
Efficient MPI Support for Advanced Hybrid

Programming Models

Torsten Hoefler, Greg Bronevetsky, Brian Barrett, 

Bronis R. de Supinski, and Andrew Lumsdaine

EuroMPI 2010, Stuttgart, Germany, Sep. 13th 2010



Threaded/Hybrid MPI Programming

• Hybrid Programming gains importance

– Reduce surface-to-volume (less comm.)

– Will be necessary at Peta- and Exascale!

• MPI supports hybrid programming

– Offers thread levels: 

• single, serial, funneled, multiple

– Thread_multiple becomes more common

• E.g., codes using OpenMP tasks



MPI Messaging Details

• MPI_Probe to receive messages of 

unknown size

– MPI_Probe(…, status)

– size = get_count(status)*size_of(datatype)

– buffer = malloc(size)

– MPI_Recv(buffer, …)

• MPI_Probe peeks in matching queue

– Does not change it → stateful object



Multithreaded MPI Messaging
• Two threads, A and B perform probe, 

malloc, receive sequence

– AP → AM → AR → BP → BM → BR

• Possible ordering

– AP → BP → BM → BR → AM → AR

– Wrong matching! 

– Thread A’s message was “stolen” by B

– Access to queue needs mutual exclusion 



“Obvious” Solution 1

• Separate threads with “channels”

– Needs t*p threads or communicators

• Not scalable

– Threads cannot “share” messages

• Not flexible for load-balancing (master/worker)

– Problems with libraries

• Each needs t*p tags or communicators

• This solution is impractical!



“Obvious” Solution 2

• Lock each P,M,R sequence

– Unnecessary synchronization

– This sequence might be slow (malloc)

• Only one thread can perform it

– Observation:

• E.g., (tag,src)=(4,5) and (5,5) do not “conflict”



Solution 3 – 2d Locking
• Lock each (src,tag) pair

– Requires 2d lock matrix

• Should be sparse!

lock (src, tag)

P,M,R (e.g., irecv)

unlock(src,tag)

– Wildcards (ANY_SRC, ANY_TAG) acquire 

locks for whole row/column or matrix 

– Minimizes lock overhead



Solution 3 is incorrect 

• Can lead to deadlocks

– A correct MPI code (threads A+B):

– Thread A enters locks (0,2), B is waiting 

forever (deadlock)

A:

send(..., 1, 1, comm)

recv(..., 1, 1, comm)

send(..., 1, 2, comm)

...

A:

probe/recv(0, 2, comm)

B:

probe/recv(0,ANY_TAG,comm)

send(..., 0, 1, comm)



Updated Solution 3

• Obvious fix: don’t block, poll 

– Only needed if code uses wildcards

– Several variants:



Solution 4 - Matching Outside MPI 

• Helper thread calls MPI_Probe

– Receives all incoming messages

– Full matching logic on top of that

• Replicating MPI logic (thread safe)

• Allows blocking on MPI calls

– High overhead though



Fixing the MPI Standard?

• Avoid state in the library

– Return handle, remove message from queue

MPI_Message msg; MPI_Status status;

/* Match a message */

MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, 

&msg, &status);

/* Allocate memory to receive the message */

int count; MPI_get_count(&status, MPI_BYTE, &count);

char* buffer = malloc(count);

/* Receive this message. */

MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE);



Implementation
• Open MPI as reference implementation

• Low-level matching (e.g., MX) will need FW support



Test System

• Sif at Indiana University

– Eight core 1.86 GHz Xeon

– Myrinet 10G (MX)

– Open MPI rev. 22973 + mprobe patch

• --enable-mpi-thread-multiple

• Using MPI_THREAD_MULTIPLE with TCP BTL



Benchmarks
• Receive Message Rate

– MT receive (j processes send to j threads)

• 2d locking (2D)

• Outside MPI matching (OUT)

• Mprobe reference (MPROBE)

• Threaded Roundtrip Time

– Send n RTT messages between threads

– Report average latency



ANY_SRC, ANY_TAG Receive

each message

copied twice



Directed Receive

lower than 

wildcard

(locking overhead)

higher than 

wildcard

(less contention)



ANY_SRC, ANY_TAG Latency

Mprobe

optimization 

potential

each message

copied twice



Directed Latency

2d lock higher 

than wildcard

(locking overhead)



Conclusions
• MPI_Probe is not thread-safe

– Arguably a bug in MPI-2.2

• Obvious solutions do not help

– Resource exhaustion

• Complex solutions are tricky

– Too complex for average MPI user

• Change to standard to add stateless interface

– Mprobe proposal under consideration for MPI-3

– Encouraging initial performance results!


