Improving the parallel scaling of ABINIT

Torsten Hoefler

Technical University of Chemnitz, Dept. of Computer Science, Chair of Computer
Architecture, htor@informatik.tu-chemnitz.de
Rebecca Janisch

Technical University of Chemnitz, Dept. of Electrical and Information Technol-
ogy, Chair of Opto- and Solid State Electronics, jreb@etit.tu-chemnitz.de
Wolfgang Rehm

Technical University of Chemnitz, Dept. of Computer Science, Chair of Computer
Architecture, rehm@informatik.tu-chemnitz.de

Abstract

This work presents the results of a three week stay of T.H. at the High Perfor-
mance Systems Department of the CINECA Institute in Bologna, Italy. The main
goals of the short project - to understand and parallelize the core functions of the ap-
plication ABINIT - have been achieved. A huge share of the time consuming part of
the code has been parallelized efficiently and scales well on modern supercomputers.
We demonstrate parallel scaling on the IBM SP5 in CINECA and a small Opteron
PC cluster.

1 Introduction

The software package ABINIT [1] is used to perform ab initio electronic struc-
ture calculations based on the density functional theory (DFT) of Hohenberg
and Kohn [2] and Kohn and Sham [3]. The code is the object of an ongo-
ing open software project of the Université Catholique de Louvain, Corning
Incorporated, and other contributors [4]. ABINIT mostly aims at solid state
research. Periodic boundary conditions are applied and the majority of the in-
tegrals that have to be calculated are represented in reciprocal space (k-space).
The interactions between valence electrons and ionic cores are modelled by
pseudopotentials, and the electronic wavefunctions are expanded in a set of

plane waves!.

1.1 Related Work

Different approaches exist to determine the ground state atomic and electronic
structure of a crystal.

Packages like ABINIT[4], VASP[5], and CASTEP[6] perform a self-consistent
electronic ground state calculation for a given arrangement of atoms. The en-
ergy of the ionic cores in the self-consistent potential of the electrons and the

LABINIT for a short time (since version 4.2.x) also features the projector-augmented wave
method, but this is still under developement. In the following we refer to the planewave
method.

gradient thereof (the Hellmann-Feynman forces) can then be used to shift the
ions towards their equilibrium positions, e.g. by a conjugate gradient scheme.
As an example, Fig. 1 shows the ground state electron density of a relaxed
Si0y structure calculated with ABINIT. The challenge in this kind of ap-
proach is to perform a very accurate determination of the electronic ground
state after each move of the atoms within affordable time.

Figure 1: Electronic structure of a relaxed SiOs unit cell calculated with
ABINIT. Left: isosurfaces of the electron density, illustrating the directional
character of the bonds. Right: Planar cut through the electron density, show-
ing that charge is accumulated at the oxygen atoms (red).

Programs like CPMD [7] and PWSCF [8, 9] are based on the ab initio molec-
ular dynamics scheme of Car and Parrinello [10], i.e. the ions are treated
as classical particles, coupled to the movement of the electrons by pseudo-
Newtonian equations of motion. Since the positions of ions and electrons are
varied at the same time, the computational effort is smaller than in the scf
ground state calculation scheme. However, in this approach the system is not
exacatly in its adiabatic ground state, and the challenge is to prevent it from
drifting too far away.

2 Goals

Main goals of the project were to analyze the current implementation and to
find a new parallelization scheme to improve the parallel scaling of ABINIT.

When speaking of "scaling” we distinguish between weak and strong scaling.
Strong scaling means that at a constant problem size the parallel speedup
increases linearly with the number of used processors. Whereas by weak scaling
we mean that the time to solve a problem with increasing size can be held
constant by enlarging the number of used processors. Strong scaling is usually
limited by Amdahl’s law [11] to a certain number of hosts that depends on
the problem size. Weak scaling is easier to achieve for hundreds of nodes and
is often merely limited by the resources (e.g. memory) per node. On the long
run we want to achieve maximum weak scaling to enable the application of
ABINIT to bigger problems while keeping the calculation times constant at
the current level. For simplicity we focus in this report on the strong scaling
behaviour of ABINIT, but the weak scaling behaviour can be extrapolated
from that to a certain extend.

3 The Current Implementation of ABINIT

The effective one-particle Schrédinger equation derived by means of the DFT
represents an eigenvalue problem that has to be solved selfconsistently. In
ABINIT a self-consistency cycle is begun by constructing a starting density
and deriving a starting potential. Then the electronic eigenvalues (bands
and eigenvectors are determined by a band-by-band conjugate gradient (CG
scheme [12, 13], during which the density (i.e. the potential) is kept fixed until
the whole set of functions has been obtained. At the end of one CG loop the
density is updated by the scheme of choice (e.g. simple mixing, or Anderson
mixing). For a comparison of different schemes see e.g. [14]). For a more
detailed description of the DFT implementation in ABINIT see [15].

Different levels of parallelization are implemented. The most efficient par-
allelization is the distribution of the k-points that are used to sample the
reciprocal space on different processors. The required number of k-points de-
pends on the system size and is determined by convergence tests. It usually
decreases with increasing system size, so the scaling with the number of atoms
is rather unfavourable. One can partially make up for this by distributing
the work related to different bands within a given k-point. Since the number
of bands increases with the system size, the overall scaling with number of
atoms improves. A blocked version of the CG algorithm can be used to opti-
mize the wavefunctions, which provides the possibility to parallelize over the
bands within one block. Instead of a single eigenstate, as in the band-by-band
scheme, nbdblock states are determined at the same time, where nbdblock
is the number of bands in one block. This leads to a small increase in the
time that is needed to orthogonalize the eigenvectors with respect to those
obtained previously. Furthermore, to guarantee convergence, a too high value
for nbdblock should not be chosen. A meaningful choice has to be determined
for each system, but so far our experience is that nbdblock < 4 is a meaningful
choice.

These parallelization methods, which are based on the underlying physics
of the calculation, are useful only for a finite number of CPUs. Within the
k-point parallelization the best speedup is achieved if the number of k-points

is an integer multiple of the number of CPUs:
nkpt =n x Ncpy with n € N. (1)

Ideally, n = 1.

If the number of available CPUs is larger than the number of k-points re-
quired for the calculation, the speedup saturates. In this case, the additional
parallelization over bands can improve the performance of ABINIT, if

Ncpu = nbdblock x nkpt . (2)

In principle the parallelization scheme also works for Ncpy = nbdblock, which
results in a parallelization over bands only.

4 Parallelization Techniques

We recently analyzed ABINIT for its performance at a specific problem size
on a cluster system [16]. We found that about 97% of the running time of
ABINIT is spent in the subroutine vtowfk, where 83% are spent in cgwf, the
implementation of the band-by-band minimization scheme proposed by Teter
et al. [12]. Thus, we decided to start our optimization project in this routine.
The maximum strong scaling s for ABINIT with a parallel cgwf is given by
Amdahls law [11]:
1

§= ———
1—-0.83

A simplified pseudo code of the subroutine cgwf is given in Listing 1. The
outer loop (Line 1) optimizes band-by-band, and the inner loop (Line 5) per-
forms the conjugate gradient line minimization steps (by default 4 per band).
One band cwavef is read out of the cg-array (the array holding all wave-
function coefficients, Line 2) and normalized. The operator of the non-local
potential is applied (after a FFT) to the band in Line 4 (subroutine nonlop)
and the result is stored in the |ghc) vector, which indicates the direction to
proceed in the minimization (the gradient) of the band energy. The inner con-
jugate gradient loop proceeds as described in [13, 12] The cg, ghc and gvnlc
arrays are updated at the end of each conjugate gradient step (Line 33-35).

= 5.88

As described in section 3 the current version of ABINIT is able to oper-
ate in parallel on a set of bands. In practice the scalability is limited to four
processors due to the interdependency of these bands (each band has to be
orthogonal to all others).

To go beyond the current scaling, we distribute the wave function co-
efficients (the elements of the vectors cwavef) among different processors.
The only necessary points of communication are the calculations of dot prod-
ucts (they are marked with an asterisk (*) in Listing 1). The nonlop routine
was also parallelized to enhance the parallelism further. A global reduction
(MPI_ALLREDUCE) was used to accumulate the gxafac array on every node.

10

15

20

25

30

35

|do iband=1, nband

I
* |
+|

cwavef (npw) = cg(:,npw)
call normalize(|cwavef>)
call nonlop(in |cwavef>, in |gvnlc>, inout |[ghc>)
do iline=1,nline
chc = lambda = <cwavef|ghc>

|vresid> = -chc * |cwavef> + |[ghc>
resid(iband) = <vresid|vresid>
|[direc> = |ghc>

! orthogonalize

do iiband=1,nband
cgdirec = <cg(iiband) |direc>

|direc> = -cgdirec*|cg(iiband)> + |direc>
end do
call precon(in cg(), out pcon(), inout direc())
! orthogonalize

do iiband=1,nband

cgdirec = <cg(iiband) |direc>

|direc> = -cgdirec*|cg(iiband)> + |direc>
end do

dotgg = <direc|conjgr>

|conjgr> = dotgg/dotgp * |conjgr> + |direc>
! orthogonalize |conjgr> to |iband>

zdotures = <conjgr|cwavef>

|direc> = -zdotures * |cwavef> + |conjgr>

! normalize direc

dotr = <direcl|direc>

|direc> = 1/sqrt(dotr)*|direc>

call nonlop(in |cwavef>, in |gvnlc>, inout |gh_direc>)
dhc = <direc|ghc>

dhd = <direc|gh_direc>

! calculate sinth, costh here

cg(iband) = costh*|cwavef> + sinthx*|direc>
ghc() = costh*|ghc> + sinthx|gh_direc>
gvnlc() = costh*|gvnlc> + sinth*|gvnl_direc>
end do ! iline=1,nline

|end do ! iband=1, nband
|' mimic old behavior
“|call allgather(cg())

Listing 1: Pseudocode for cgwf

Another approach has to be taken to perform the FFT in parallel (marked
with a plus (+) in Listing 1). The 3D-FFT is parallelized in real space. First,
a FFT is performed along all z-planes in parallel, second a FFT is done for all
xy-lines in parallel. The wave function coefficients have to be redistributed at
the beginning of the FFT and the real-space grid has to be swapped between
Phase 1 (z-planes) and Phase 2 (xy-lines) of the FFT. The collective MPI
routine MPI_ALLTOALL was used to perform that task.

5 Results

We conducted several benchmarks to test the scalability of our code on two
different systems. A small PC cluster, called ”Botanix”, with dual core CPUs
and the IBM SP5 [17] from CINECA were used to calculate a fixed size sys-
tem. As already mentioned in section 2, we demonstrate only strong scaling
which is limited due to the fixed system size. However, this should not influ-
ence the results for a small number of CPUs and gives us the possibility to
extrapolate that a good weak scaling can be easily achieved for a huge number
of processors.

The two nodes of Botanix come with 4 dual core Opteron 865 (1.8 GHz)
CPUs per node and are interconnected with Gigabit Ethernet. The IBM
SP5 comes with 64 nodes, each with 8 Power5 (1.9 GHz) Processors and is
connected with an IBM High Performance Switch (Federation).

| nproc (P) | Runtime (s) | Speedup |

1 228.91 1.00
2 108.24 2.11
3 69.32 3.30
4 49.24 4.65
8 25.53 8.97
16 17.31 13.22

Table 1: Consumed Runtime and achieved Speedup of the parallel subroutine
cgwf on the SP5.

The benchmark results for a small system with 43 atoms, 48728 plane
waves, 126 bands and 921600 FFT grid points, which needs 21 iterations to
reach self-consistency, are presented in the following. Figure 2 shows the par-
allel execution time and scaling of the parallelized cgwf routine. All bench-
marked times and speedups on the SP5 are given in Table 1. Nearly all test
cases on the SP5 show superlinear speedup which is due to the better cache
utilization of the parallel variant. Both systems perform best if all calcula-
tions are done on a single node and the processors communicate via shared
memory (up to 8 processors). The communication latency and bandwidth gets
worse if the processes span more than 8 processors (one node). The result is a

16 I
Botanix
14 + SP5
Ideal Speedup
12 |
o 10
=]
I TS
T <
/ o T
s 1
0

0 2 4 6 8 10 12 14 16
processors (P)

Figure 2: Speedup of the parallel cgwf routine on different systems.

catastrophic negative scaling on Botanix due to the very slow interconnection
network (Gigabit Ethernet) and a slight decrease in the scaling on the SP5.
We assume that this effect could be decreased if the collective communica-
tion would be topology aware and would adapt to this specific hierarchical
interconnect layout.

The execution time of a fully converged calculation with ABINIT is exam-
ined in the following. Table 2 shows benchmark results for the SP5 and Figure
3 shows the according graphs for both systems. We see that the parallel scal-
ing is very well up to 8 processors and gets slightly worse if the processes span
more than one node (have to use a slower interconnect). The parallel overhead
of the collective communication latency begins to increase for a bigger number
of processors and a slower interconnect.

| nproc (P) | Runtime (s) | Speedup |

1 5724.9 1.00
2 3380.2 1.69
3 2269.7 2.52
4 1764.7 3.24
8 1242.4 4.61
16 1020.6 5.61

Table 2: Runtime consumed by a full calculation with ABINIT on the SP5.

16

Botanix
14 SP5
Ideal Speedup
12 | Upper Limit (5.88)
o 10
=]
8 8
Q.
n 6
4 g e
0

0 2 4 6 8 10 12 14 16
processors (P)

Figure 3: This Figure shows the parallel scaling of a full ABINIT calculation.

We know that the serial part of ABINIT uses about 17% of the application
running time (cp. [16]. This means that the sequential (not parallelized)
execution time for our specific example equals to

t=0.17-5724.9s = 973.23s

which clearly dominates the overall execution time on 16 processors (> 95%).

6 Conclusion and Future Work

We can conclude that the cgwf routine has been parallelized efficiently. Strong
scaling up to 16 processors with a small system is possible and weak scaling
can be achieved with bigger input systems for much larger computers. The
speedup of the whole calculation is asymptotically limited to 5.88 and is nearly
reached with a fast interconnection network (shared memory). One needs to
parallelize also the vtowfk and maybe other parts of the code to achieve a
better scaling on large parallel computers.

7 Biography

Torsten Hoefler graduated 2005 in computer science in the
special field of parallel computing. He was awarded with
the Best Students Award of the Technical University of
Chemnitz 2005 and the PARS Junior Research Price 2005
of the German Computer Socienty (GI). He is currently
working as a member of the Open MPI [18] team to opti-
mize collective communications and to prove the useabil-
ity and efficiency of non blocking collectives. One of his
projects deals with the efficient implementation of a quan-
tum mechanical calculation (Abinit) with the help of non
blocking collectives. This work represents the first steps in
this direction.

8 Publications

e T. HOEFLER, R. JANISCH, AND W. REHM: Analyzing the parallel
scaling of Teter’s conjugate gradient based minimization for Ab Initio
calculations - to be submitted

9 Acknowledgement

This work was carried out under the HPC-EUROPA project (RII3-CT-2003-
506079), with the support of the European Community - Research Infras-
tructure Action under the FP6 ”Structuring the European Research Area”
Programme. T.H. especially thanks his scientific host Carlo Cavazzoni for
very helpful dicsussions and comments.

References

[1] Gonze, X., Rignanese, G.M., Verstraete, M., Beuken, J.M., Pouillon, Y.,
Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, P.,
Veithen, M., Raty, J.Y., Olevano, V., Bruneval, F., Reining, L., Godby,
R., Onida, G., Hamann, D., Allan, D.: A brief introduction to the
ABINIT software package. Z. Kristallogr. 220 (2005) 558

[2] Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136
(1964) BS64

[3] Kohn, W., Sham, L.: Self-consisten equations including exchange and
correlation effects. Phys. Rev 140 (1965) A1133

[4] ABINIT: http://www.abinit.org/ (2005)

[5]
[6]
[7]
8]
[9]

[10]

[11]

VASP: http://cms.mpi.univie.ac.at/vasp (2005)
CASTEP: http://www.tcm.phy.cam.ac.uk/castep (2005)
CPMD: http://www.cpmd.org (2005)

PWSCEF": http://www.pwscf.org (2005)

Cavazzoni, C., Chiarotti, G.L.: A parallel and modular deformable cell
Car-Parrinello code. Computer Physics Communications 123 (1999) 56—
76

Car, R., Parinello, M.: Unified approach for molecular dynamics and
density-functional theory. Phys. Rev. Lett. 55 (1985) 2471

Amdahl, G.M.: Validity of the single processor approach to achieving
large scale computing capabilities. Readings in computer architecture
(2000) 79-81

Teter, M.P., Payne, M.C., Allan, D.C.: Solution of Schroedinger’s equa-
tion for large systems. Physical Review B (1989) 12255-12263

Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.:
Iterative minimization techniques for ab initio total-energy calculations:
molecular dynamics and conjugate gradients. Reviews of Modern Physics
64(4) (1992) 1045-1097

Eyert, V.: A comparative study on methods for convergence acceleration
of iterative vector sequences. J.Comp.Phys. 124 (1995) 271

Gongze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese,
G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy,
A., Mikami, M., Ghosez, P., Raty, J.Y., Allan, D.: First-principles com-
putation of material properties : the ABINIT software project. Compu-
tational Materials Science 25, 478-492 (2002)

Hoefler, T., Janisch, R., Rehm, W.: A performance analysis of abinit on a
cluster system. In Hoffmann, K.H., Meyer, A., eds.: Parallel Algorithms
and Cluster Computing. Lecture Notes in Computational Science and
Engineering (2006) accepted to be published.

Ballabio, G., Boschi, S., Calonaci, C., Cavazzoni, C., Emerson, A.
Gheller, C., Gori, R., Tarsi, A.: High Performance Systems User Guide.
Volume 1.2. CINECA, Supercomputing Group, CINECA Consorzio In-
teruniversitario, Caseleccio Di Reno (2005)

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J.,
Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,
Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.: Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementation.
In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary (2004)

10

