
Performance Modeling for Systematic Performance Tuning

Torsten Hoefler
National Center for

Supercomputing Applications
University of Illinois at
Urbana-Champaign
1205 W. Clark Street

Urbana, IL
htor@illinois.edu

William Gropp
National Center for

Supercomputing Applications
University of Illinois at
Urbana-Champaign
1205 W. Clark Street

Urbana, IL
wgropp@illinois.edu

Marc Snir
National Center for

Supercomputing Applications
University of Illinois at
Urbana-Champaign
1205 W. Clark Street

Urbana, IL
snir@illinois.edu

William Kramer
National Center for

Supercomputing Applications
University of Illinois at
Urbana-Champaign
1205 W. Clark Street

Urbana, IL
wkramer@ncsa.illinois.edu

ABSTRACT
The performance of parallel scientific applications depends
on many factors which are determined by the execution en-
vironment and the parallel application. Especially on large
parallel systems, it is too expensive to explore the solution
space with series of experiments. Deriving analytical models
for applications and platforms allow estimating and extrap-
olating their execution performance, bottlenecks, and the
potential impact of optimization options. We propose to use
such “performance modeling” techniques beginning from the
application design process throughout the whole software
development cycle and also during the lifetime of supercom-
puter systems. Such models help to guide supercomputer
system design and re-engineering efforts to adopt applica-
tions to changing platforms and allow users to estimate costs
to solve a particular problem. Models can often be built
with the help of well-known performance profiling tools. We
discuss how we successfully used modeling throughout the
proposal, initial testing, and beginning deployment phase of
the Blue Waters supercomputer system.

1. INTRODUCTION
The performance metric for national computing centers

that support scientific users is the amount of “completed
science per cost and time unit”. For expensive systems, ex-
ecution cost is a large, often dominant component of total
cost. Optimizing for this metric can be done with several
different techniques, such as

Copyright is held by the author/owner(s).
SC’11 November 12-18, 2011, Seattle, Washington, USA
ACM 978-1-4503-0771-0/11/11.

• application optimization (e.g., algorithmic optimiza-
tions as well as architecture-specific tuning)

• architecture optimization (e.g., selection of a suit-
able system architecture for the typical workload and
workload-specific tuning)

• middleware optimization (e.g., optimized scheduling or
topology mapping)

• policy optimizations (e.g., scheduling policy and prior-
ities).

Those optimizations are often relative and specific to a
particular installation and they can be done at the different
stages in the lifetime of a computer system, i.e., early design
and proposal, final preparation and planning, deployment,
testing, and operation and maintenance. As computer sys-
tems require significant investments for a limited lifetime,
it is important to utilize the systems efficiently from day
one. Thus, application performance predictions and opti-
mizations before the deployment phase gain importance.

In this paper, we present a holistic model-driven approach
to tackle most optimization problems during all stages of
system deployment and operation. Most important appli-
cations of a data-center’s workload are ported from older
systems without complete rewriting. We thus focus to max-
imize the performance of this workload of existing applica-
tions. Thus, the problem is to minimize the execution times
of existing applications (or maximize the throughput) on a
center’s computing system.

The performance of parallel applications is complex. Com-
plex system architectures, such as deep cache hierarchies,
advanced out-of-order execution, or hierarchical intercon-
nection networks present significant challenges to applica-
tion performance analysis and prediction. Tuning applica-
tions for new systems is a significant investment, however, it
is often unclear how certain changes affect the overall perfor-
mance of an application. This is especially true for massively
parallel systems or new architectures (e.g., accelerated com-
puters).

Performance tuning is an activity performed by the algo-

rithm designers and application developers. Therefore, we
focus on tools and methodologies that can be used by the ap-
plication development teams, with limited interaction with
performance specialists. We propose to use simple perfor-
mance modeling to characterize the behavior of applications
on computing systems. With this, we are able to choose
between different optimization and architecture options.

In the following sections, we will present an overview of
performance projection techniques, with a focus on analytic
performance modeling. We also discuss the tradeoffs in ac-
curacy and introduce a set of guidelines for modeling large
application codes that we found useful in practice. We then
present an example with a prominent and complex applica-
tion and show how we use the models to guide optimizations
and design.

2. PERFORMANCE PROJECTIONS
Projecting performance of a scientific application applica-

tion can be done in multiple ways. Depending on the re-
quired accuracy and the available resources, one can choose
between benchmarking the application on the target sys-
tem, running a cycle-accurate simulation, a model-based
(abstract) simulation, or analytic performance modeling.

Benchmarking.
is the most accurate performance projection. It takes all

characteristics of the target architecture into account (it
“runs the real code”). However, it provides very little in-
sight and is mostly a black-box technique. Some architec-
tures provide performance counters that can help to gain
some insight. However, many architectural details are not
accessible. Benchmarking also requires that the target ar-
chitecture be available at the target scale, which is often not
the case during the design phase and remains very expensive
during the operational phase.

Detailed Simulation.
such as cycle-accurate CPU or network simulation [1, 2]

can provide extremely accurate projections if the target hard-
ware is not available. However, it often is thousands of
times slower than the real execution and consumes signif-
icant memory resources [3]. Thus, very accurate simulation
may not be an option for large scale systems. However, it
can be very useful if it is applied to small kernels of ap-
plications to obtain execution times for these kernels that
are then composed with an analytical model [4]. Simulation
can provide much information into the application behav-
ior, e.g., some CPU simulators allow investigation of each
pipeline stage. However, the vast amount of data may not
lead to the desired insight at the high level or require very
high expertise or time investment to interpret the results
correctly.

Model-based Simulation.
is a simulation technique where not each hardware detail

is investigated but abstract models are used to determine
the runtime or resource consumption. This technique forms
the middle-ground between cycle-accurate simulation and
analytical modeling. The simulation time can be less than
the execution time leading to a “simulation speedup” of sev-
eral orders of magnitude [4–7] while still accurately captur-
ing important details of the execution. This technique has

been used to discover important performance “effects” [8],
however, it often fails to provide the required insight to un-
derstand the root cause of such effects. It is a complex task
to execute such simulations in practice such that simulation
tools are often only used by computer scientists and not by
application developers. Nevertheless, model-based simula-
tion is a very accurate practical and accurate technique to
predict large-scale performance.

Analytical Performance Modeling.
is a technique where the performance is expressed with

purely analytical expressions [9–11]. Such models need to be
designed carefully to tradeoff the number of parameters ver-
sus the required accuracy. Models with fewer parameters are
easier to generate and parameterize and provide more high-
level insight while models with more parameters can be more
accurate because they consider more system effects but can
lead to overfitting. Abstract application performance mod-
els with a reasonably small number of parameters can be de-
signed and maintained by the application developers while a
system model can be provided by the system experts. Thus,
we recommend this technique for all optimization purposes.
Simpler models can be used as an interface to the applica-
tion developers and algorithm designers while more complex
models can be used for detailed tuning and projections.

For all described projection techniques, there exists a fun-
damental tradeoff between the number of parameters (e.g.,
details about the system architecture) and the accuracy of
the model. Figure 1 provides a rough overview of this trade-
off and the different projection techniques. The high-level
insight that can be gained from the model is also generally
higher with less parameters, however, it is of course impor-
tant that the prediction is characterizing the performance
correctly.

Figure 1: Performance Projection Overview

In the following, we discuss analytic performance mod-
eling techniques in detail followed by a discussion of the
parameter-number to model-error tradeoff.

2.1 Analytic Performance Modeling
Analytic performance modeling represents application

performance with analytic expressions. Those expressions
can either model performance directly or indirectly. Semi-
empirical models express the runtime of the application on a
given architecture directly. Application requirement models
are more flexible in that they express the application require-
ments, e.g., the needed number of floating point operations
to solve the problem, independently of the architecture. Ap-
plication requirement models can then be instantiated with
a given system model, e.g., the floating point bandwidth, for
a performance prediction.

We illustrate analytic performance models with the fol-
lowing simple matrix-matrix multiplication example:

for(int i=0; i<N; ++i)

for(int j=0; j<N; ++j)

for(int k=0; k<N; ++k)

C[i+j*N] += A[i+k*N] * B[k+j*N];

Semi-Empirical Performance Modeling.
It is well known that the algorithm requires O(N3) float-

ing point operations to be solved. It is easy to see that the
time needed to compute the triple-nested loop will also be
of order N3. We thus use the analytic model for the runtime
T (N) = t ·N3 to assess a semi-empirical model for the run-
time. Semi-empirical modeling has only time as unit, thus t
is specified in [ns]. Figure 2 shows a measurement series for
different N on a POWER7 system and an empirically fitted
model with t = 2.2ns and an asymptotic standard error of
0.8%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 300 600 900 1200 1500 1800 2100

T
im

e
 [

s
]

Size (N)

Benchmark
Model

Figure 2: Semi-empirical Model for Matrix Multiplication
on POWER7. The model shows T (N).

We call this technique, where an analytic expression of the
runtime is parameterized with empirical data semi-empirical
modeling.

Application Requirement Modeling.
Instead of measuring the performance directly, we can

measure the resource requirements of the problem to be
solved (the Application Requirement Model or just Appli-
cation Model).

The number of floating point operations required to solve
the N × N matrix multiplication is F (N) = 2 · N3 (this
was verified with performance counters). A second require-
ment, and potential bottleneck, are loads from main mem-
ory. The three loops are arranged to access stride-N and
stride-1 doubles in A and B, respectively. Overall, the loop
will still cause O(N3) cache misses due to the stride-N access
in the inner loop. However, O(N2) of the previously fetched
lines remain in cache and can be re-used for the stride-N ac-
cesses. Thus, we model the number of last-level cache misses
as C(N) = a ·N3− b ·N2. The unit of a and b are here [cm]
(cache misses).

Generating detailed application models for every mem-
ory access can be a complex task. Hence, we propose to
use performance counters and curve fitting to determine
the analytic application model. However, as opposed to
semi-empirical modeling, the fitting is used to determine a
parametrized analytic equation for the application require-
ments and not the overall performance. Figure 3 shows
the measured L3 cache misses (measured with PAPI [12])

and the parametrized model function with a = 0.00038cm,
b = 0.278cm, and an asymptotic standard error below 3%.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 300 600 900 1200 1500 1800 2100

L
3

 C
a

c
h

e
 M

is
s
e

s

Size (N)

Benchmark
Cache Miss Model

Figure 3: L3 Cache Miss Model for Matrix Multiplication
on POWER7. The model shows C(N).

Determining Bounds and Relative Performance.
Since the application requirements and the runtimes are

known, one can now compute how well the functional units
in the CPU are utilized. We investigate the floating point
and memory rates for the matrix multiply example.

The floating point peak performance of the investi-
gated POWER7 system is RF,peak = 3.864 · 109cycles/s ·
8fp/cycle = 30.912Gf/s if all instructions are vectorized
and all multiply and add operations can be fused (FMA).
Assuming that the floating point operations are the only
bottleneck, the computation should scale with TF,opt(N) =
0.064ns ·N3. We remark that the inner loop has two float-
ing point operations. However, the floating point perfor-
mance of the simple implementation is T (N) = 2.2ns · N3

(0.91Gf/s), which means that the performance is more than
33 times slower than the maximum.

One reason could be the that the performance is limited
by the memory bandwidth of the system. The single-core
memory read bandwidth of the system has been measured as
5GiB/s. Each cache miss results in a 128 byte read request
which results in an overall memory access time of TC =

C(N) · 128b/cm
5·109b/s = 0.010ns ·N3− 7.12ns ·N2. Since TC < TF

and assuming overlap of computation and memory fetches in
the out-of-order units, we conclude from our simple models
that the code is bound by the floating point rate, however, it
is far from optimal (33x). This is because the compiler fails
to auto-vectorize and unroll the code. We will discuss model-
driven optimizations for the simple code in Section 2.3.

We conclude that semi-empirical models can be used to
express real application runtime while application require-
ment and system models can be used to characterize the
quality of the implementation or the compilation tool-chain.
Davidson used the latter technique to characterize the qual-
ity of the compiler [13]. The roofline model [14] is a related
technique to assess the performance relative to the optimal
performance. However, in our models, we also consider more
potential application requirements, such as integer rate or
memory latency depending on the application.

2.2 Accurracy Tradeoffs
We showed how to characterize the runtime of a matrix-

matrix multiplication on a modern computing system with
only a single parameter rather accurately. This semi-

empirical model is concisely representing a series of mea-
surements with an error below 1% and allows extrapolation
to larger matrix sizes that have not been measured.

In our proposed method, the model is specified analytically
and instantiated empirically. This general method can be
extended to application kernels where the application devel-
oper or performance engineer specifies a parametrized model
which is then instantiated with measurements and curve fit-
ting. The number of parameters in those models needs to
be chosen to achieve the desired accuracy. For example, the
constant loop startup overhead in the matrix matrix mul-
tiplication can be modeled with an additional parameter b,
such that T (N) = a · N3 + b, however, b turned out to be
insignificantly small in practice and was thus omitted.

Application models should be as simple as possible be-
cause this simplifies the design and parametrization and in-
creases the insight. It might even be that the models cannot
be used as accurate absolute performance predictors, how-
ever, they are merely enough to guide application or system
design.

In fact, our simple analytic models are accurate enough
to express performance concisely and guide optimization for
complex real-world applications. We will discuss real-world
examples in Section 4. In the next sections, we demonstrate
how analytic models can be used during the different stages
of system development and deployment.

2.3 Modeling for Performance Optimization
Providing help with optimizing the performance of paral-

lel applications in particular computing systems is one of the
main responsibilities of national computing centers. Experi-
ence shows that integrated approaches, where domain scien-
tists (application programmers) and performance engineers
(computer scientists) work together, are most successful [15].

2.3.1 Identifying Optimization Opportunities
Performance optimization strategies can roughly be split

into two categories: (A) “tune until the performance is suf-
ficient for my needs” and (B) “tune until the performance
is within xx% of the optimum”. Strategy (A) is most often
used in practice, however, since supercomputer systems are
large investments and a 10% speedup can often save millions
of dollars (e.g., in the Blue Waters project [16]), strategy (B)
can provide additional benefits. But it is often not easy to
determine what the optimum performance is.

We use application requirements modeling, where we de-
velop an application model for several parameters (e.g., re-
quired memory traffic, floating-point, or fixed-point instruc-
tions) and match it to the system model. This enables us to
see if there are still optimization opportunities. For exam-
ple, in the simple matrix multiplication as discussed before,
we see that none of the system features is used fully and
thus a huge optimization potential exists. In this case, the
optimizations would require to use POWER7’s Altivec in-
structions to achieve higher floating point rates. Figure 4
shows the runtime for an optimized matrix-matrix multi-
plication (ESSL 5.1’s DGEMM) and the according semi-
empirical model T (N) = 0.072ns ·N3.

The number of required floating point operations in the
application model is still F (N) = 2N3, thus, the achieved

floating point rate is RF = 2fN3

0.072ns·N3 = 27.78Gf/s which is
90% of the peak floating point performance.

The memory bandwidth is still under-utilized. The opti-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 300 600 900 1200 1500 1800 2100

T
im

e
 [

s
]

Size (N)

Benchmark
Model

Figure 4: Execution time of optimized matrix multiplication
on POWER7. The model shows T (N).

mized implementation has a lower I/O complexity than the
unoptimized version: C(N) = 0.00014 ·N3−0.026 ·N2 with
an asymptotic standard error of 2.5%, as shown in Figure 5,
.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 300 600 900 1200 1500 1800 2100

L
3

 C
a

c
h

e
 M

is
s
e

s

Size (N)

Benchmark
Application Model

Figure 5: L3 Cache misses of optimized matrix multiplica-
tion on POWER7. The model shows C(N).

2.3.2 Choosing the Right Algorithm
There is often a choice between different algorithms dur-

ing the application implementation and optimization pro-
cess. Decisions have to be made at all levels, for example, at
the application level and at the implementation level. The
application level could offer completely different algorithms
for the solution of a scientific problem, such as real-space,
Fourier space, or mixed computations in quantum molecular
dynamics [17]. At the implementation level one has to make
more detailed decisions, for example the order of loop nest-
ings or cache blocking in the matrix matrix multiplication’s
simple or optimized implementation. Both schemes imple-
ment an algorithm with the same arithmetic complexity.

Implementing all different options is often very expensive
and not feasible. Thus, we use simple models to classify
the implementation options with regards to their relative
performance. This means that we advocate the use of sim-
ple models as classifiers that do not necessarily predict the
correct runtime but enable the selection of implementation
options.

2.4 Modeling during Software Development
Performance modeling proved to be very useful in the op-

timization process of applications. We are experimenting
with the integration of performance modeling into every step

of the software development process. In fact, this is often
done implicitly by application developers, however, a struc-
tured approach and technique is missing. For example, in
the well-known waterfall model, all steps can take advantage
of modeling

Analysis Modeling is often used to pick the general method
to be implemented. Rough asymptotic models are of-
ten used to pick the algorithm, for example, order N
molecular dynamics [17].

Design In this phase, one identifies modules and functional
units to be re-used. The algorithms and implementa-
tions for those models and functions are then selected
with the help of simple (asymptotic) models. For ex-
ample one would select quicksort (O(N log(N))) over
bubblesort (O(N2)).

Implementation This phase deals with the details of the
actual implementation. Performance modeling can be
used to determine several implementation tradeoffs as
shown with the matrix-matrix multiply example.

Testing Application testing should not only include cor-
rectness but also performance testing. The applica-
tion performance over a larger number of experiments
can often be expressed with a small set of parameters.
Performance tests should monitor those parameters in
regression analyses.

Maintenance Application performance can be used as an
indicator of system health and to monitor any degrada-
tions in the system. Performance expectations can also
be used to monitor soft errors or performance prob-
lems.

A useful strategy to utilize performance modeling dur-
ing application development and operation would thus be to
establish performance models during the design phase and
validate and refine them through the whole application life-
time.

Now, we present a data-center-centric view of our perfor-
mance modeling techniques.

2.5 Modeling during System Design and Pro-
posal

We propose a method that can be used during system
design (i.e., before the system is available). We model ap-
plications as sets of kernels (cf. Section 3.2). The perfor-
mance of each of those serial kernels on a single CPU of the
target architecture can be either be assessed empirically or
analytically.

Empirical performance assessment can be performed by
running each kernel on a single core of the target architec-
ture or a single-core (or single-node) simulator. Analytic
performance prediction requires an application model and
can predict the maximum achievable performance (assuming
ideal code and compiler). Application requirement models
can be very helpful to decide on architectural system prop-
erties, such as the ratio between CPU floating point and
memory access bandwidth or network bandwidth ratios.

The network can either be benchmarked at smaller scale
with network measurement tools [18–22] or modeled analyt-
ically [23]. The application models will provide insight into
the communication pattern and expected data sizes. We use
different analytical methods and metrics to extrapolate from

small networks to larger ones: bisection bandwidth, effective
bisection bandwidth [24], and LogP [23] parameters.

We successfully applied this process during the proposal
phase of the Blue Waters system. All application kernels
were simulated using the Mambo POWER7 simulator [1].
Large-scale performance was predicted based on the ex-
pected network bandwidths and latencies and the bisection
bandwidth of the PERCS topology [25]. Using this method,
we were able to predict application performance on an ar-
chitecture and system that was yet to be constructed.

2.6 Modeling during Deployment and Testing
The installation phase of a large computing system is of-

ten most important. Application models can be used to
compare expected performance with measured performance
as the system is brought up. This enables efficient function-
ality checks and the early detection of performance issues.

The models can also be used to demonstrate the final per-
formance of the fully-deployed system. For example, in ad-
dition to a set of microbenchmarks to assess the final perfor-
mance of the Blue Waters system, the contract with the ven-
dor contains model-based performance estimates for several
real-world applications that need to be reached to demon-
strate the final full-system performance.

Thus, performance modeling can serve as an efficient tool
for detecting and debugging performance issues as well as
for establishing performance contracts between vendors and
customers.

2.7 Modeling during Operation
When the system is deployed, the existing performance

models can be used by the users (or even the system ad-
ministrators) to monitor the operational performance of the
system to detect a slow degradation or performance bugs
due to failures.

If existing performance models can be formalized, then
they could be used to automatically aid decisions during
system operation. For example, batch schedulers could use
the model information to predict the runtime of applications
based on their input files and improve the scheduling effi-
ciency. Schedulers could also base their node allocation on
the model-based communication pattern of the application
(e.g., densely communicating applications should be sched-
uled “closer together” than sparsely communicating appli-
cations). This could increase the efficiency of the overall
system.

As discussed in Section 2.2, none of those models need to
be ideal, in fact, even very rough application models, such
as “heavy dense” vs. “light sparse” communication can aid
the operational environment and increase performance.

In the next section, we will discuss a simple modeling
strategy that can be used at different granularities (from
very coarse to very detailed), depending on the required ac-
curacy.

3. SIMPLE PERFORMANCE MODELING
GUIDELINES

We propose a simple six-step process that can be applied
to any existing application to model its performance. The
first four steps are analytical, i.e., have to be determined
from the source code or specified by a domain expert:

Step A1 Identify input parameters that influence runtime

Step A2 Identify application kernels

Step A3 Determine communication pattern

Step A4 Determine communication/computation overlap

The last two steps are empirical, i.e., are performed with
series of benchmarks to instantiate the empirical or analyt-
ical performance models:

Step E1 Determine sequential baseline

Step E2 Determine communication parameters

The empirical steps can either be used to establish semi-
empirical performance models, i.e., measure absolute per-
formance, or analytical application requirement models,
i.e., measure application requirements as described in Sec-
tion 2.1.

3.1 Step A1: Identify all Input Parameters
that Influence Runtime

This first step is most important as other steps are based
on it. The task is to assemble a list of all input parame-
ters that influence the runtime of the application. We call
such input parameters critical (input) parameters in the fol-
lowing. Critical parameters should be scalar values such as
sizes of dimensions or number of iterations. If the runtime
is determined by an input file or a vector, then it should
be condensed into the smallest number of scalar critical pa-
rameters (e.g., if the input file is a sparse matrix, the critical
parameter could be the number of non-zero elements in the
matrix). This step usually requires a domain expert to de-
fine the complete set of parameters.

It may not be simple to assess the impact of some criti-
cal parameters. For example, some parameters influence the
number of iterations of a solver or load balancing strategies.
Modeling their influence can be very complex and simplify-
ing assumptions are often necessary (e.g., assume ideal load
balance). When making simplifying assumptions, the mod-
eler must be aware of the accuracy-simplicity tradeoffs that
are introduced. If no good estimations can be made, then
the model could leave some parameters as free parameter in
the model (e.g., provide an estimate of the time per iteration
but leave the number of iterations as parameter).

3.2 Step A2: Identify Code Kernels
The second step uses the list of critical parameters to as-

semble a list of functions or code blocks that are affected by
them. Input-independent initialization functions can often
be ignored while all other functions whose runtime depends
on any critical parameter (even if it is negligible in small
runs) should be listed. We refer to such input-dependent
functions or code blocks as kernels in the following.

A serial performance model can either be an analytic
application requirement model (e.g., counting the number
of operations or loop iterations based on the critical param-
eters) or a semi-empirical performance model (e.g., bench-
marking runtimes with different critical parameter settings,
cf. Section 2.1). Instantiating analytic requirement-based
models for a particular architecture can be less accurate than
direct measurements due to the complexities in computer ar-
chitectures (e.g., memory access patterns and caches). Em-
pirical measurements, however, may need to cover the whole
space of all critical parameters, which scales exponentially
with the number of parameters. Thus, we propose to use

empirical modeling, a combination of analytic modeling and
empirical measurements. In semi-empirical modeling, one
derives an analytic model and uses empirical measurements
to parametrize it.

Analytic application requirement models can be con-
structed for each resource that an application demands,
for example floating point operations, memory transactions,
memory consumption. For example, a memory consump-
tion model models the memory consumption of each kernel
in the program. Often, this can be done by tracking all calls
to memory allocation functions and determine their scaling
with critical parameters. In rare cases, one would also need
to investigate stack sizes and maximum recursion depth of
function calls.

3.3 Step A3: Determine Communication Pat-
tern

The next important application-specific step is to collect
information about the communication pattern. Collective
communications are typically simple to capture (only needs
the type of collective operation [26]). However, it is impor-
tant to also record information about the communicator size
(it might be as simple as the total number of processes). For
point-to-point communication patterns one needs to derive
the logical pattern. For some applications, this can be de-
rived from the source code (e.g., analyzing loops). The com-
munication pattern of other applications may depend on the
input file (e.g., semi-performing matrix-vector multiplica-
tions on sparse matrices). In this case, abstractions have to
be introduced, e.g., the average number of neighbors and the
average communication volume with regards to the critical
input parameters. Models for those applications’ communi-
cation requirements can be determined empirically. The re-
sulting communication model should describe the data sizes
and the communication structure.

It is often useful to express this in one of the well-known
network models such as latency-bandwidth or LogGP.

3.4 Step A4: Determine Communication/-
Computation Overlap

This step identifies all code regions where computation
and communication can be overlapped. The modeler needs
to extract the duration of the overlappable serial computa-
tion and communication for each kernel.

3.5 Step E1: Determine Sequential Baseline
Modeling of sequential performance is usually a very com-

plex task. We propose to use a mixture of empirical and an-
alytical modeling in that we define an analytical model and
parametrize it with empirical measurements. This means
that one designs a model for each kernel with a subset of
the critical parameters as input. Then, one runs the code
with a strategically chosen set of critical parameters and de-
termines the time that each step takes. The analytic model
is then fitted to the empirical measurements. Application
requirement models can be constructed in the same way by
measuring different values (e.g., cache misses for memory
requirements).

Modeling cache effects and architecture details such as the
superscalar reorder logic can be tricky, however, empirical
measurements can avoid a complex analysis by capturing
higher-order effects directly.

3.6 Step E2: Determine Communication Pa-
rameters

In order to parametrize a machine model, the communica-
tion parameters need to be determined. Ideally, all param-
eters (including collective communications) are specified by
the vendor or are available in a central database. However,
if this is not the case then the user can establish such models
with the empirical modeling method. Several benchmarks
are available to gather the parameters [18–22].

4. AN APPLICATION EXAMPLE: MILC
We applied the proposed technique to several applications.

Due to space constraints, we will discuss an empirical perfor-
mance model for one particular application on a POWER7
system in detail.

The discussed performance model is based on the model
developed in [27, 28] and key features are repeated here to
illustrate the modeling techniques described in Section 3.

The MIMD Lattice Computation (MILC) Collaboration
studies Quantum Chromodynamics (QCD) the theory of the
strong interaction [29]. Their suite of applications, known as
the MILC code is publicly available for the study of lattice
QCD. This group regularly gets one of the largest alloca-
tions of computer time at NSF supercomputer centers. The
MILC suite comprises approximately 100.000 source lines of
C code. We focus on one application from the code suite,
su3 rmd, which is part of the SPEC CPU2006 and SPEC
MPI benchmarks. It is also used to evaluate the performance
of the Blue Waters computer based on a simple performance
model prediction.

We show all steps to model MILC in full detail and present
a complete analytical model for the parallel application per-
formance. We omit step A4 because the application does
not overlap computation and communication outside of the
CG phase and the overlap for our desired problem size in
the CG phase is insignificant.

4.1 Experimental Platform
We use a single POWER7-MR system with comparable

single-core performance to predict the performance for larger
scale (e.g., the Blue Waters system). The system is equipped
with 32 POWER7 cores clocked at 3.864 GHz and 64 GiB
main memory. We used the IBM XLC compiler version 11.1
and ESSL 5.1 for our experiments.

We used data gathered on this system to predict the per-
formance of a POWER7-IH drawer (1024 cores total) run-
ning at 3.864 GHz. The main difference between POWER7-
IH and POWER7-MR is the number of memory controllers,
allowing more cores to achieve higher bandwidth, and the
interconnect between the cores. However, single-core per-
formance is comparable between both systems.

4.2 Step A1: Identify all Critical Parameters
MILC specifies a program run through an input file which

contains all parameters. Table 1 lists relevant input param-
eters and describes their influence to the runtime briefly.
Some variables, such as nflavors1 or nflavors2 are fixed
by a particular type of calculation and are thus assumed to
be part of the algorithm. The best way to gather all criti-
cal parameters is from the documentation or from a domain
expert.

Name Description
P number of PEs (intrinsic parame-

ter)
nx, ny, nz, nt size in x, y, z, t dimension
warms, trajecs warmup rounds and trajectories

(outer loop)
traj between meas measurement “frequency” (called

meas for brevity)
steps per trajectory number of “steps” in each trajec-

tory (called steps for brevity)
beta, mass1, mass2,
error for propagator

physics parameters that influence
convergence of the conjugate gra-
dient for measurements

max cg iterations limits the conjugate gradient iter-
ations

Table 1: MILC Critical Parameters.

4.3 Step A2: Identify all Code Kernels
The kernels are most important to our analysis. The run-

times of those blocks serve as the basis for the remaining
model. We thus start with a serial performance model for
all kernels. We use this model to compose a complete se-
rial performance model for MILC and then extend it to a
parallel performance model.

A kernel is either a function or a code block inside a func-
tion. A useful way to identify those kernels is to look at the
call-graph of a representative run. Figure 6 shows such a
callgraph for a run with a grid of size 44, one trajectory, and
one measurement per trajectory.

main

100.00%

(0.00%)

update

93.46%

(0.00%)

2×

93.46%

2×

load_ferm_links

19.76%

(0.00%)

32×

1.24%

2×

f_meas_imp

4.04%

(0.00%)

4×

4.04%

4×

g_measure

1.26%

(0.00%)

2×

1.26%

2×

18.53%

30×

eo_fermion_force_twoterms

40.56%

(0.00%)

10×

40.56%

10×

update_h

20.17%

(0.00%)

10×

20.17%

10×

ks_congrad_two_src

9.68%

(0.00%)

10×

9.68%

10×

update_u

3.97%

(3.95%)

40×

3.97%

40×

dslash_fn_site

0.71%

(0.00%)

52×

0.27%

20×

load_longlinks

1.87%

(0.66%)

32×

1.87%

32×

load_fatlinks

17.62%

(1.32%)

32×

17.62%

32×

mat_invert_uml

3.98%

(0.00%)

4×

3.98%

4×

path_product

17.93%

(15.79%)

2116×

0.58%

68×

trace_su3

0.66%

(0.66%)

17408×

0.66%

17408×

eo_fermion_force_twoterms_field

40.56%

(0.66%)

10×

40.56%

10×

imp_gauge_force

20.17%

(1.97%)

10×

20.17%

10×

ks_congrad

9.68%

(0.00%)

20×

9.68%

20×

dslash_fn_site_special

0.71%

(0.00%)

52×

0.71%

52×

side_link_3f_force

15.11%

(0.00%)

6720×

15.11%

6720×

mult_adj_su3_fieldlink_lathwvec

11.84%

(11.84%)

8040×

11.84%

8040×

mult_su3_sitelink_lathwvec

4.61%

(4.61%)

8080×

4.61%

8080×

scalar_mult_add_lathwvec_proj

23.03%

(23.03%)

10240×

7.92%

3520×

15.11%

6720×

16.27%

1920×

su3_adjoint

3.29%

(3.29%)

837632×

1.93%

491520×

0.97%

247808×

su3mat_copy

0.66%

(0.66%)

1032192×

0.63%

991232×

start_gather_field

0.90%

(0.00%)

15020×

0.46%

7772×

1.08%

128×

0.13%

32768×

compute_gen_staple_field

15.45%

(11.18%)

1920×

15.45%

1920×

mult_su3_an

4.61%

(4.61%)

594432×

0.76%

98304×

declare_strided_gather

1.32%

(1.32%)

22070×

0.90%

15020×

0.23%

3840×

3.81%

491520×

ks_congrad_parity

13.55%

(0.66%)

28×

dslash_fn_field_special

12.90%

(12.50%)

1288×

11.77%

1176×

dslash_fn_field

1.12%

(0.00%)

112×

1.12%

112×

0.16%

2688×

restart_gather_field

0.66%

(0.66%)

25000×

0.24%

8960×

1.12%

112×

ks_congrad_site

13.55%

(0.00%)

28×

13.55%

28×

9.68%

20×

0.11%

8×

3.87%

8×

mult_adj_su3_mat_vec_4dir

0.66%

(0.66%)

15360×

0.66%

15360×

ignored subtrees!

GF

LL

FL CG FF

Control Logic

Figure 6: Callgraph for MILC, trajecs=1, steps=5, meas=1.

The main routine in the code loops over warmups and
trajectories. Warmup rounds and trajectories are identical,
however, warmup rounds don’t produce output and don’t
perform “measurements”. The bulk of the computation hap-
pens in the update routine which is called 2·trajecs +
warms times. This block is marked as “control logic” in Fig-
ure 6.

The code has five performance-critical ker-
nels that account for most of the time: (1) LL
(load_longlinks), (2) FL (load_fatlinks), (3) CG
(ks_congrad), (4) GF (imp_gauge_force), and (5) FF
(eo_fermion_force_twoterms). The time to perform each
of these functions scales linearly with the number of lattice

sites. Let Lx, Ly, Lz, and Lt be the sizes of the dimensions
of the lattice on each process and V = Lx ·Ly ·Lz ·Lt. Thus,
the time to perform function B ∈ {LL,FL,CG,GF, FF}
is T (B, V) = t(B) · V where t(B) is the computation time
of kernel B per grid point. The total serial runtime is∑

b∈B T (b, V) assuming each kernel is executed once.
Choosing the right level of abstraction for modeling is very

important. The modeler needs to decide where to cut sub-
trees in the call graph, i.e., combine them into a single term
and he needs to determine functions to ignore. As shown
in Figure 6, our modeling strategy ignores several functions
in the callgraph (e.g., trace_su3). This was done after en-
suring that those functions did not consume significant time
and scaled asymptotically much slower (with all input pa-
rameters) than other modeled functions. This is the first
of a number of tradeoffs to balance the complexity of the
model with its accuracy.

The hardest part is to determine analytical models for the
actual runtimes of the five kernels. We know that it scales
linearly with the number of lattice sites per process, however,
actual performance depends on memory layout, cache sizes,
and architectural details of the CPU. Such a model is gener-
ally hard to predict and for this example, we choose simple
semi-empirical performance modeling. We thus benchmark
different local lattice sizes on the target system and match
those to our model function T (B, V). Another possibility to
determine this part of the model would be to run the kernels
of the application in a simulator.

An analytic way would be to assess the requirements of the
code, e.g., number of floating point operations and memory
loads. The floating point requirements for the five iden-
tified kernels have been determined by the MILC group:
C(FF) = V · 433, 968F , C(GF) = V · 153, 004F , C(FL) =
V · 61, 632F , C(LL) = 1, 804F , C(CG) = V · I · 1, 187F
(I denotes the number of conjugate gradient iterations per
trajectory). Such counts can give some approximation of
the relative numbers of instructions for different parts of
the code. We immediately see that LL and a single CG
iteration have little demands compared to the other kernels.

However, the relationship between the number of FLOPs
and real time is often non-trivial due to varying performance
(vectorization, memory, cache) depending on the data lay-
out, cache structure and CPU architecture.

4.4 Step E1: Determine Sequential Perfor-
mance

Many modern computer systems have a memory hierar-
chy where each level can hold a different number of data ele-
ments and has different access times. This hierarchy is often
transparent to the programmer in the form of one or more
caches which keep temporary copies of parts of the appli-
cation’s working set in faster but smaller memory regions.
Assessing the speed of a computation analytically can be
very hard on cached architectures [30]. In addition, today’s
multi-scalar pipelined computer architectures make detailed
analytical modeling of the execution units even more chal-
lenging. Thus, we rely on empirical benchmark results for
different sizes of the application working set. Our analytical
model considers two levels of cache: Lattice sites in the first
level are computed in t1 and sites in the second level are
computed in t2. The first level can hold s(B) data elements.

T (B, V) = t1(B) ·min{s(B), V }+ t2(B) ·max{0, V − s(B)} (1)

We ran MILC with multiple different lattice sizes V = Lx ·
Ly ·Lz ·Lt in order to determine the single-core performance.

The following table provides the parameters for each crit-
ical block B. It is important to notice that each block has
different parameters which indicates that the working set
and the time per site are different for the modeled opera-
tions.

The number of CG iterations depends on the complex crit-
ical parameters beta, mass1, mass2, error_for_propagator
and can not easily be determined analytically and thus left
as open parameter.

B t1(B)[µs] t2(B)[µs] s(B)
FF 62.4 92 3000
GF 27.8 48 4000
LL 0.425 0.68 4000
FL 11.4 20 3500
CG 0.239 - ∞

Figure 7 shows the performance model for the GF kernel
(line), the actual benchmark results (crosses) and the rela-
tive error of the model for each measurement (stars at the
bottom). The other four kernels show similar accuracy (less
than 10% error).

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e
 [

m
s
]

R
e

la
ti
v
e

 E
rr

o
r

[%
]

Grid Points per Process (L)

Model Function
Model Error

Figure 7: Emprical Performance Model for the GF Kernel
in MILC. The model function is T (GF, V), cf. Equation (1).

The serial performance of the MILC code for all combi-
nations of critical input parameters can be concisely and
precisely defined with 15 parameters. We now show how
to construct an analytic equation that composes the single
kernel runtimes.

4.4.1 Putting it all Together
In the serial case, Lx = nx, Ly = ny, Lz = nz, and

Lt = nt, and V = Lx · Ly · Lz · Lt. We determined the
number of calls to each function depending on the critical
parameters in Table 1 from the source code structure. The
total serial computation time is

Tserial(V) = (trajecs + warms) · steps · [T (FF, V) +

T (GF, V) + 3(T (LL, V) + T (FL, V))] +⌊
trajecs

meas

⌋
[T (LL, V) + T (FL, V)] +

niters · T (CG, V) (2)

The variable niters is the total number of conjugate gra-
dient iterations for light and heavy quarks. The conjugate
gradient method is called once per step and twice per mea-
surement.

Figure 8 shows the composed serial performance model
for the MILC code. The error is below 15% across a wide
spectrum of configurations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e
 [

m
s
]

R
e

la
ti
v
e

 E
rr

o
r

[%
]

Grid Points per Process (L)

Model Function
Model Error

Figure 8: Composed Serial Performance Model for MILC.
The model function is Tserial(V), cf. Equation (2).

The number of iterations is different and hard to predict
without domain knowledge, thus, we consider the total num-
ber of iterations in the model and resort to a domain expert
to predict this number. We observed that beginning from a
lattice size of 1536 points, niters≈23.000.

4.5 Step A3: Determine Communication Pat-
tern

MILC uses point-to-point and collective (allreduce) com-
munication. Collective communication is performed at the
end of each conjugate gradient iteration on the whole set of
processes (P).

4.5.1 Point-to-point Pattern
MILC uses a 4-d balanced domain decomposition scheme

by trying to cut the largest dimension that is divisible by
the largest prime-factor in P . It continues recursively after
updating P (divide by prime factor) and the cut dimension.
If no dimension can be cut by the largest prime factor, the
program aborts.

In the following analysis, we assume that the domain is
decomposed in all four dimensions and Lx = Ly = Lz = Lt.
MILC models periodic boundary conditions such that all
processes have exactly eight neighbors for P ≥ 16. Point-
to-point messages are sent along the 4-d lattice and are trig-
gered in gather calls. Each gather call communicates in one
direction and uses blocking communication, however, the
conjugate gradient phase enables computation/communica-
tion overlap with nonblocking communication. The number
of messages (gathers in MILC’s terminology; this is not to
be confused with MPI Gather collectives!) n(B) is specific to
each critical block. In the case where all dimensions are cut
by the domain decomposition:

B n(B)
FF (trajecs + warms) · steps · 1616
GF (trajecs + warms) · steps · 828

LL (3 · steps · (trajecs + warms) +
⌊
trajecs

meas

⌋
) · 8

FL (3 · steps · (trajecs + warms) +
⌊
trajecs

meas

⌋
) · 288

CG 8 · niters + 16 · nrestart + 8 ·[
steps · (trajecs + warms) + 2 ·

⌊
trajecs

meas

⌋]
FF , GF , LL, and FL perform a fixed number of gathers

per invocation. Each CG iteration performs one gather for

each of the eight directions of all even (or odd) sites in a
halo-zone of size three. In addition, at the first invocation
(and each restart), it needs one additional gather for each
direction (8 messages) of all even (or odd) sites in a halo zone
of size one). For simplicity, we assume one restart during
each invocation. Each CG invocation sends four messages
communicating the su3 matrices one poin deep and four
messages communicating them three points deep. CG is
invoked twice every step (light and heavy quarks) and four
times every measurement.

Point-to-point Sizes.
The code uses two major types of point to point oper-

ations. The first type is used in FF , GF , LL, and FL
and communicates su3 matrices with 3x3 complex values
(18 floating point values) and a 1-element wide halo zone.
Thus, a halo zone of one element needs to be communicated
at the domain boundaries. As before, Lx, Ly, Lz, and Lt

represent the lattice dimensions per process, Ad represents
the message size for the FF , GF , LL, and FL kernels along
dimension d, and s is the size of a single floating point value:

Ax = 18 · s · Ly · Lz · Lt Ay = 18 · s · Lx · Lz · Lt

Az = 18 · s · Lx · Ly · Lt At = 18 · s · Lx · Ly · Lz.

If we assume Lx = Ly = Lz = Lt and V = Lx · Ly · Lz · Lt,

we get A(V) = 18 · s · 4
√
V 3.

The CG kernel is more complex. It communicates ei-
ther even or odd su3 vectors with 3 element vectors (3
floating point values) per lattice site and a 3-element wide
halo zone in each iteration. This means the message size is

B(V) = 18
2
· s · 4
√
V 3 = A(V)

2
. The conjugate gradient might

restart itself to improve the accuracy of the solution. Each
of the nrestart restart calls causes another 16 messages of

size B(V)
3

. We assume nrestart=1 for simplicity. We will
write A instead of A(V) and B instead of B(V) where it is
clear. In addition, each CG invocation sends four messages
communicating the su3 vectors with a halo-zone of size one
(message size A) and four messages with a halo zone of size
three (message size 3 · A). CG is invoked twice every step
(light and heavy quarks) and four times every measurement.

Point-to-point Model.
If we assume a cost of M(x) for a message of size x, the

full communication model for point-to-point operations is:

Tp2p = M(A) · (trajecs+ warms) · steps · (1616 + 828) +

M(A) ·
(
3 · steps · (trajecs+ warms) +

⌊
trajecs

meas

⌋)
·

(8 + 288) + 8M(B) · niters+ 16M

(
B

3

)
nrestart+

(4M(A) + 4M(3A)) ·[
steps · (trajecs+ warms) + 2 ·

⌊
trajecs

meas

⌋]
(3)

4.5.2 Collective Communication
Only the CG block requires an allreduce of two floating

point numbers during each iteration. An additional allre-
duce call is needed for initialization at each first call for
heavy or light quarks (once per step and twice for each mea-
surement). Thus, the number of allreduce calls is:

nared = niters + (4)

2 ·
[
steps · (trajecs + warms) + 2 ·

⌊
trajecs

meas

⌋]
The time for all collective operations is then simply Tcoll =

Tared · nared.

4.6 Step E2: Determine communication pa-
rameters

We used the Netgauge LogGP benchmark [19] to mea-
sure the intra-node communication performance and we as-
sume the slowest link in the network (LR, cf. [25]) for the
inter-node communication. The intra-node communication
parameters are L=1.43 µs, for small messages (≤ 32kiB)
o=0.48 µs, g=1.03 µs, G=0.18 ns/b, and for large messages
(> 32kiB) o=5.66 µs, g=1.16 µs, G=0.22 ns/b. The intra-
node parameters are L=1.8 µs, o=1.5 µs, g=1.5 µs, G=0.2
ns/b.

For 32 cores and an ideal mapping (two 2x2x2x2 blocks
per node), we assume that approximately half of the com-
munication is intra-node and half is inter-node.

We estimate the costs of the allreduce communication as
a dissemination pattern [31]: Tared = 1.8µs · log2(P).

5. EXAMPLE USES OF THE MODELS
We now discuss two examples in which we used the model

to predict the performance on a system during installation
and to assess the optimization potential of a code change.

5.1 POWER7-IH Prediction
We used the model to predict the performance of a par-

allel execution of MILC with P = 1024 and varying grid
sizes. The simple model we used was Tpar(V) = Tserial(V)+
Tp2p(V)+Tcoll(V). Figure 9 shows the parallel model (line),
the benchmark results (stars), the purely serial (computa-
tion) model (dashed line), the relative communication over-
head (line from the left top), and the relative overhead for
packing data for the point-to-point communication (lower
line from bottom left).

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000
 0

 20

 40

 60

 80

 100

T
im

e
 [

m
s
]

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rh
e

a
d

 [
%

]

Grid Points per Process (L)

Serial Model
Model P=1024

Comm Overhead
Pack Overhead

Figure 9: Parallel Performance Model for MILC. The model
function is Tpar(V).

The “pack time” is a part of the communication overhead.
It models the time to copy the data that is sent from the
application buffer to communication buffers and is modeled
with a simple linear equation.

5.2 MPI Datatype Optimization
Our communication model showed that the buffer copies

for packing were very inefficient (only 300 MiB/s transfer
rates). The model shows up to 12% overhead due to packing.
Hoefler and Gottlieb thus changed the code to use optimized
MPI derived datatypes for the data packing and sending
(which also allows overlap and pipelining inside the send
call). Details of the implementation are available in [32].

The resulting code’s overall parallel performance was im-
proved by up to 12% on the POWER7 drawer, which means
that all the memory copy overhead could be eliminated in
the efficient datatype handling.

6. CONCLUSIONS AND FUTURE WORK
We have shown that performance modeling can support

all stages of the procurement and deployment of a large com-
puter system and improve the day-to-day operation of data-
centers. We also discussed how developers and users of sci-
entific applications can benefit from a performance model.
Therefore, we advocate performance modeling as a tool for
application optimization and tuning, system design, pro-
curement and tuning, and operation.

Performance modeling can be used at different levels of
complexity, from very rough back-of-the-envelope to very
detailed and accurate models. We advocate simple models
in which we trade off simplicity for accuracy to guide op-
timization and tuning. Our simple and effective modeling
method can be used by performance engineers, application
support engineers, and application developers to generate
performance models for a scientific applications without the
help of experts. We provide a detailed example for MILC, an
important NSF application and showed two practical uses of
the model at the National Center of Supercomputing Appli-
cations (NCSA).

NCSA is developing a long-term strategy to support per-
formance modeling and use performance models during its
operation. The advanced application support team is well-
versed with modeling strategies and begins to support exter-
nal users with the development of performance models. We
expect that this support strategy will enhance the quality
and performance of many community codes such as MILC.

We strive to make performance modeling techniques ac-
cessible to a wider community by showing the usefulness
of simple performance models. We also work with perfor-
mance tool developers to integrate performance modeling
techniques in such tools [33].

Our current ongoing work is using analytic performance
models to predict the impact of operating system noise at
large scale [8] and to develop noise-resistant algorithms us-
ing nonblocking collective communications. We also plan to
investigate the limits to the benefit of accelerators. We plan
to build upon asymptotic theoretical bounds on the I/O es-
tablished in [34].

Acknowledgments
The authors thank Steven Gottlieb of Indiana University,
who spent a 2009–2010 sabbatical at NCSA in order to
model and tune performance of the MILC code for Blue
Waters. The authors thank Greg Bauer and Robert Fiedler
at NCSA for discussions and useful comments. This work
is supported by the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science
Foundation (award number OCI 07-25070) and the state of
Illinois.

7. REFERENCES
[1] Patrick Bohrer, James Peterson, Mootaz Elnozahy,

Ram Rajamony, Ahmed Gheith, Ron Rockhold,
Charles Lefurgy, Hazim Shafi, Tarun Nakra, Rick
Simpson, Evan Speight, Kartik Sudeep, Eric
Van Hensbergen, and Lixin Zhang. Mambo: a full
system simulator for the powerpc architecture.
SIGMETRICS Perform. Eval. Rev., 31:8–12, March
2004.

[2] Arun F Rodrigues, Richard C Murphy, Peter Kogge,
and Keith D Underwood. The structural simulation
toolkit: exploring novel architectures. In Proceedings
of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[3] Chao Mei. A preliminary investigation of emulating
applications that use petabytes of memory on
petascale machines. Master’s thesis, University of
Illinois at Urbana-Champaign, 2007.

[4] Gengbin Zheng, Gagan Gupta, Eric Bohm, Isaac
Dooley, and Laxmikant V. Kale. Simulating Large
Scale Parallel Applications using Statistical Models for
Sequential Execution Blocks. In Proceedings of the
16th International Conference on Parallel and
Distributed Systems (ICPADS 2010), number 10-15,
Shanghai, China, December 2010.

[5] Rosa M Badia, Jess Labarta, and Judit Gimenez.
Dimemas: Predicting mpi applications behavior in
grid environments. In Workshop on Grid Applications
and Programming Tools (GGF ’03), 2003.

[6] Mustafa M. Tikir, Michael A. Laurenzano, Laura
Carrington, and Allan Snavely. PSINS: An Open
Source Event Tracer and Execution Simulator for MPI
Applications. In Euro-Par ’09, pages 135–148, Berlin,
Heidelberg, 2009.

[7] Torsten Hoefler, Timo Schneider, and Andrew
Lumsdaine. Loggopsim: simulating large-scale
applications in the loggops model. In Proceedings of
the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages
597–604, New York, NY, USA, 2010. ACM.

[8] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

[9] T. Hoefler, R. Janisch, and W. Rehm. Parallel scaling
of Teter’s minimization for Ab Initio calculations. 11
2006. HPC Nano’06 in conjunction with the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC06.

[10] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance
and scalability modeling of a large-scale application.
In Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROM),
pages 37–37, New York, NY, USA, 2001. ACM.

[11] Mark M. Mathis, Nancy M. Amato, and Marvin L.
Adams. A general performance model for parallel
sweeps on orthogonal grids for particle transport
calculations. Technical report, College Station, TX,
USA, 2000.

[12] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A scalable cross-platform infrastructure for
application performance tuning using hardware
counters. In Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM),
Supercomputing ’00, Washington, DC, USA, 2000.
IEEE Computer Society.

[13] Gheith A. Abandah and Edward S. Davidson.
Modeling the Communication Performance of the IBM
SP2. Parallel Processing Symposium, International,
0:249, 1996.

[14] Samuel Williams, Andrew Waterman, and David
Patterson. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM,
52:65–76, April 2009.

[15] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C.
Phillips, Gengbin Zheng, and Laxmikant V. Kale.
NAMD: A Portable and Highly Scalable Program for
Biomolecular Simulations. Technical Report
UIUCDCS-R-2009-3034, Department of Computer
Science, University of Illinois at Urbana-Champaign,
February 2009.

[16] Blue Waters Sustained Petascale Computing, Project
Office. http://www.ncsa.illinois.edu/BlueWaters/,
2011. accessed June 2011.

[17] A. Canning, G. Galli, F. Mauri, A. De Vita, and
R. Car. O(n) tight-binding molecular dynamics on
massively parallel computers: an orbital
decomposition approach. Computer Physics
Communications, 94(2-3):89 – 102, 1996.

[18] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.
Netgauge: A Network Performance Measurement
Framework. In High Performance Computing and
Communications, Third International Conference,
HPCC 2007, Houston, USA, September 26-28, 2007,
Proceedings, volume 4782, pages 659–671. Springer, 9
2007.

[19] T. Hoefler, A. Lichei, and W. Rehm. Low-Overhead
LogGP Parameter Assessment for Modern
Interconnection Networks. In Proceedings of the 21st
IEEE International Parallel & Distributed Processing
Symposium. IEEE Computer Society, March 2007.

[20] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part
MPI-1. Technical report, 2000.

[21] Dave Turner, Adam Oline, Xuehua Chen, and Troy
Benjegerdes. Integrating new capabilities into netpipe.
In Jack Dongarra, Domenico Laforenza, and Salvatore
Orlando, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface,10th
European PVM/MPI Users’ Group Meeting, Venice,
Italy, September 29 - October 2, 2003, Proceedings,
volume 2840 of Lecture Notes in Computer Science,
pages 37–44. Springer, 2003.

[22] Ralf Reussner, Peter Sanders, and Jesper Larsson
Träff. SKaMPI: A comprehensive benchmark for
public benchmarking of MPI. Scientific Programming,
10(1):55–65, 2002.

[23] David Culler, Richard Karp, David Patterson, Abhijit
Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh
Subramonian, and Thorsten von Eicken. LogP:
towards a realistic model of parallel computation. In
Principles Practice of Parallel Progr., pages 1–12,

1993.

[24] T. Hoefler, T. Schneider, and A. Lumsdaine.
Multistage Switches are not Crossbars: Effects of
Static Routing in High-Performance Networks. In
Proceedings of the 2008 IEEE International
Conference on Cluster Computing. IEEE Computer
Society, Oct. 2008.

[25] B. Arimilli, R. Arimilli, V. Chung, S. Clark,
W. Denzel, B. Drerup, T. Hoefler, J. Joyner, J. Lewis,
J. Li, N. Ni, and R. Rajamony. The PERCS
High-Performance Interconnect. In Proceedings of 18th
Symposium on High-Performance Interconnects (Hot
Interconnects 2010). IEEE, Aug. 2010.

[26] T. Hoefler, W. Gropp, R. Thakur, and J. L. Traeff.
Toward Performance Models of MPI Implementations
for Understanding Application Scaling Issues. In
Recent Advances in the Message Passing Interface
(EuroMPI’10), volume LNCS 6305, pages 21–30.
Springer, Sep. 2010.

[27] Greg Bauer, Steven Gottlieb, and Torsten Hoefler.
Performance Modeling and Comparative Analysis of
the MILC Lattice QCD Application su3 rmd. to
appear.

[28] Steven Gottlieb. Personal communication about MILC
code structure and main functions.

[29] Claude Bernard, Michael C. Ogilvie, Thomas A.
DeGrand, Carleton E. DeTar, Steven A. Gottlieb,
A. Krasnitz, R.L. Sugar, and D. Toussaint. Studying
Quarks and Gluons On Mimd Parallel Computers.
International Journal of High Performance Computing
Applications, 5(4):61–70, 1991.

[30] A. Agarwal, J. Hennessy, and M. Horowitz. An
analytical cache model. ACM Trans. Comput. Syst.,
7:184–215, May 1989.

[31] Debra Hengsen, Raphael Finkel, and Udi Manber.
Two Algorithms for Barrier Synchronization. Int. J.
Parallel Program., 17(1):1–17, 1988.

[32] T. Hoefler and S. Gottlieb. Parallel Zero-Copy
Algorithms for Fast Fourier Transform and Conjugate
Gradient using MPI Datatypes. In Recent Advances in
the Message Passing Interface (EuroMPI’10), volume
LNCS 6305, pages 132–141. Springer, Sep. 2010.

[33] T. Hoefler. Bridging Performance Analysis Tools and
Analytic Performance Modeling for HPC. In
Proceedings of Workshop on Productivity and
Performance (PROPER 2010). Springer, Dec. 2010.

[34] Hong Jia-Wei and H. T. Kung. I/o complexity: The
red-blue pebble game. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing,
STOC ’81, pages 326–333, New York, NY, USA, 1981.
ACM.

