dest.

o

o o

o
L L

Ping-pong in simplified LogP (g<o, P=2)

https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

spcl.inf.ethz.ch

@spcl_eth

25

Capability models for cache-to-cache communication

X =

| = Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Performance Model

spcl.inf.ethz.ch

@spcl_eth

 Use models to

1. Proof optimality of real implementations

• Stop optimizing, step back to algorithm level

2. Design optimal algorithms or systems in the model

• Can lead to non-intuitive designs

 Proof optimality of matrix multiplication

 Intuition: flop rate is the bottleneck

 t(n) = 76ps * n3

 Flop rate: R = 2flop * n3/(76ps * n3) = 27.78 Gflop/s

 Flop peak: 3.864 GHz * 8 flops = 30.912 Gflop/s

Achieved ~90% of peak (IBM Power 7 IH @3.864GHz)

 Gets more complex quickly

 Imagine sparse matrix-vector

27

Part III: Understand

Understand



spcl.inf.ethz.ch

@spcl_eth

28

2) Design optimal algorithms – small broadcast in LogP

0 4

L=2, o=1, P=7

8 12

0

4 5

8

16 20

9

24

9 10

4

8

6

9 9

5 6 7

8

8

0

5

Binary Tree Binomial Tree

0

4

Fibonacci Tree

o

o o

o
L L

40%

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015

spcl.inf.ethz.ch

@spcl_eth

29

Design algorithms – bcast in cache-to-cache model

Tree cost

Tree depth

Reached

threads

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

0

2

4 5 6 7

Multi-ary tree example

3 8

1

depth d = 2

k1 = 2

k2 = 3

Level size

spcl.inf.ethz.ch

@spcl_eth

30

Measured results – small broadcast and reduction

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

Intel Xeon Phi 5110P (60 cores at 1052 MHz), Intel MPI v.4.1.4 – each operation timed separately, reporting maximum across processes

4.7x
3.3x

P=10

P=58

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

spcl.inf.ethz.ch

@spcl_eth

32

Part IV: Build
4) Build

 Enables to focus on

essential aspects of

a system

Abstraction is Key

 Observe: optimize for cost, maintain performance:

 router radix, number of cables, number of routers  cost

 number of endpoints, latency, global bandwidth  capabilities

 Model: system as graph

 Understand: degree-diameter graphs

 Build: Slim Fly topology

 Result: non-trivial topology that outperforms all existing ones

Case study: Network Topologies

M. Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE Supercomputing 2014, SC14

spcl.inf.ethz.ch

@spcl_eth

33

How to continue from here?

 Data-centric, explicit requirements

models

Parallel Language

 User-supported, compile- and run-time

Transformation System

memlets

+
operators

DCIR=

[1]: M. Besta, TH: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, ACM HPDC’15

[2]: R. Belli, TH: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15

[3]: S. Di Girolamo, P. Jolivet, K. D. Underwood, TH: Exploiting Offload Enabled Network Interfaces, IEEE Micro’16

Performance-transparent Platforms

RMA foMPI-NA [2] NISA [3]HTM [1]

spcl.inf.ethz.ch

@spcl_eth

56

Backup

