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Abstract. MapReduce is an emerging programming paradigm for data-
parallel applications. We discuss common strategies to implement a
MapReduce runtime and propose an optimized implementation on top of
MPI. Our implementation combines redistribution and reduce and moves
them into the network. This approach especially benefits applications
with a limited number of output keys in the map phase. We also show
how anticipated MPI-2.2 and MPI-3 features, such as MPI Reduce local

and nonblocking collective operations, can be used to implement and op-
timize MapReduce with a performance improvement of up to 25% on 127
cluster nodes. Finally, we discuss additional features that would enable
MPI to more efficiently support all MapReduce applications.

1 Introduction

MapReduce [1,2] is an emerging programming framework to express data-parallel
applications and algorithms. After its original cluster-based implementation, it
has been implemented and evaluated on various architectures, including the Cell
B.E. [3], GPUs [4], and multi-core processors [5]. Given the large problem sizes
that are addressed using MapReduce, and given the popularity of MapReduce
as an implementation paradigm, it seems natural to explore its use on tradi-
tional HPC platforms. Accordingly, in this work we discuss implementation and
optimization of MapReduce functionality using MPI. Based on our experiences,
we discuss several extensions to MPI that would enable more natural support of
MapReduce.

The key functionality in MapReduce, i.e., Map and Reduce, are analogous
to the functional programming constructs map and fold. These functional con-
structs are found in many modern programming languages. For example, C++’s
Standard Library offers std::transform() and std::accumulate() that re-
spectively provide functionality similar to map and fold.

The MapReduce model defines a two-step execution scheme that can be
effectively parallelized. The user only defines two functions, M : (Km × Vm) 7→
(Kr × Vr) (map) which accepts input key-value pairs (k, v) k ∈ Km, v ∈ Vm

and emits output key-value pairs (g, w) g ∈ Kr, w ∈ Vr, and a function R :
(Kr, V

N
r ) 7→ (Kr, Vr) (reduce) which accepts a key g ∈ Kr and a list of values

v ∈ V N
r

and generates a single return value. The MapReduce framework accepts



a list of input values (Km × Vm)N , N ∈ N, calls M for each of the N inputs
and collects the emitted result pairs. Then it groups all result pairs by their key
g and calls R for each key and the associated list of values. The functions M
and R are defined to be pure functions (without side effects), i.e., they solely
compute the output based on immutable inputs (without internal state). This
means that the order of application of M (and R for different g) is independent
and can be executed in parallel. Ordering constraints are only imposed by data-
dependencies (i.e., all data must be produced before it can be consumed), such
that no synchronization is necessary. However, we note that in the general case
where any map task can emit any key g ∈ Kr, an implicit barrier exists between
the map and reduce tasks. This will be discussed in Section 2.

Many data-parallel algorithms can be expressed in this framework. Promi-
nent examples are sorting, counting elements in lists (e.g., words in documents),
distributed search (grep), or transposition of graphs or lists [1]. More complex
algorithms, such as Bellman Ford single source shortest path or PageRank [6]
can be modeled by iteratively invoking MapReduce. It has also been shown that
MapReduce can be applied in the context of advanced research in machine learn-
ing [7]. The purity of the two functions allows the runtime to perform several
optimizations. The most obvious strategy is the concurrent execution of map
and reduce tasks in the two phases. This efficient auto-parallelization has been
proposed in [1]. Another very useful characteristic of MapReduce in large-scale
systems is its inherent fault resiliency because map or reduce tasks on failed or
slow nodes can simply be restarted on other nodes. Thus, MapReduce allows
the application developer to focus on the important algorithmic aspects of his
problem while allowing him to ignore issues like data distribution, synchroniza-
tion, parallel execution, fault tolerance, and monitoring. Thus, MapReduce also
gained significant popularity in education [8].

2 MapReduce Communication Requirements

We start by discussing the communication requirements of MapReduce and pos-
sible implementations. Figure 1 shows the two phases of MapReduce and the
necessary communication (data dependencies). Data dependencies are:

a reading of input for M: the map tasks need to read (possibly large
amounts of) input data of size Ω(N) (with N input pairs)

b building input lists for R: all pairs need to be ordered by keys g ∈ Kr

and the lists of total size O(N) need to be transferred to the reduce tasks
c output data of R: the reduce tasks output the data; this is usually a

negligible operation of O(|Kr|) if we assume the common case |Kr| ≪ N

Thus, the two critical data movements are collecting the input for the map tasks
and arranging the output of the map tasks as input for the reduce tasks.

Required data movement obviously depends on the parallelization strategy.
For example, if all map and reduce tasks are executed on a single node, then no
data movement is necessary. However, parallelism is the most important feature
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Fig. 1. MapReduce Communication Scheme

of the MapReduce model. The maximum parallelism of the embarrassingly par-
allel map phase is only limited by the number of input pairs N . Ad extremum,
each application of M is done as a separate map task on a separate processing
element (PE). However, if P PEs are available, it is usually not advisable to pro-
cess each reduce separately because the overhead of starting and administering
tasks can be very high compared to a single application of M and often N ≫ P

holds. Thus, the input is commonly divided in reasonably sized work packets
(e.g., 64 MiB in [1, 9]) that are processed in parallel on all available PEs. A
manager process can be used to administer the distribution of those packets and
ensure proper actions in cause of node-failures (e.g., resubmit the map tasks to
other nodes). Multiple different strategies can be defined for reading the input
data for each map task. The most common case is that a shared filesystem is
available and the tasks just read the data directly from (local) disk. The manager
tries to assign map tasks to nodes that are close to the needed data. However,
mapping tasks close to data might not be possible in certain environments so
that the map tasks need to collect the data before they can start. In the extreme
case, only the manager process has access to the data and needs to distribute it
to the workers.

The parallelism in the reduction phase is limited by the number of different
output keys of the map phase (|Kr|) which highly depends on the implemented
algorithm and the input data. Additionally, each application of R needs all

results of the map phase with the same key. Depending on the key distribution in
the input pairs, this can effectively be an (irregular) all-to-all exchange with P ×
|Kr| ∈ O(|Kr|

2) messages. It can again be tried to minimize the data movement
with appropriate placement of the reduce tasks (close to their keys [10, 11]),
however, this heavily depends on the input set and many applications do not
seem to exhibit such a regularity (cf. parallel sort or string search). Thus, we
have to assume the worst case, a synchronizing all-to-all exchange.

Throughout the remainder of the paper, we assume the hardest case where
the input pairs are only available on the master process and the keys in Kr are



evenly distributed among all items in the input data. We note that MapReduce
is often used to transform very large datasets, where the map tasks need to be
moved to the data. However, the redistribution before the reduce phase can not
easily be optimized for the general application in this way.

2.1 A Simple MPI Implementation

A straight-forward MPI implementation which is very similar to existing frame-
works such as Hadoop [9] or Google’s implementation [1] can be easily im-
plemented with MPI point-to-point communication. Each idle worker process
queries the master for work packets. In the first stage, the master assigns map
tasks to the processing elements. After all map tasks are done, the master dis-
seminates reduce tasks. Each reduce task queries all available PEs for the values
associated with its key. This method seems rather unfavorable because it tends
to create many hot spots in the network (e.g., at the master process) and commu-
nication between map and reduce can easily be unbalanced potentially resulting
in a severe performance degradation.

MPI has several mechanisms to optimize parallel computations. Two com-
mon optimization possibilities are (1) collective operations, which apply intel-
ligent communication patterns to reduce congestion and minimize the number
of message transmissions, and (2) overlapping communication and computation.
Thus, a possible improvement would be to assign all reduce tasks to PEs before
the second data exchange is started and perform it as a collective MPI Alltoallv

operation. While this has some potential to reduce network congestion, it is
very tricky to optimize the general MPI Alltoallv operation and it is generally
accepted to be the least-scalable collective operation in MPI (due to the high
number of unpredictable message exchanges O(P 2)). Overlapping communica-
tion and computation can be used up to a certain extent if the master sends
the input data for the map tasks in a pipelined fashion. However, it seems un-
reasonable to apply such techniques to the redistribution phase because reduce
processes can only start when all input data is available.

This trivial implementation does not fully utilize all possible features of high-
performance computing (HPC) systems. Thus, in the following section, we pro-
pose an orthogonal approach in order to take advantage of more scalable MPI
functions and advanced optimization techniques.

3 Scalable MapReduce in MPI

In this section, we describe a different HPC-centric approach for the solution of
the redistribution problem. We use a typical MapReduce program, the search for
the number of given strings in a file, as example. The map function (Listing 1.1)
accepts an input file (or a part of it) and a vector of strings s. It searches the
input and emits the pair (s,1) for each occurrence of string s. The reduce function
(Listing 1.2), which is also used as local combiner, simply counts the number of
elements for a given s.



void map(filem f , keys strs ) {
for ( i=0; i<strs . size ( ) ; i++) {
char ∗ptr=f . start addr () ;
while(ptr<f . end addr()−strs . len) {
i f ( !memcmp(ptr , str [ i ] , strs . len ))
EmitIntermediate( i , 1);

ptr++;
} } }

Listing 1.1. Map Function

void reduce(key str , values num) {
int sum=0;
for ( i=0; i<values . size ( ) ; i++) {

sum += values [ i ] ;
}

Emit(sum);
}

Listing 1.2. Reduce Function

As discussed before, MapReduce readily lends itself to be implemented in
a master-worker model, i.e., the computation (map and reduce tasks) can be
scheduled by a central master process and executed by worker processes. MPI is
well suited to implement this concept by using rank 0 as master process and all
other P −1 ranks as workers. We now discuss how to use collective operations
to perform the map and reduce task. The map task can be implemented as a
simple MPI Scatter operation and the reduce task can use an MPI Reduce opera-
tion. This basically moves the reduction function R into the MPI library (i.e., the
network layer). Either built-in reductions or MPI user-defined reduction opera-
tions, as described in [12] Section 5.9.5, can be used as R. The implementation
as user-defined reduction puts several limitations on R and the input data:

I R must be associative (MPI reduction operations are generally assumed to
be associative)

II the number of different keys |Kr| must be known by each process (or com-
municated in advance, e.g., with MPI Allreduce) and, the values of all keys
g ∈ Kr must be fixed-size elements (can be arbitrary MPI datatypes). The
output lists for each key can be reduced locally with a combiner [1]. MPI-2.2
will very likely include MPI Reduce local which can be used to implement the
combiner trivially.

III if not all processes have a value for each key g ∈ Kr, then an identity element
with respect to R has to exist and must be supplied by the processes without
values.

Using scalable collective MPI reductions has a high optimization potential.
It enables the application to take advantage of optimized implementations of
collective operations. Several architectures, such as BlueGene [13], or networks,
such as Quadrics [14], support hardware-optimized collective operations (they
even perform some simple reduction operations directly in the network hard-
ware). This implementation inherently supports the problematic case where the
number of keys is small (the parallelism in the reduce phase is limited). In this
case, tree-based algorithms can be used to reduce the number of messages from
O(|Kr|

2) (cf. Section 2) down to O(log2(|Kr|)) on fully connected networks.
However, if many keys need to be reduced, the transmission time is likely going
to be O(|Kr|) due to bandwidth limitations at the master node. The adaptation
to different network topologies can be done with specialized collective operations.



The reduction in our example fulfills all requirements and can be implemented
as a simple MPI SUM reduction operation. We note that this approach to im-
plement R is fundamentally different to previous approaches. The reduction
operations are not applied in parallel, but the data is reduced during the com-
munication itself. Obviously, local memory and the size of each value limits the
maximum number of keys. If this is an issue, the MapReduce framework could
just fall back to the all-to-all-based parallel reduction approach or perform the
reduce phase in multiple MPI Reduce steps.

3.1 A Simple MapReduce Example

The string search example shows the applicability of the MPI-based MapReduce
scheme well. However, we decided to implement a more flexible application that is
able to simulate a large class of MapReduce programs. This application accepts
four parameters: the number of tasks, minimum and maximum task duration
tmin, tmax, and the size of the reduction operation sred. The application issues
work-packets that take a random time in the closed interval [tmin, tmax]. The
times are uniformly distributed. A worker process retrieves a work-packet and
simulates the map function M by computing for the duration of time indicated
in the packet. After the computation is finished, the worker starts the paral-
lel reduction R=MPI SUM of size sred (by calling MPI Reduce). The execution
scheme is shown in Figure 2(a).

message wait work

0 1 2 3 4

(a) Original MPI Implementation

0 1 2 3 4

non−blocking (asynchronous) message

(b) Using Nonblocking Collectives

Fig. 2. HPC-centric MapReduce Scheme assuming 5 processes executing 8 tasks and
a binomial tree scatter and reduction algorithm.

3.2 Further Optimization Possibilities

Common optimizations for parallel programs are optimizing communication pat-
terns with collective operations, which we have already done, and hiding latency



by overlapping communication and computation. We discussed in Section 2.1
that overlapping can be done with pipelining data in the map phase but that
the redistribution phase can not be transformed easily. In our optimized scheme,
where the data redistribution and the reduce phase are merged, a similar pipelin-
ing scheme can be utilized. However, to retain the benefits of optimized collective
operations, we would need a nonblocking version of those operations to enable
overlap. Such nonblocking collective operations are proposed for MPI-3 [15] and
a reference implementation exists with LibNBC [16].

We can easily apply nonblocking collective operations to the map as well
as the reduce functionality. In the map-case, the master starts wm nonblocking
NBC Iscatter operations at the beginning. Then, it waits for the first one to
complete and starts the next operation after one completed. This efficiently
creates a window of scatter operations that run in the background. Their latency
can be ignored if the window size is large enough and the work-packets take
long enough to compute. The trade-off there is that the memory requirements
grow with the window size, i.e., data for all running operations has to be in
main memory at the root process. The worker processes similarly start wm non-
blocking scatter operations and re-post new non-blocking scatter until the signal
to exit is received. In the reduce case, we have to define a set of wr buffers to
support wr outstanding nonblocking operations. A similar window-technique as
in the map operation is used to have wr outstanding NBC Ireduce operations
at any time. If all n buffers are in use, the oldest reduction has to be finished
by calling NBC Wait on the master process and re-posting a new NBC Ireduce.
The remaining outstanding communications have to be finished and their buffers
reduced when all tasks are completed. The resulting execution scheme is shown
in Figure 2(b).

3.3 Performance Results

MapReduce applications typically process large amounts of data that have to
be read from either the network or local disks. Thus, we assume that the I/O
bandwidth is not sufficient to keep multiple processing elements busy. However,
most of today’s systems are multi-core or SMP systems such that there are idle
cores available to offload the communication. We use the threaded InfiniBand-
optimized version of LibNBC [17,18] for all benchmarks. This efficiently results
in offloading the reduce task to another core (the reduce operation is a part
of the NBC Reduce communication) and thus utilizes another level of functional
parallelism transparently to the application developer. Benchmarks of the simple
string-search example were also covered by the more extensive simulator and
delivered exactly the same results. Thus, we only present benchmark results for
the different configurations of the simulator.

We benchmarked two different workload-scenarios with 1 to 126 worker nodes
with 10 tasks per process. We compared the threaded version of LibNBC with
a maximum of 5 outstanding collective operations with Open MPI 1.2.6. We
also varied the data-size of the reduction operation (in our example, we used
MPI SUM as the reduction operation).



Figure 3(a) shows the communication and synchronization overhead for a
static workload of 1 second per packet. Using nonblocking collective results in a
significant performance increase because nearly all communication can be over-
lapped. The remaining communication overhead is due to InfiniBand’s memory
registration which is done on the host CPU. The graphs show a reduction of
communication and synchronization overhead of up to 27%. Figure 3(b) shows
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Fig. 3. Overhead and Time to Solution for Static and Dynamic Workloads for different
Number of Workers

the influence of nonblocking collectives to dynamic workloads varying between
1 ms and 10 s. The significant performance increase is due to avoidance of syn-
chronization and the use of communication/computation overlap. This clearly
shows that our technique can be used to benefit MapReduce-like applications
significantly. The dynamic example shows improvements in time to solution of
up to 25% over the unoptimized implementation.

4 What is MPI missing?

MapReduce was not intended to be implemented on top of MPI, and MPI lacks
several features that are needed to implement it efficiently.

One of the most important features of MapReduce is its ability to han-
dle faults transparently. However, the default error handling in MPI (MPI -

ERRORS ARE FATAL) is to abort the job. The user can change this default
to return an error from the failed function (MPI ERRORS RETURN). While this
failure mode might help for point-to-point communications, collective commu-
nication can not easily recover from such an error state. Moreover, checking if
a collective operation completed successfully on all nodes is not trivial (or very
expensive). One alternative is the use of intercommunicators for point-to-point
communications [19], but again, collective communication is not handled. An ef-
ficient and fault-tolerant implementation would require extended fault tolerance
support in MPI. This does not necessarily mean changes in the API [19], but it



should support rebuilding of communicators and (partial) restarting of collec-
tive communications. First results in this direction have been demonstrated by
FT-MPI [20].

A second barrier in the usage of MPI for general MapReduce algorithms
are the restrictions of the intermediate data and of the function R as discussed
in Section 3. In order to support arbitrary MapReduce operations, MPI would
need variable-sized reduction operations because R can return values that are of
a different size than the input values, e.g., string concatenations. Such a feature
would also be desired in the support of higher languages, such as C# [21].

Another feature that can be used to optimize the implementation as shown
in Section 3.2 are nonblocking collective operations [15]. A proposal for this class
of operations is discussed by the MPI Forum for inclusion in MPI-3.

5 Conclusions and Future Work

MapReduce and MPI were developed in two different communities that have
traditionally been somewhat disjoint. However, as the needs and capabilities of
these two communities continue to converge, it will be to the benefit of both to
leverage their respective technologies. In the case of MapReduce and MPI, we
have seen that is possible to efficiently implement MapReduce using MPI – with
some limitations. For example, HPC-centric optimizations can be applied if the
reduce function fulfills certain criteria. Additional performance gains are possible
through upcoming MPI features. Using nonblocking collective operations, for
example, provided a speedup of up to 25% over the blocking implementation.

Fully supporting MapReduce will require several additional features and ca-
pabilities from MPI. However, many of these features are generally recognized
as being important, particularly as MPI evolves to support other modern pro-
gramming and parallelization paradigms.
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