
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Performance Reproducibility in HPC and Deep Learning
Numerical Reproducibility at Exascale Workshop (NRE2019), ISC’19, Frankfurt, Germany

WITH CONTRIBUTIONS FROM ROBERTO BELLI, TAL BEN-NUN, DAN ALISTARH, YOSUKE OYAMA, CEDRIC RENGGLI, AND OTHERS AT SPCL AND IST AUSTRIA

spcl.inf.ethz.ch

@spcl_eth

▪ This is an experience talk (paper published at SC 15 – State of the Practice)!

▪ Explained in SC15 FAQ:

“generalizable insights as gained from experiences with particular HPC

machines/operations/applications/benchmarks, overall analysis

of the status quo of a particular metric of the entire field or

historical reviews of the progress of the field.”

▪ Don’t expect novel insights

Given the papers I read, much of what I say may be new for many

▪ My musings shall not offend anybody

▪ Everything is (now) anonymized

▪ Criticism may be rhetorically exaggerated

▪ Watch for tropes!

▪ This talk should be entertaining!
2

Disclaimer(s)

spcl.inf.ethz.ch

@spcl_eth

▪ Reproducibility – identical results/conclusions with identical data and method

▪ Replicability – non-identical but similar results/conclusions with similar data and

method

3

Terminology

PNAS, Feb. 2015

“In the good old days physicists repeated each other’s

experiments, just to be sure. Today they stick to

FORTRAN, so that they can share each other’s

programs, bugs included.” – Edsger Dijkstra (1930-

2002), Dutch computer scientist, Turing Award 1972

spcl.inf.ethz.ch

@spcl_eth

▪ Reproducibility – get the exact results

▪ Replicability – repeat the effect/insight

4

Reproducibility and replicability? Nature, May 2016

includes CS/HPC ☺

spcl.inf.ethz.ch

@spcl_eth

5

Functional reproducibility is relatively simple – release the code!

Single-threaded, if you don’t care much about performance

Gets a bit more complex when you share parallel codes (IEEE 754 is not associative)

IPDPS’14

Rump, JSC’09, Demmel, Nguyen, ARITH’13

spcl.inf.ethz.ch

@spcl_eth

6

But what if performance is your science result?

(2006)

1 node

(system B)

▪ Original findings:

▪ If carefully tuned, NBC speed up a 3D solver

Full code published

▪ 8003 domain – 4 GB (distributed) array

1 process per node, 8-96 nodes

Opteron 246 (old even in 2006, retired now)

▪ Super-linear speedup for 96 nodes

~5% better than linear

▪ 9 years later: attempt to reproduce ☺!

System A: 28 quad-core nodes, Xeon E5520

System B: 4 nodes, dual Opteron 6274

“Neither the experiment in A nor the one in B could reproduce the

results presented in the original paper, where the usage of the

NBC library resulted in a performance gain for practically all node

counts, reaching a superlinear speedup for 96 cores (explained

as being due to cache effects in the inner part of the matrix

vector product).”

A

B

Reproducing performance results is hard! Is it even possible?

spcl.inf.ethz.ch

@spcl_eth

7

My own replication result

Replicated many folklore results on Jaguar,

results from Ferreira, Bridges, Brightwell

as well as Beckman et al. both two years earlier on

different machines

Replicating performance results is possible but rare! Make it the default?

spcl.inf.ethz.ch

@spcl_eth

8

Nature, May 2016

includes CS/HPC ☺

HPC Performance reproducibility – don’t even try?

▪ Reproducibility – get the exact results

▪ Replicability – repeat the effect/insight

Small Quiz

Raise your hand if you believe one can reproduce

any Gordon Bell finalist from before 2013!

Interpretability: We call an experiment interpretable if it provides enough

information to allow scientists to understand the experiment, draw own

conclusions, assess their certainty, and possibly generalize results.

spcl.inf.ethz.ch

@spcl_eth

▪ We are all interested in High Performance Computing

▪ We (want to) see it as a science – reproducing experiments is a major pillar of the scientific method

▪ When measuring performance, important questions are

▪ “How many iterations do I have to run per measurement?”

▪ “How many measurements should I run?”

▪ “Once I have all data, how do I summarize it into a single number?”

▪ “How do I compare the performance of different systems?”

▪ “How do I measure time in a parallel system?”

▪ …

▪ How are they answered in the field today?

▪ Let me start with a little anecdote … a reaction to this paper ☺

9

How does Garth measure and report performance?

spcl.inf.ethz.ch

@spcl_eth

▪ Stratified random sample of three top-conferences over four years

▪ HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)

▪ 10 random papers from each (10-50% of population)

▪ 120 total papers, 20% (25) did not report performance (were excluded)

10

State of the Practice in HPC

▪ Main results:

1. Most papers report details about the hardware but fail to describe the software environment.

Important details for reproducibility missing

2. The average paper’s results are hard to interpret and easy to question

Measurements and data not well explained

3. No statistically significant evidence for improvement over the years 

▪ Our main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough

information to allow scientists to understand the experiment, draw own conclusions, assess their

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!

spcl.inf.ethz.ch

@spcl_eth

Yes, this is a

garlic press!

Well, we all know this - but do we really know how to fix it?

11

1991 – the classic!

2012 – the shocking

2013 – the extension

spcl.inf.ethz.ch

@spcl_eth

Yes, this is a

garlic press!

This is not new – meet Eddie!

12

1991 – the classic!

2012 – the shocking

2013 – the extension

Our constructive approach: provide a set of (12) rules

▪ Attempt to emphasize interpretability of performance experiments

▪ The set is not complete

▪ And probably never will be

▪ Intended to serve as a solid start

▪ Call to the community to extend it

▪ I will illustrate the 12 rules now

▪ Using real-world examples

All anonymized!

▪ Garth and Eddie will represent the bad/good scientist

spcl.inf.ethz.ch

@spcl_eth

13

The most common issue: speedup plots

Check out my

wonderful

Speedup!

I can’t tell if

this is useful

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

14

The most common issue: speedup plots

Check out my

wonderful

Speedup!

I can’t tell if

this is useful

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as

well as the absolute execution performance of the base case.

▪ A simple generalization of this rule implies that one should never report ratios without

absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

17

The latency of

Piz Dora is

1.77us!

How did you

get to this?

I averaged 106

tests, it must be

right!

u
s
e
c

sample

Why do you

think so? Can I

see the data?

The simplest networking question: ping pong latency!

Rule 5: Report if the measurement values are deterministic.

For nondeterministic data, report confidence intervals of the

measurement.

▪ Most papers report nondeterministic measurement results

▪ Only 15 mention some measure of variance

▪ Only two (!) report confidence intervals

▪ CIs allow us to compute the number of required measurements!

▪ Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

Thou shalt not trust your average textbook!

18

The confidence

interval is 1.765us

to 1.775us

Did you assume

normality?

Yes, I used the central

limit theorem to

normalize by summing

subsets of size 100!

Can we test for

normality?

Ugs, the data is not

normal at all! The real

CI is actually 1.6us to

1.9us!

Rule 6: Do not assume normality of collected data (e.g.,

based on the number of samples) without diagnostic checking.

▪ Most events will slow down performance

▪ Heavy right-tailed distributions

▪ The Central Limit Theorem only applies asymptotically

▪ Some papers/textbook mention “30-40 samples”, don’t trust them!

▪ Two papers used CIs around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

21

Thou shalt not trust your system!
Look what

data I got!

Clearly, the

mean/median are

not sufficient!

Try quantile

regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

Quantile Regression

22

Wow, so Pilatus is better for (worst-

case) latency-critical workloads even

though Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

▪ Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH

Computer Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

Yes, this is a

garlic press!

This is not new – meet Eddie!

29

1991 – the classic!

2012 – the shocking

2013 – the extension

Wrapping up the 12 rules …

▪ Attempt to emphasize interpretability of performance experiments

▪ Teach some basic statistics

▪ The set of 12 rules is not complete

▪ And probably never will be

▪ Intended to serve as a solid start

▪ Call to the community to extend it

Nature, 2016

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

30

12 ways

spcl.inf.ethz.ch

@spcl_eth

▪ Tradeoffs between those two

▪ Very foreign for HPC people – we always operated in double precision

Mostly out of fear of rounding issues

▪ Deep learning shows how little accuracy one can get away with

▪ Well, examples are drawn randomly from some distribution we don’t know …

▪ Usually, noise is quite high …

▪ So the computation doesn’t need to be higher precision than that noise

Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

▪ But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast

compute!

▪ A humorous guide to floptimization

▪ Twelve rules to help present your (not so great?) results in a much better light
31

“Statistical performance” vs. “hardware performance”

spcl.inf.ethz.ch

@spcl_eth

▪ Tesla K20 in 2018!?

Even though the older machines would win the beauty contest!

35

4) Compare outdated hardware with special-purpose hardware!

vs.

spcl.inf.ethz.ch

@spcl_eth

▪ Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!

37

6) Do not consider I/O!

spcl.inf.ethz.ch

@spcl_eth

▪ The pinnacle of floptimization! Very hard to catch!

But Dr. Catlock Holmes below can catch it.

40

9) Train on (unreasonably) large inputs!

Low-resolution cat (244x244 – 1 Gflop/example)

vs.

High-resolution cat (8kx8x – 1 Tflop/example)

spcl.inf.ethz.ch

@spcl_eth

▪ Compare either time to solution or accuracy if both together don’t look strong!

There used to be conventions but let’s redefine them.

43

12) Select carefully how to compare to the state of the art!

spcl.inf.ethz.ch

@spcl_eth

▪ End result – generalization

▪ Accuracy on unseen examples after training converges

▪ Time to convergence

▪ Several epochs until validation accuracy is sufficient

▪ Epoch time

▪ Pass over all samples in dataset running fwd inference and backprop,

incl. I/O

▪ Sample throughput
44

Reproducing and Benchmarking Deep Learning

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

45

Existing Deep Learning Frameworks

▪ Customizing operators

relies on framework

▪ Network representation

▪ Dataset representation

▪ Training algorithm

▪ Distributed training (e.g.,

asynchronous SGD)

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning meta-framework: a framework for frameworks to reside in

46

Deep500

CustomO

p

Operators

Level 0

forward()
gradient()

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning meta-framework: a framework for frameworks to reside in

47

Deep500

CustomO

p

Executor

Operators

Network

Level 0

Level 1

add_node()
add_edge()
remove_...

inference()
inference_and_backprop()

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning meta-framework: a framework for frameworks to reside in

48

Deep500

CustomO

p
HDD

Dataset

Sampler

Optimizer

Executor

Operators

Network

Training Runner (Trainer)

Level 0

Level 1

Level 2

get(i)

next()

minimize() step()

train()

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

▪ Deep learning meta-framework: a framework for frameworks to reside in

49

Deep500

CustomO

p
HDD

Dataset

Sampler

OptimizerDist. Optimizer

Executor

Operators

Network

Training Runner (Trainer)

Dist. Sampler

PFSPFS

PFSPFS

Metrics

Level 0

Level 1

Level 2

Level 3

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

Fixed definitions + mutable

definitions +

acceptable metric set = Recipe

50

For Benchmarking: Recipes

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

Fixed definitions + mutable definitions +

acceptable metric set = Recipe

51

For Benchmarking: Recipes

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

https://github.com/deep500/deep500/blob/master/recipes/cifar10_resnet44.py

https://github.com/deep500/deep500/blob/master/recipes/cifar10_resnet44.py

spcl.inf.ethz.ch

@spcl_eth

class IPowOp(CustomPythonOp):
def __init__(self, power):

super(IPowOp, self).__init__()
self.power = power
assert int(power) == power # integral

def forward(self, inputs):
return inputs[0] ** self.power

def backward(self, grads, fwd_inputs, fwd_outputs):
return (grads[0] * self.power *

(fwd_inputs[0] ** (self.power - 1)))

52

For Customizing: New Operator

Python

template<typename T>
class ipowop : public deep500::CustomOperator {
protected:

int m_len;
public:

ipowop(int len) : m_len(len) {}
virtual ~ipowop() {}

void forward(const T *input, T *output) {
#pragma omp parallel for
for (int i = 0; i < m_len; ++i)

output[i] = std::pow(input[i], DPOWER);
}

void backward(const T *nextop_grad,
const T *fwd_input_tensor,
const T *fwd_output_tensor,
T *input_tensor_grad) {

#pragma omp parallel for
for (int i = 0; i < m_len; ++i) {

input_tensor_grad[i] = nextop_grad[i] * DPOWER *
std::pow(fwd_input_tensor[i], DPOWER - 1);

}
}

};

C++

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch

@spcl_eth

53

For Customizing: Distributed Optimization

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

https://github.com/deep500/deep500/blob/master/deep500/frameworks/reference/distributed_optimizers.py#L68

https://github.com/deep500/deep500/blob/master/deep500/frameworks/reference/distributed_optimizers.py#L68

spcl.inf.ethz.ch

@spcl_eth

Acknowledgments

▪ ETH’s mathematics department (home of R)

▪ Hans Rudolf Künsch, Martin Maechler, and Robert Gantner

▪ Comments on early drafts

▪ David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy

Roscoe, Gustavo Alonso, Georg Hager, Jesper Träff, and Sascha

Hunold

▪ Help with HPL run

▪ Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)
56

Conclusions and call for action

▪ Performance may not be reproducible

▪ At least not for many (important) results

▪ Interpretability fosters scientific progress

▪ Enables to build on results

▪ Sounds statistics is the biggest gap today

▪ See the 12 rules and 12 ways as a start

▪ Much is implemented in LibSciBench [1]

▪ Deep500 [2] aims to enable reproducibility

in deep learning – across frameworks

▪ Call to action to community to:

Define more recipies (datasets, networks, tasks)

Improve implementations/techniques

Implement reproducibly

New (aggregate) metrics?

No vegetables were harmed for creating these slides!

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

[2]: https://www.deep500.org/

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
https://www.deep500.org/

