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Abstract

The MPI Barrier() call can be crucial for several ap-
plications and has been target of different optimizations
since several decades. The best solution to the barrier
problem scales with O(log2N) and uses the dissemina-
tion principle. A new method using an enhanced dis-
semination principle and inherent network parallelism
will be demonstrated in this paper. The new approach
was able to speedup the barrier performance by 40%
in relation to the best published algorithm. It is shown
that it is possible to leverage the inherent hardware par-
allelism inside the InfiniBandTM network to lower the
latency of the MPI Barrier() operation without addi-
tional costs. The principle of sending multiple mes-
sages in (pseudo-) parallel can be implemented into a
well known algorithm to decrease the number of rounds
and speed the overall operation up.

1 Introduction

InfiniBandTM network is an emerging network tech-
nology in the HPC sector. More and more clusters
utilize the features of this special interconnect, which
include very high bandwidth, remote direct memory
access and host offloading features. Several implemen-
tations exist to map these features to the standard-
ized MPI API. One of these MPI operations is the
MPI Barrier() call which synchronizes all participat-
ing nodes. This operation can be quite important for
the overall running time of several applications and has
been target of optimizations for the last decades. Our
goal is to lower the latency of the MPI BARRIER op-
eration over the InfiniBandTM network. We leverage
implicit parallelism of todays InfiniBandTM adapters
to speed the barrier operation up.

The next section enumerates the work which has
been done in this field before. Section 2 describes a
new approach to model the InfiniBandTM network and
the differences to well established models like models of
the LogP family [4, 2, 16] followed by the working prin-
ciple for a new dissemination algorithm which leverages
network parallelism. Section 4 explains several imple-
mentation details and provides performance data and
comparison. The last section draws conclusions and
shows perspectives for future work on this field.

1.1 Related Work

Several barrier implementations and algorithms
have been developed and could be used to perform the
MPI Barrier() operation over the InfiniBandTM net-
work. These include the Central Counter approach
[5, 7], several Tree Based barriers as the Combining
Tree Barrier [22], the MCS Barrier [17], the Tourna-
ment Barrier [9], the BST Barrier [20] and butterfly
or dissemination based barriers [3, 9]. All these differ-
ent approaches have been compared in [12] with the
result that the dissemination algorithm is the most
promising algorithm for cluster networks. Several stud-
ies have also been made to find special barrier solu-
tions, either with additional hardware [18, 10] or with
programmable Network Interface Cards [23]. Our ap-
proach uses only the InfiniBandTM network which does
not offer programmable NIC support or special hard-
ware barrier features. A similar study has been done by
Panda et. al. in [14] and implemented in MVAPICH.
Our study shows that the use of implicit parallelism
of the InfiniBandTM network and maybe also other of-
floading based networks can lower the barrier latency
significantly.



2 A new InfiniBandTM Model

2.1 Benchmarking the Network Capabili-
ties

We benchmarked the InfiniBandTM network with
and 1:P and P :1 ping-pong benchmark to evaluate the
current barrier algorithms. The benchmark measures
all InfiniBandTM transport types with one-byte pack-
ets (which fulfil the task of notificating the other nodes)
and the following communication scheme:

• node 0 sends to node 1 . . . P

• each node 1 . . . P waits for the reception of a mes-
sage and sends the message immediately back to
node 0 (1:P ping-pong)

The scheme is depicted in figure 1 and the respective
Round Trip Time is denoted as RTT (P ).

0

1

2

P

..

.

ping

0

1

2

P

..

.

pong

Figure 1. 1:P Ping-Pong Scheme

The benchmark was carried out at different
InfiniBandTM based clusters and the results of the
biggest system, the Mozart Cluster, located at the Uni-
versity of Stuttgart, Germany are presented in this
work. It is populated with 64 nodes and therewith the
biggest InfiniBandTM cluster which was used to ver-
ify the results of this paper. A single node offers the
following configuration:

• Processor: 2x3GHz Xeon

• OS: Red Hat Linux release 9 (Shrike), Kernel:
2.4.27 SMP

• HCA: Mellanox ”Cougar” (MTPB 23108)

The nodes are interconnected with a 64 port Mellanox
InfiniBandTM MTS 9600 switch and Gigabit Ethernet.
It has to be mentioned, that the retrieved benchmark
(RTT (P )) curves are of the same shape for all probed
cluster systems.

The benchmark is designed for all transport types of
InfiniBandTM but we describe only the most promising
one (with the lowest latencies), which is RDMA-Write,

due to space restrictions. Figure 2 shows the minimal
and average RDMA-Write RTT (P ) measurements for
100 consecutive inline and normal send operations.
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Figure 2. Minimal and Average RDMA-Write
RTT (P ) Times

It is easy to recognize that the minimal results fit
exactly into a single curve but the average values vary
extremely. This variation is due to memory congestion
inside the North-Bridge, where the CPU and the HCA
concur for the memory (the benchmark loops on the
memory to test if the data was received).

The main perception of this benchmark is that it is
really cheap to send multiple messages in parallel (the
price per message transfer is much lower for 4 simulta-
neous messages as for 1). This observation will be used
in the following to enhance the barrier performance for
the InfiniBandTM network.

2.2 The Prediction - LogP vs. LoP

The LogP Model, designed by Culler et al. in 1993
was developed to model the behavior of communica-



tion networks. It shows different aspects of the under-
lying network for coarse grained machines which were
mainly a collection of loosely coupled computers (cmp.
Network of Workstations). It consist of the four pa-
rameters L, o, g and P . L denotes the pure hardware
Latency (the maximum for all interfaces), o models the
CPU overhead and can be subdivided into os for the
sender’s overhead and or for the receiver’s overhead. g
is the gap to wait between consecutive message sends
or receives, which is essentially a bandwidth limitation
bandwidth ∼ 1

g . P denotes the number of processors
involved in the algorithm. The whole LogP model is
linear, which means that is is independent of the num-
ber of messages sent over the network before. A LogP
prediction curve for RTT (P ) normed by P is shown
in Figure 3. The LogP model was proven to be quite
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Figure 3. LogP predicted Curve

accurate for small messages on traditional networks as
for example Ethernet based architectures [11]. But it
seems quite inaccurate for the InfiniBandTM network.
The main disadvantage in this context is that it does
not model the architectural specialties of modern in-
terconnects, such as RDMA, offloading or Multicast,
which can be used to speed-up algorithms on the net-
work. This problem is assumed to be not InfiniBandTM

specific, also other offloading based network which offer
parallelism in the processing of messages (the NIC is an
active element, and not all message processing is done
at the host CPU) should not be accurate within the
LogP model. Thus, we shortly introduce a new model
which could be more accurate for offloading based net-
works such as InfiniBandTM or Quadrics. The LoP
model bases on the LogP model because the parame-
ters and effects which are modelled remain the same,
only their dependency of the number of sent messages
(the number of addressed hosts in our particular case
for the barrier) is changed.

2.3 The LoP Model for InfiniBandTM

The LoP model was introduced in [13] and will
be shortly explained in the following. The basic as-
sumption is that the inherent hardware parallelism in
the InfiniBandTM network (as defined in the standard
[1]) cannot be modeled with a linear model like the
LogP model. Thus the overhead and the Latency of
each message depends on the history of the interface
(mainly the number of messages sent before). To sim-
plify this assumption, only the number of messages
which are posted successively is evaluated. The lin-
ear LogP model changes to the non-linear LoP model,
where each parameter depends on the number of mes-
sages to be sent. The L changes to L(P ) and the o
to o(P ) both functions are explained in the following.
L(P ) can be measured indirectly with the RTT (P ) of
the system.
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Figure 4. The RTT (P ) Model

The model is depicted in figure 4 where a possible
explanation of its behavior is given.

For a more detailed description, a parametrized an-
alytic model or runtime prediction refer to [13]. This
model should be accurate for all offloading based net-
works because it models their architectural details.
This shows that our barrier algorithm should also be
beneficial on other networks than InfiniBandTM . The
main idea is to leverage this implicit hardware paral-
lelism (sending 2 messages consecutively is significantly
faster than sending two ”single” messages with some
time between them). This can be done by changing
the barrier algorithm to send multiple consecutive mes-
sages. This idea leads us to the design of the n-way
dissemination barrier. Due to the assumed generality
of the model, this approach should increase the bar-
rier performance on different modern offloading based
networks architectures.



3 The n-way Dissemination Principle

The Dissemination Barrier, proposed by Hengsen et
al. in 1988 [9] was proven to be the best barrier solution
for single-port LogP compliant system [11]. The n-way
dissemination algorithm is a generalization of the dis-
semination principle for multi-port networks and can
be proven to be optimal for this task. The main change
is the additional parameter n which defines the number
of communication partners in each round to leverage
the hardware parallelism. The n-parameter should re-
fer to the number of messages which can be sent in par-
allel. The InfiniBandTM network, and probably more
offloading based networks do not offer this parallelism
explicitely but an implicit parallelism is implemented
due to the hardware design. This means that the n-
way dissemination barrier can use this parallelism to
speed the barrier operation up. The original algorithm
typifies the 1-way Dissemination Barrier (n = 1) in this
context.

The algorithm is described shortly in the following:
Every node p sends n packets to notify n other nodes

that it reached its barrier function in each round and
waits for the notification of n other nodes. Subse-
quently, at the beginning of a new round r, node p
calculates all its peer nodes (the sendpeer - speeri and
the receive peer - rpeeri, {i ∈ N; 0 < i ≤ n}) as follows:

speeri = (p + i · (n + 1)r) mod P (1)

whereby P is the number of nodes participating in the
barrier. The peers to receive from are also determined
each round:

rpeeri = (p − i · (n + 1)r) mod P (2)

For the original algorithm (n = 1), the peer calculation
gives the same rules as stated in the original paper [9].

speer = (p + 2r) mod P (3)
rpeer = (p − 2r) mod P (4)

An example for n = 2 and P = 9 is given in figure
5.

A possible pseudo-code for a RDMA based imple-
mentation (e.g. InfiniBandTM ) is given in listing 1.

4 Implementation Details

The n-way dissemination barrier is implemented as
an Open MPI collective component. It uses the the
Mellanox VERBS API to communicate directly with
the InfiniBandTM hardware. The general Open MPI

// parameters (given by environment)
set n = 2 // parameter
set P = number of participating processors
set rank = my local id

5 // phase 1 − initial ization (only once)
// the barrier counter − avoid race conditions
set x = 0
reserve array with P entries as shared
for i in 0 . .P−1 do

10 set array [ i ] = 0
forend
// barrier − done for every barrier
set round = −1
set x = x + 1

15 // repeat log n(P) times
repeat

set round = round + 1

for i in 1 . .n do
20 set sendpeer = (rank + i∗(n+1)ˆround) mod P

set array [rank ] in node sendpeer to x
forend
for i in 1 . .n do

set recvpeer = (rank − i∗(n+1)ˆround) mod P
25 wait until array [ recvpeer] >= x

forend
until round = cei l ( log(P)/ log(n))

Listing 1. Pseudocode for the n-way
Dissemination Barrier

framework and the component framework is introduced
in [6, 19]. The collective framework offers space to
implement MPI collective routines. The ibbarr com-
ponent is an optimized MPI BARRIER implementation
for the InfiniBandTM architecture. A caching strat-
egy precomputes the communication partners for each
round in advance (during the communicator initializa-
tion) to reduce the amount of calculation during the
critical MPI BARRIER path.

4.1 Benchmark Results

Different MPI implementations for InfiniBandTM

have been taken and compared with regards to their
MPI BARRIER latency to evaluate the new approach.
The results show that the Open MPI ibbarr component
is in faster than every Open Source MPI implementa-
tion, even faster as the current leader MVAPICH [15]
where much research has been done to enhance the
barrier performance of InfiniBandTM [8, 14]. The 1-
way dissemination barrier is already faster than the
dissemination barrier of MVAPICH. This can be ex-
plained with the precomputed communication partners
and the lower latency of the Open MPI framework.
The results are shown in figure 6 and show that the
optimized n-way dissemination algorithm can be up to
40% better than the fastest implementation in MVA-
PICH. The performance gain from the n > 1 parameter
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Figure 5. Example of the 2-way Dissemination Barrier

can be seen between the IBBARR-1 and the IBBARR-
n > 1 graphs. The gap increases with the node count,
but if the n parameter is too big, the memory conges-
tion effects on the receiver side increase the latency.
Thus, the task to deduce the optimal n-parameter for
InfiniBandTM is not easy and will be done in a self-
tuned fashion (cp. [21]), where different n parame-
ters are benchmarked during communicator initializa-
tion and the best one is chosen for the MPI BARRIER.

Figure 7 shows the relative speedup of the auto-
mated tuned implementation compared to the RDMA-
optimized implementation in MVAPICH.

5 Conclusions

It was shown that it is possible to leverage the inher-
ent hardware parallelism inside the InfiniBandTM net-
work to lower the latency of the MPI BARRIER opera-
tion with no additional costs. The principle of sending
multiple messages in (pseudo-) parallel could be added
to a well known algorithm to decrease the number of
rounds and speed the overall operation up. The under-
lying principle is very simple, but it is extremely hard
to model the architecture because indeterminate mem-
ory congestion delays the RDMA-Write operation and
cannot be modeled precisely. Thus, we use automated
tuning to choose the n-parameter. However, the barrier
operation could be enhanced up to 40% on a 64 nodes
cluster in comparison to the also well tuned implemen-
tation of MVAPICH, and the gap is expected to widen
for larger node numbers. The precaching technique to
calculate the communication partners in advance and
the reduced latency of the Open MPI framework were
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MPI BARRIER Implementations
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also beneficial to reduce the latency of the standard
(1-way) dissemination algorithm.
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