L. e v S SR T spcl.inf.ethz.ch
. A ¥ TR SR : o S LS
ETH:zurich e NTeNer ﬁﬁ’ ¥ @spcl_eth

TORSTEN HOEFLER

Performance Reproducibility in HPC and Deep Learnlng
Numerical Reproducibility at Exascale Workshop (NRE2019), ISC’19, Frankfurt Germany

'q";- e "-"'. h“— ’-ﬂf

{{{{{{

,,,,,,

'''''

SEptember 10-13, 2019

. Zurich, Swnzerland |
f .l ~d ‘ r : "_ql . <=

T i Eu roMPI’19%

o R L T S spcl.inf.ethz.ch
ETHzurich T e s /\@J 3 @spcl_eth

Disclaimer(s)

= This is an experience talk (paper published at SC 15 — State of the Practice)!
= Explained in SC15 FAQ:

“‘generalizable insights as gained from experiences with particular HPC
machines/operations/applications/benchmarks, overall analysis
of the status quo of a particular metric of the entire field or
historical reviews of the progress of the field.”

= Don’t expect novel insights
Given the papers | read, much of what | say may be new for many

CAUTION:

USE THESE
WORDS WITH
DISCRETION

= My musings shall not offend anybody
= Everything is (now) anonymized

= Criticism may be rhetorically exaggerated
= \Watch for tropes!

= This talk should be entertaining!

spcl.inf.ethz.ch

ETH:zurich (Y 7 A7 ¥ @spcl_eth

“In the good old days physicists repeated each other’s
experiments, just to be sure. Today they stick to
FORTRAN, so that they can share each other’s

programs, bugs included.” — Edsger Dijkstra (1930-
2002), Dutch computer scientist, Turing Award 1972

spcl.inf.ethz.ch

ETH:zurich /Y 7 A\x o @spcl_eth

Reproducibility and replicability? Nature, May 2016
HAVE YOU FAILED TO REPRODUCE

= Reproducibility — get the exact results AN EXPERIMENT?

. Replicability _ repeat the effect/i nsig ht Most scientists have experienced failure to reproduce results.
® Someone else’'s & My own

HOW MUCH PUBLISHED WORK IN YOUR cromistr, [
FIELD IS REPRODUCIBLE? s o

Physicists and chemists were most confident in the literature.]

PHYSICS AND s includes CS/HPC © Biology _ e ——Ce————— l
CHEMISTRY ENGINEERING oTHER | i st b . ERSSS S R
100 SR S Fes :

" hyscoand [N
sty ? p-

-1

Medicine

Earth and
environment

% of published literature that
is reproducible (predicted)
/’)‘

Other i

o
N
o
B
o
o
0
o
(S
o
O P
N

25% of respondents
4

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Functional reproducibility is relatively simple — release the code!

docker

s
jupyter

Notebook

Single-threaded, if you don’t care much about performance

Gets a bit more complex when you share parallel codes (IEEE 754 is not associative)

IPDPS’14

Designing Bit-Reproducible Portable High-Performance Applications*

Andrea Arteaga Oliver Fuhrer Torsten Hoefler
ETH Zurich, Switzerland Federal Office for Meteorology and Climatology ETH Zurich, Switzerland
andrea.arteaga@env.ethz.ch MeteoSwiss, Zurich, Switzerland htor@ethz.ch

oliver.fuhrer @meteoswiss.ch

Abstract—Bit-reproducibility has many advantages in the
context of high-performance computing. Besides simplifying
and making more accurate the process of debugging and
testing the code, it can allow the deployment of applications
on heterogeneous systems, maintaining the consistency of the
computations. In this work we analyze the basic operations
performed by scientific applications and identify the possible
sources of non-reproducibility. In particular, we consider the
tasks of evaluating transcendental functions and performing
reductions using non-associative operators. We present a set

runs is often of key importance in order to locate and
isolate bugs. Especially, when refactoring an application in
a way that the results should not change, reproducibility
can significantly ease testing. However, debugging is only a
secondary use-case for us. Many applications being run on
large, parallel high performance computing facilities simu-
late the behavior of complex and highly non-linear systems.
Prominent examples can be found in molecular dynamics or
weather and climate simulation. For example, for weather

Number of MPI processes (22° values per process)
1 4 16 64 256 1024 4096 16384

I Local computation onhrmin mx sl v on os o
I Communication s e e s s s 0

N W A~ O
I I I I |

-

Time (normalized to conv)

o

Figure 8. Performance comparison of conventional reduction performed
with MKL (Conv), single-sweep reduction with two levels (Single2), with
three levels (Single3) and double-sweep reduction with 1 level (Double 1)
on varying number of processes, each owning 229 double-precision values,

spcl.inf.ethz.ch

ETH:zurich ' 7 /Y 7 A\x o @spcl_eth

Reproducing performance results is hard! Is it even possible?

spcl.inf.ethz.ch

ETHziirich) e Sl Y YN+ o @spcleth

Replicating performance results is possible but rare! Make it the default?

spcl.inf.ethz.ch

ETHzurich e i ' / 9 @spcl_eth

= Repro
Replicabili

\ ’ﬁ @t

;.

Small Quiz

L
f
/
T
Raise your hand if you believe one can reproduce
any Gordon Bell finalist from before 2013!

Interpretability: We call an experiment interpretable if it provides enough
information to allow scientists to understand the experiment, draw own
conclusions, assess their certainty, and possibly generalize results.

. . , G spcl.inf.ethz.ch
ETH:zurich : s / 7 _\a 9 @spcl_eth

How does Garth measure and report performance?

= We are all interested in High Performance Computing
= We (want to) see it as a science — reproducing experiments is a major pillar of the scientific method

= When measuring performance, important questions are
» “How many iterations do | have to run per measurement?”
“How many measurements should | run?”
“Once | have all data, how do | summarize it into a single number?”
“How do | compare the performance of different systems?”
“How do | measure time in a parallel system?”

= How are they answered in the field today?
= et me start with a little anecdote ... a reaction to this paper ©

spcl.inf.ethz.ch

ETHzurich ~\ e -y @spcl_eth

State of the Practice in HPC

= Stratified random sample of three top-conferences over four years
= HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)
= 10 random papers from each (10-50% of population)
= 120 total papers, 20% (25) did not report performance (were excluded)

= Main results:
1. Most papers report details about the hardware but fail to describe the software environment.
Important details for reproducibility missing
2. The average paper’s results are hard to interpret and easy to question
Measurements and data not well explained
3. No statistically significant evidence for improvement over the years ®

= Qur main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough
information to allow scientists to understand the experiment, draw own conclusions, assess their

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!

spcl.inf.ethz.ch

ETHzurich e ’ Al ' 9 @spcl_eth

1991 — the classic!

= Twelve Ways to Fool the Masses When Giving
ﬁyﬂ Performance Results on Parallel Computers
2012 — the shocking i
1= 1 .0 - " L1 1 1N
Abstract H O 2013 — the extension

Many of us P|tfa| . I S
quite difficy l
supercompy

scientific pg
these result

Yes, this is a
garlic press!

Fooling the Masses with Performance
Results: Old Classics & Some New Ildeas

Gerhard Wellein®?), Georg Hager®@

(UDepartment for Computer Science AnEE
e : g = —— = "
(@Erlangen Regional Computing Center E ST === EALANGEN-NURNBERG

Friedrich-Alexander-Universitit Erlangen-Niirnberg ESEEAE

o : : spcl.inf.ethz.ch
ETH ziirich e TN Y

Our constructive approach: provide a set of (12) rules

= Attempt to emphasize interpretability of performance experiments
= The setis not complete

= And probably never will be

» [ntended to serve as a solid start

= Call to the community to extend it

= | will illustrate the 12 rules now
» Using real-world examples
All anonymized!
» Garth and Eddie will represent the bad/good scientist

. . e P L e spcl.inf.ethz.ch
ETHzurich RV e /&&2' 3 @spcl_eth

The most common issue: speedup plots
e . | can'’t tell if
Check out my YIRS B [s s useu
wonderful - 1o at alll
Speedup! o et '
5 60 | (- ‘;:;.‘;.;;g,’..‘,.
C% 40 | =)
20 1 Isa,.».—.;:g? =
O HENE
8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

= Most common and oldest-known issue
= First seen 1988 — also included in Bailey’s 12 ways
= 39 papers reported speedups
15 (38%) did not specify the base-performance &
» Recently rediscovered in the “big data” universe
A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

. gy e o T e spcl.inf.ethz.ch
ETHzurich RV e /&&2' 3 @spcl_eth

Rule 1: When publishing parallel speedup, report if the base
case Is a single parallel process or best serial execution, as
well as the absolute execution performance of the base case.

= A simple generalization of this rule implies that one should never report ratios without
absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

e . P N T B R A spcl.inf.ethz.ch
ETHzlirich 7 Z@] 3 @spcl_eth

Rule 5: Report if the measurement values are deterministic.
For nondeterministic data, report confidence intervals of the
measurement.

= Most papers report nondeterministic measurement results
= Only 15 mention some measure of variance
= Only two (!) report confidence intervals

= Cls allow us to compute the number of required measurements!

= Can be very simple, e.g., single sentence in evaluation:
“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

_ R L3 T L T spcl.inf.ethz.ch
ETHzurich T e s /\@J 3 @spcl_eth

Rule 6: Do not assume normality of collected data (e.g.,
based on the number of samples) without diagnostic checking.

= Most events will slow down performance
= Heavy right-tailed distributions

= The Central Limit Theorem only applies asymptotically
= Some papers/textbook mention “30-40 samples”, don’t trust them!

= Two papers used Cls around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Thou shalt not trust your system!

Look what

Piz Dora
data | got! Min: 1.57 A\ Median Arithmetic Mean
6- Max:7.2 f— o ol
99% Cl (Mean)
4- \ | |
| | I
99% Cl(Median)

15 1.6 1.7 18 1.9 20

._ N Pilatus

Min: 1.48

50

9 Max: 11.59

Clearly, the
mean/median are
not sufficient!

Try quantile S ——————
regression! 1.5 1.6

Median _

99% Cl (Median)

Arithmetic Mean
/

/99% Cl (Mean)

1.9 2.0

. <y, b S spcl.inf.ethz.ch
ETH ziirich o TN Y

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

= Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH
Computer Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

ETH:zurich ’ 7 A7 ¥ @spcl_eth

Wrapping up the 12 rules ...

= Attempt to emphasize interpretability of performance experiments
= Teach some basic statistics Nature, 2016

_ WHAT FACTORS COULD BOOST
= The set of 12 rules is not complete REPRODUCIBILITY?

= And probably never will be Respondents were positive about most proposed improvements
) but emphasized training in particular.
» |ntended to serve as a solid start

_ _ ® Very likely Likely
= Call to the community to extend it : ;

Better understanding
of statistics

Better mentoring/supervision
Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results More robust design

Better teaching

Torsten Hoefler Roberto Belli
Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich N . :
Zurich, Switzerland Zurich, Switzerland More within-lab validation
htor@inf.ethz.ch bellir@inf.ethz.ch
ABSTRACT Reproducing experiments is one of the main principles of the sci- |ncent|ves fOT better praCtlce

entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler. the

Measuring and reporting performance of parallel computers con-

Incentives for formal
reproduction

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

. ; i : spcl.inf.ethz.ch
ETHzurich x> /&&2 W @spcl_eth

uém Twelve ways to fool the masses when reporting performance of deep
»= learning workloads

& blog % Uncategorized

- \ - S ¢ J
A e
',/‘ \ . .
Y 4 \ A
;;‘\ ._. i
/ Ny :
— \ b ‘.
\"' T z .
\ 3 -l \ el .
§ r/" N/ : -.‘. 4 . 4
7N A . X
= . ., ~
»
X -~
. -

spcl.inf.ethz.ch

E'HZUfiCh 7:'\;‘; RS 3y @spcl_eth

“Statistical performance” vs. “hardware performance” gratisTICS

DONE WRONG
= Tradeoffs between thosetwo sucwoe e e

= Very foreign for HPC people — we always operated in double precision
Mostly out of fear of rounding issues

= Deep learning shows how little accuracy one can get away with
= Well, examples are drawn randomly from some distribution we don’t know ...
= Usually, noise is quite high ...
= So the computation doesn’t need to be higher precision than that noise
Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

= But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast
compute!

= A humorous guide to floptimization
= Twelve rules to help present your (not so great?) results in a much better light

spcl.inf.ethz.ch

ETH:zurich ' 7 /Y 7 A\x o @spcl_eth

4) Compare outdated hardware with special-purpose hardware!

= Tesla K20 in 2018!?
Even though the older machines would win the beauty contest!

VS.

35

spcl.inf.ethz.ch

ETHziirich) e Sl YN~ 9 @spel et

6) Do not consider I/O!

= Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!

P AR
- by] E—
' A e .

spcl.inf.ethz.ch

ETH:zurich ! e ? / 7 _Ax ¥ @spcl_eth

9) Train on (unreasonably) large inputs!

= The pinnacle of floptimization! Very hard to catck
But Dr. Catlock Holmes below can catch it.

VS.

Low-resolution cat (244x244 — 1 Gflop/example)

R g
High-resolution cat (8kx8x — 1 Tflop/example)

ETH:zurich

spcl.inf.ethz.ch

12) Select carefully how to compare to the state of the art!

= Compare either time to solution or accuracy if both together don’t look strong!

CAN MY BOYFRIEND
COME ALONG?

\

IM NOT YOUR
BOYFRIEND!

[You TOTALY ARE.

TM CAsLALLY
DATING A NUMBER

OF PEOPLE.

0O
K

There used to be conventions but let’s redefine them.

BUT YOU SPEND TWICE AS MUCH
TIME WITH ME AS WITH ANYONE.
ELSE. IM ACLEAR OUTLER.

HOH -

Al -

YOUR MATH 15
IRREFUTABLE.

FACE IT—=IM
YOUR STATISTICALLY
SIGNIFICANT OTHER.

s

3y @spcl_eth

. . O e A spcl.inf.ethz.ch
ETH ziirich - - e A N4 i

Reproducing and Benchmarking Deep Learning

= End result — generalization

Focus Metrics Criteria Customizability DL Workloads Remarks
Perf Con Acc Tim Cos Ene Util Mem Tput Brk Sca Com TTA FTA Lat Clo Ope Inf Ops Img Obj Spe Txt RL

DeepBench([39] «%¥ i @ () ip g ip g ip g g ip ip @ () (5 @ (O ¢ @ @ p @ @ Ops:Conv, GEMM,
RNN, Allreduce

Benchmark

L

TBD [47] O e e g e @O O O 9 9 9 @ e OO0 @ @ @ O O O O O +GANs

Fathom [2] O @ e O @ e e g O O O @ @ @ O O @ @ 9 O @ O O O +Auto-encoders
DAWNBench[9] @)) %)) W W | | @ @ O OB G @ RO

Kaggle [21] s 9 G @ @ @ g @ @ @ e @ @ O @@ O @ @ O & G G G Varying workloads
ImageNet[13] W @ & @ @ @ ip g @ @ @ @ B J @ Q9 G @ Q9 G O @ QR

MLPerf [30] O O O O O O e e @ e 9 O G OG 0 @ w50 000

Deep500 O O O O 0 &0 b O OO0 O O OO0 06 O O O b ok kb

TABLE II: An overview of available DL benchmarks, focusing on the offered functionalities. Perf: Performance, Con: Convergence, Acc: Accuracy, Tim: Time,
Cos: Cost, Ene: Energy, Util: Utilization, Mem: Memory Footprint, Tput: Throughput (Samples per Second), Brk: Timing Breakdown, Sca: Strong Scaling, Com:
Communication and Load Balancing, TTA: Time to Accuracy, FTA: Final Test Accuracy, Lat: Latency (Inference), Clo: Closed (Fixed) Model Contests, Ope: Open
Model Contests, Inf: Fixed Infrastructure for Benchmarking, Ops: Operator Benchmarks, Img: Image Processing, Obj: Object Detection and Localization, Spe: Speech
Recognition, Txt: Text Processing and Machine Translation, RL: Reinforcement Learning Problems, : A given benchmark does offer the feature. sé: Planned benchmark
feature. #@: A given benchmark does not offer the feature.

= Sample throughput

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

. . N T SR AN spcl.inf.ethz.ch
ETH ziirich e il e A N4 i

Existing Deep Learning Frameworks

System Operators ~ Networks Training Dist. Training m Customizing operators
Sta Cus Def Eag ComTra Dat Opt Cus PS Dec Asy Cus relies on framework
(L) cuDNN <HE LN BN BN NN NEEREN.
(L) MKL-DNN Q) W@ P R PR R PR R
(F)TensorFlow [1] &3 & & O & & O UR O & & O » = Network representation
(F)Caffe,Caffe2’ [21] &) o & "» W@ @ i UR ' W § @
Egmﬂm{mm%lg 2 E O . '\\E 4] E E @ E =
et [6] L B UR ., o2 :
(F) CNTK [48] S & ¢ @ @ @ UR & o) o wp = Datasetrepresentation
(F) Theano [4] O O OO O 0% & % @ @ B9 @
EgChainer[MN] [44] g O E O ¢ 90 : O 9 O BB
Darknet [38] b T § @ @ L B B B . -
(F) DL4;j [43] O & O w e UR & & e g " lraining algorithm
(F) DSSTNE O % O @ @ @ RURY R e R
(F) PaddlePaddle O O O @ @ b b UR o & @ O b
(H) TYM17) O 0 0% OO®™®®®®®® . Distributed training (e.qg.,
(E) Keras [8] Q) W @ 1§ @ g URS R R
(E)Horovod[42] #9 #§ 1§ w 1§ i 1 i 1§ ® O ® . asynchronous SGD)
(E) TensorLayer[14]) W W W i @ @ UR @ B & ¢ @
(E) Lasagne w & ' @ @ 9@ URS e R
(E) TFLearn [11] W % R R R g g g

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl.inf.ethz.ch
"y @spcl_eth

peep500 — L Ch

= Deep learning meta-framework: a framework for frameworks to reside in

ETH:zurich

Level O

rerni - S 4R T

Operators

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl inf.ethz.ch

ETH:zurich R e Al ' 9 @spcl_eth

Deeps00 P

= Deep learning meta-framework: a framework for frameworks to reside in

Level O
Level 1
inference()
E r
inference_and_backprop() XeSUtO
4 ™
add_node() o m;ﬁn'i*"i‘if“'*’*
add_edge() B (i L —> €) ONNX
remove ... Network «
T N
aeae
P
Operators

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

ETH:zurich

spcl.inf.ethz.ch
' 3y @spcl_eth

Deep500

JFEP SO

= Deep learning meta-framework: a framework for frameworks to reside in

Optimizer minimize() step() Level O
; | Level 1
train() Training Runner (Trainer)
[. |
[Sampler] next() Executor
r)
t(i) duabtabababdigien
[Dataset] get(1 R L —>) ONNX
~ Net ork U
3 7 <
)) CustomO
HDD — —
XYL

Operators

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

spcl inf.ethz.ch

ETH:zurich 5 Ao 9 @spcl_eth

Deep500 P

= Deep learning meta-framework: a framework for frameworks to reside in

Dist. Optimizer % Optimizer ' Level O
|

Level 1
Training Runner (Trainer) .
| T | Level 3
Dist. Sampler —{ Sampler ' Executor '
I (A 1
1 140 1 'itﬁ 4 H:“'H'
[Dataset ' “"*“:ﬁi*'ﬁ“ﬁ‘ﬁﬁ'“ e € ONNX
PFS | | PFS Network — «
o a =B o
Operators
Metrics

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019. 49

ETH:zurich

For Benchmarking: Recipes

Fixed definitions + mutable
definitions +

acceptable metric set = Recipe

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

For Benchmarking: Recipes

Fixed definitions + mutable definitions +
acceptable metric set = Recipe

“mrf recipe for running the CIFAR-18 dataset with ResMNet-44 and & momentum i
Mutable Components

MUTABLE = {

"batch_size': &4,

optimizer, with metrics for final test accuracy.

import deepS@@ as ds
"executor': d5fw.from_model,

from recipes.recipe import run_recipe)]
"executor_kwargs': dict{device=d5.GPUDevice()}),

"optimizer': dS5fw.MomentumOptimizer,

Using PyTorch as the framework .
"optimizer_args': (8.1, 8.9],

import deepS@d.frameworks.pytorch as dSfuw

b
Acceptable Metrics
Fixed Components
METRICS = [
FIXED = {
: (ds.TestAccuracy(}, 23.8)
‘model’: 'resnet’,]
"model_kwargs': dict{depth=44}),
‘dataset': 'cifarla’,
"train_sampler': d5.5huffleSampler, .
if __name__ == '__main__"':

"epochs": 1 . .
run_recipe(FIXED, MUTABLE, METRICS) or exit(1l)

https://qgithub.com/deep500/deep500/blob/master/recipes/cifar10_resnet44.py
T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

https://github.com/deep500/deep500/blob/master/recipes/cifar10_resnet44.py

. . g S spcl.inf.ethz.ch
ETH:zurich o ' -

3y @spcl_eth

For Customizing: New Operator

template<typename T>

class ipowop : public deep500::CustomOperator {
protected:

int m_len;
public:
i int 1 : 1 1
class IPowOp(CustomPythonOp): i?ﬁ:ﬁgglgipo‘ig;() ?; en(len) {}
def __init (self, power):

super(IPowOp, self). init_ () void forward(const T *input, T *output) {
self.power = power #pragma omp parallel for

assert int(power) == power # integral for (int 1 = @; i < m_len; ++1i)

output[i] = std::pow(input[i], DPOWER);
def forward(self, inputs): }

return inputs[@] ** self.power void backward(const T *nextop _grad,

const T *fwd_input_tensor,

def backward(self, grads, fwd inputs, fwd outputs): const T *fwd_output_tensor,
return (grads[@] * self.power * T *input_tensor_grad) {
(fwd_inputs[@] ** (self.power - 1))) i ETUEE T L R

for (int i = 0; i < m_len; ++i) {
input_tensor_grad[i] = nextop_grad[i] * DPOWER *
std: :pow(fwd input tensor[i], DPOWER - 1);
}s5
Python C++

T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

For Customizing: Distributed Optimization

class ConsistentNeighbors(DistributedOptimizer):

Follows communication scheme from https://arxiv.org/pdf/1705.09056.pdf

def step(self, inputs):

self.base optimizer.new _input()

for param in self.network.get params():
self.base optimizer.prepare_param(param)

output = self.executor.inference_and backprop(inputs, self.base optimizer.loss)

gradients = self.network.gradient(self.base optimizer.loss)

for param_name, grad _name in gradients:
param, grad = self.network.fetch_tensors([param_name, grad_name])
grad = self.communication.reduce_from_neighbors(grad) / 3
param = self.base optimizer.update rule(grad, param, param_name)
self.network.feed_tensor(param_name, param)

return output

https://github.com/deep500/deep500/blob/master/deep500/frameworks/reference/distributed optimizers.py#L 68
T. Ben-Nun et al., A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, IPDPS 2019.

53

https://github.com/deep500/deep500/blob/master/deep500/frameworks/reference/distributed_optimizers.py#L68

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Conclusions and call for action

= Performance may not be reproducible
= At least not for many (important) results

= Interpretability fosters scientific progress
= Enables to build on results
= Sounds statistics is the biggest gap today

= Seethe l1l2rules and 12 ways as a start
= Much is implemented in LibSciBench [1]
= Deep500 [2] aims to enable reproducibility
in deep learning — across frameworks
= Call to action to community to:
Define more recipies (datasets, networks, tasks)
Improve implementations/techniques
Implement reproducibly
New (aggregate) metrics?

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
[2]: https://www.deep500.org/

FEEST

No vegetables were harmed for creating these slides!

Acknowledgments
= ETH’s mathematics department (home of R)
» Hans Rudolf Kiinsch, Martin Maechler, and Robert Gantner

= Comments on early drafts

= David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy
Roscoe, Gustavo Alonso, Georg Hager, Jesper Traff, and Sascha
Hunold

= Help with HPL run
» Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/
https://www.deep500.org/

