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Abstract. Non-blocking collective operations for MPI have been in dis-
cussion for a long time. We want to contribute to this discussion and
to give a rationale for the usage these operations and assess their pos-
sible benefits. A LogGP model for the CPU overhead of collective algo-
rithms and a benchmark to measures it are provided and show a large
potential to overlap communication and computation. We show that non-
blocking collective operations can provide at least the same benefits as
non-blocking point to point operations already do. Our claim is that ac-
tual CPU overhead for non-blocking collective operations depends on the
message size and the communicator size and benefits especially highly
scalable applications with huge communicators. We prove that the share
of the overhead of the overall communication time of current blocking
collective operations gets smaller with bigger communicators and larger
messages. We show that the user level CPU overhead is less than 10% for
MPICH2 and LAM/MPI using TCP/IP communication, which leads us
to the conclusion that, by using non-blocking collective communication,
ideally 90% idle CPU time can be freed for the application.
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1 Introduction

Non-blocking collective operations and their possible benefits have already been
discussed at meetings of the MPI standardization committee. The final decision
to not include them into the MPI-2 standard fell at March 6, 19974. However,
the fact that the decision was extremely marginal (11 yes / 12 no / 2 abstain)
suggests that the role of non-blocking collective operations is still debatable. Our
contention is that non-blocking collective operations are a natural extension to
the MPI-2 standard. We show that non-blocking collective operations can be
beneficial for a class of applications to utilize the available CPU time more
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efficiently and decrease the time to solution of these applications significantly.
Further, we discuss two main problems of blocking collective communication
which limit the scalability of applications.

First, blocking collective operations have a more or less synchronizing effect
on applications which leads to unnecessary wait time. Even thought the MPI
standard does not define other blocking collective operations than MPI BARRIER

to be strictly synchronizing, most used algorithms force many processes to wait
for other processes due to data dependencies. In this way, synchronization with
a single process is enforced for some operations (e.g., a MPI BCAST can not
be finished until the root process called it) and the synchronizing behavior of
other operations highly depends on the implemented collective algorithm. In
either case, pseudo-synchronizing behavior often leads to many lost CPU cycles,
a high sensitivity to process skew (e.g., due to daemon processes which “steal”
the CPU occasionally and introduce a pseudo-random skew between processes
[1,2]), and a high sensitivity to imbalanced programming (e.g., some processes
do slightly more computation than others each round).

Second, most blocking collective operations can not take much advantage
of modern interconnects which enable communication offload to support effi-
cient overlapping of communication and computation. Abstractly seen, each su-
percomputer or cluster consists of two entities, the CPU which processes data
streams and the network which transports data streams. In many networks, both
entities can act mostly independently of each other, but the programmer has no
chance to use this parallelism efficiently if blocking communication (point-to-
point or collective) is used.

Another rationale to offer non-blocking semantics for collective communi-
cation is an analogy between many modern operating systems and the MPI
standard. Most modern operating systems offer possibilities to overlap compu-
tation on the host CPU with actions of other entities (for example harddisks
or the network). Asynchronous I/O and non-blocking TCP/IP sockets are to-
day’s standard features to communicate. The MPI standard offers non-blocking
point-to-point communication which can be used to overlap communication and
computation. It would be a natural extension to offer also a non-blocking inter-
face to the collective operations.

The next section describes related work in the field of overlap of computation
and communication and the avoidance of synchronization. Section 2 gives some
information about possible benefits of non-blocking collective communication.
Section 3 presents benchmark results for a selected set of operations followed by
a conclusion of this work.

1.1 Related Work

The obvious benefits of overlapping communication with computation and lever-
aging the hardware parallelism efficiently with the usage of non-blocking com-
munication is well documented. Analyses [3,4,5] try to give an assessment of the
capabilities of MPI implementations to perform overlapping for point-to-point
communications. Many groups analyze the possible performance benefits for real



applications. Liu et al. [6] showed possible speedups up to 1.9 for several paral-
lel programs. Brightwell et al. [7] classifies the source of performance advantage
for overlap and Dimitrov [8] uses overlapping as fundamental approach to op-
timize parallel applications for cluster systems. Other studies, as [9,10,11,12]
apply several transformations to parallel codes to enable overlapping. However,
little research has been done in the field of non-blocking collectives. Studies
like [13,14] mention that non-blocking collective operations would be beneficial
but do not provide a measure for it. Kale et al. [15] analyzed the applicabil-
ity of a non-blocking personalized exchange to a small set of applications in
practice. However, many studies show that non-blocking communication and
non-blocking collectives may be beneficial. Our work contributes to the field be-
cause we actually assess the potential performance benefits of a non-blocking
collective implementation.

2 Possible Performance Benefits

The most obvious benefits of non-blocking collective operations are the avoid-
ance of explicit pseudo synchronization and the ability to leverage the hardware
parallelism stated in Section 1. The pseudo-synchronizing behavior of most al-
gorithms cannot be avoided, but non-blocking collective operations process the
operation in the background, which enables the user to ignore most synchro-
nization effects. Common sources for de-synchronization, process skew and load
imbalance are not easily measurable. However, results can increase the applica-
tion running time dramatically, as shown in [16]. Theoretical [17] and practical
analyses [18,16] show that operating system noise and resulting process skew is
definitively influencing the performance of parallel applications using blocking
collective operations. Non-blocking collective operations avoid explicit synchro-
nization unless it is necessary (if the programmer wants to wait for the operation
to finish). This enables the programmer to develop applications which are more
tolerant of process skew and load imbalance.

Another benefit is to use the parallelism of the network and computation lay-
ers. Non-blocking communication (point-to-point and collective) allows the user
to issue a communication request to the hardware, perform some useful com-
putation, and ask later if it has been completed. Modern interconnect networks
can perform the message transfer mostly independently of the user process. The
resulting effect is that, for several algorithms/applications, the user can overlap
the communication latency with useful computation and ignore the communica-
tion latency up to a certain extent (or totally). This has been well analyzed for
point-to-point communication (see Section 1.1). Non-blocking collective opera-
tions allow the programmer to combine the benefits of collective communication
[19] with all benefits of non-blocking communication. The following subsections
analyze the communication behavior of current blocking collective algorithms
and implementations and show that only a fraction of the CPU time is in-
volved into communication related computation. In relation to previous studies
we show, theoretically and practically, that a similar percentage, in many cases



even more, idle CPU time as with non-blocking point-to-point communication
can be gained. We assume that the biggest share of the remaining (idle) CPU
time can be leveraged by the user if overlap of communication and computation
together with non-blocking collective communication can be applied.

2.1 Modelling CPU and Network Activity

This subsection gives an estimation of the theoretical CPU idle time during a
collective operation. The CPU idle time during the communication will be mod-
elled and benchmarked. Precise models for collective operations are presented
in [20] and for barrier synchronization in [21]. Both studies show that the LogP
[22] or LogGP [23] model is able to predict the communication time sufficiently
accurately if the processes enter the collective operation simultaneously.

We analyze the three collective operations MPI BARRIER, MPI ALLREDUCE,
and MPI BCAST without loss of generality, in detail. As shown in [24,25,26],
these three operations are frequently used in real applications. However, the
results can also be applied to all other collective operations.

We assume the usual LogP/LogGP communication parameters (Latency,
overhead, gap, Gap ber byte and Processors) and γ to assess computation:

We derive simplified LogGP models for networks adhering the properties
defined in Section 2.2 in [21] (full bisectional bandwidth; full duplex; unlimited
forwarding rate; L, o are constant; o > L > g). We model point-to-point message
based implementations with logarithmic running time (O(log2P )) of all three
operations. We assume the dissemination principle to perform MPI BARRIER (1),
analyzed in [21]. Our model for MPI ALLREDUCE (2) assumes a simple binomial
tree reduce implementation followed by MPI BCAST and our MPI BCAST (3)
model assumes a binomial tree implementation (compare proposed models in
[20]).

tbarr = (2o + L) · ⌈log2P ⌉ (1)

tallred = 2 · (2o + L + m · G) · ⌈log2P ⌉ + m · γ · ⌈log2P ⌉ (2)

tbcast = (2o + L + m · G) · ⌈log2P ⌉ (3)

If we come back to the two entities, which are the network and the processor,
mentioned in Section 1, we realize that each parameter is “accounted” at a
specific entity. The processor is only used by o and γ while the network is used
to perform the message transmission (L,g,G). Using this information, we can
divide the equations presented above up into processing and network parts:

tCPU
barr = 2o · ⌈log2P ⌉ tNET

barr = L · ⌈log2P ⌉ (4)

tCPU
allred = (4o + m · γ) · ⌈log2P ⌉ tNET

allred = 2 · (L + m · G) · ⌈log2P ⌉ (5)

tCPU
bcast = 2o · ⌈log2P ⌉ tNET

bcast = (L + m · G) · ⌈log2P ⌉ (6)

We see that both, tCPU and tNET scale logarithmically with P . However,
on modern interconnects the parameters can differ significantly. The following
section provides an analysis of these parameters for modern interconect networks.



2.2 Fitting the Model to Modern Architectures

Modern interconnect architectures, like InfiniBandTM, QuadricsTM, or MyrinetTM,
which are used for HPC systems, try to offload a huge share of the communica-
tion into the network interface card. Traditional networks, like Ethernet (with-
out offloading), still use the CPU extensively to process network protocols like
TCP/IP. However, also Ethernet has been optimized for lower host overhead
with simplified protocols [27] as well as direct user level access and protocol of-
floading [28]. All these new networks and approaches aim to reduce the overhead
of the main CPU involved in communication (o parameter). The L parameter
is usually greater than the o in modern networks, and the gap between tCPU

and tNET grows with the message size as G · m is added. This enables efficient
overlapping of computation and communication for point-to-point communica-
tion which has been described in the related work section. However, this idea
can also be applied to collective communication. As one can see in equations
(4),(5),(6), the gap between Network and CPU occupancy also grows with the
number of involved processors P . This leads us to the prediction that especially
blocking collectives which communicate large data chunks with many processors
should be mostly utilizing the network (with an idle CPU). The only excep-
tion could be reduction operations, like MPI ALLREDUCE, because they include
processing (reduction) of values on the host CPU. However, in most cases, the
bandwidth of the CPU should be much higher than the network bandwidth.
In the following section, we evaluate these theoretical expectations with a cus-
tom benchmark set which measures the CPU usage during blocking collective
operations.

3 Benchmark Results

We implemented a benchmark which measures the CPU utilization for different
MPI collective operations. The benchmark uses the standard gettimeofday()

and getrusage() functionality of modern operating systems to measure the
idle time. It issues collective calls with different message sizes and communica-
tor sizes. The benchmark methodology is described as pseudocode in Listing 1.1.
The getrusage() call returns system time and user time used by the running
process separately. We chose a high number of iterations (10000) in the inner
loop (max iters, Line 5) to be able to neglect the overhead and relative impre-
ciseness of the system functions. We conducted the benchmark for different MPI
implementations shown in Table 1.

Many MPI libraries are implemented in a non-blocking manner which means
that the CPU overhead is, due to polling, 100% regardless of other factors. Only
LAM/MPI with TCP/IP and MPICH2 with TCP/IP used blocking communi-
cation to perform the collective operations. However, it is totally correct to use
polling to perform blocking MPI collective operations because, at least for sin-
gle threaded MPI applications, the CPU is unusable anyways and polling has
usually slightly lower overhead than interrupt based (blocking) methods.



1 for( proc=1; proc<nproc; proc=proc*2) {

create_communicator(nproc, comm);

for( size=1; size<maxsize; proc=proc*2) {

gettimeofday(t1); getrusage(r1);

5 for( i=0; i<max_iters; i++)

MPI_Coll(comm, size, MPI_BYTE, ...)

getrusage(r2); gettimeofday(t2);

}}

Listing 1.1. Benchmark Methodology (pseudocode)

Implementation Networks

LAM/MPI 7.1.2 InfiniBand, TCP/IP

MPICH2 1.0.3 TCP/IP

Open MPI 1.1a3 InfiniBand and TCP/IP

OSU MVAPICH 0.9.4. InfiniBand
Table 1. Tested MPI Implementations

We investigated all collective operations for LAM/MPI and MPICH2 and
want to discuss the frequently used MPI ALLREDUCE (cf. [26]) in detail. Both
MPI ALLREDUCE implementations exhibit a similar behavior and use only a
fraction of the available CPU power for communicators with more than 8 nodes.
MPICH2 causes in the average of all measurement points less than 30% CPU
load while LAM/MPI consumes less then 10%. We see also that the data size
plays an important role because there may be switching points in the collective
implementation where the collective algorithms or underlying point-to-point op-
erations are changed (e.g., 128kb for MPICH2). However, this overhead includes
the TCP/IP packet processing time spent in the kernel to transmit the messages
which is measured with the getrusage() function as system time. User level,
kernel-bypass, and offloading communication hardware like InfiniBand, Quadrics
or Myrinet does not use the host CPU to process packets and does not enter the
kernel during message transmission. Figure 1 shows the user level CPU usage
(without TCP/IP processing) for both examples from above. It shows that the
CPU overhead for MPI ALLREDUCE, which implies a user level reduction oper-
ation in our case, is below 10% in the average for MPICH2 and below 3% for
LAM/MPI. These figures show also that the share of CPU idle time grows with
communicator and data size. Other collective operations which are not shown
here due to space restrictions exhibit a similar behavior.

However, generally speaking, the time to perform a collective operation grows
also with communicator and data size. This means that the overall (multiplica-
tive) CPU waste is even higher. Figure 2 shows the absolute CPU idle time of
both implementations, several collective operations, and a fixed communicated
data size with varying communicator sizes. The effect of growing CPU waste
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Fig. 1. MPI ALLREDUCE (user time) overheads for LAM/MPI (left) and MPICH2
(right).

during blocking collectives is clearly visible. Especially the MPI ALLTOALL op-
eration, which usually scales worst, shows high CPU idle times with a growing
number of participating processes.
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Fig. 2. CPU idle time for some collective functions with varying communicator sizes
for a constant data size of 1kB (left: LAM/MPI, right: MPICH2).

Figure 3 shows that absolute CPU idle time of both implementations, for a
fixed communicator size, and varying data sizes. The CPU waste is even higher
and scales worse than for the varying communicator size, nearly linearly with
the data size (the figures are plotted with a logarithmic scale).

4 Conclusions

We show that the addition of non-blocking collective operations to the MPI-2
standard would be a natural extension to the existing interface. We model the
potential performance benefit of overlapping communication with computation
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Fig. 3. CPU idle time for some collective functions with varying data size for a constant
communicator size of 16 processes (left: LAM/MPI, right: MPICH2).

during collective operations. The model is proven and quantified with an ex-
tensive analysis of the CPU overhead for TCP/IP based networks. The results
show clearly that, using TCP/IP, more than 70% of the CPU time is wasted in
average during blocking collective operations. We assume that the gap is more
than 90% for offloading based networks such as InfiniBand, Quadrics or Myrinet
which do not process messages on the host CPU. Absolute measurements show
the wasted time per collective which can easily be converted into wasted CPU
cycles. These considerations lead to possible optimizations using non-blocking
collective operations.

We propose a simple double buffering scheme to enable the use of non-
blocking collective communication for existing parallel applications or algorithms.
Examples include [29] and can be found at the LibNBC webpage [30]. Other
double-buffering based schemes to optimize parallel implementations of more
algorithms (e.g. Gaussian elemination) can be easily derived.

We implemented a portable library (LibNBC, [31]) supporting non-blocking
collective operations on top of MPI-1 and port scientific applications to use the
new semantics. However, implementing collective semantics on top of MPI-1
cannot easily take advantage of special hardware features to support collective
communication (e.g., a hardware barrier [32]). We are planning to move the
non-blocking collective implementation into the extensible Open MPI collective
framework [33] to enable hardware optimized non-blocking collectives. We do
also propose a MPI-2 extension [34] to support non-blocking collective operations
in the MPI standard.

The NBC library is available at: http://www.unixer.de/NBC/.
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