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Abstract. In this paper we make the case for adding standard non-
blocking collective operations to the MPI standard. The non-blocking
point-to-point and blocking collective operations currently defined by
MPI provide important performance and abstraction benefits. To allow
these benefits to be simultaneously realized, we present an application
programming interface for non-blocking collective operations in MPI. Mi-
crobenchmark and application-based performance results demonstrate
that non-blocking collective operations offer not only improved conve-
nience, but improved performance as well, when compared to manual
use of threads with blocking collectives.

1 Introduction

Although non-blocking collective operations are notably absent from the MPI
standard, recent work has shown that such operations can be beneficial, both
in terms of performance and abstraction. Non-blocking operations allow com-
munication and computation to be overlapped and thus to leverage hardware
parallelism for the asynchronous (and/or network-offloaded) message transmis-
sion. Several studies have shown that the performance of parallel applications
can be significantly enhanced with overlapping techniques (e.g., cf. [1, 2]). Simi-
larly, collective operations offer a high-level interface to the user, insulating the
user from implementation details and giving MPI implementers the freedom to
optimize their implementations for specific architectures.

In this paper, we advocate for standardizing non-blocking collective oper-
ations. As with non-blocking point-to-point operations and blocking collective
operations, the performance and abstraction benefits of non-blocking collective
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operations can only be realized if these operations are represented with a pro-
cedural abstraction (i.e., with an API). Although a portable library on top of
MPI could be used to provide non-blocking collective functionality to the HPC
community, standardization of these operations is essential to enabling their
widespread adoption. In general, vendors will only tune operations that are in
the standard and users will only use features that are in the standard.

It has been suggested that non-blocking collective functionality is not needed
explicitly as part of MPI because a threaded MPI library could be used with
collective communication taking place in a separate thread. However, there are
several drawbacks to this approach. First, it requires language and operating
system support for spawning and managing threads, which is not possible on
some operating systems—in particular on operating systems such as Catamount
designed for HPC systems. Second, programmers must then explicitly manage
thread and synchronization issues for purposes of communication even though
these issues could and should be hidden from them (e.g., handled by an MPI
library). Third, the required presence of threads and the corresponding synchro-
nization mechanisms imposes the higher cost of thread-safety on all commu-
nication operations, whether overlap is obtained or not (cf. [3]). Finally, this
approach provides an asymmetric treatment of collective communications with
respect to point-to-point communications (which do support asynchronous com-
munications).

Non-blocking collective operations provide some performance benefits that
may only be seen at scale. The scalability of large scientific application codes
is often dependent on the scalability of the collective operations used. At large
scale, system noise affects the performance of collective communications more
than it affects the performance of point-to-point operations. because of the or-
dered communications patterns use by collective communications algorithms. To
continue to scale the size of HPC systems to peta-scale and above, we need com-
munication paradigms that will admit effective use of the hardware resources
available on modern HPC systems. Implementing collective operations so that
they do not depend on the the main CPU is one important means of reducing
the effects of system noise on application scalability.

1.1 Related Work

Several efforts have studied the benefits of overlapping computation with com-
munications, with mixed results. Some studies have shown that non-blocking col-
lective operations improve performance, and in other cases a bit of performance
degradation was observed. Danalis et.al. [2] obtained performance improvement
by replacing calls to MPI blocking collectives with calls to non-blocking MPI
point-to-point operations. Kale et al. [4] analyzed the applicability of a non-
blocking personalized exchange to a small set of applications. Studies such as [1,
5] mention that non-blocking collective operations would be beneficial but do
not quantify these benefits. IBM extended the standard MPI interface to include
non-blocking collectives in their parallel environment (PE), but have dropped
support for this non-standard functionality in the latest release of this PE. Due
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to its channel semantics, MPI/RT [6] defines all operations, including collec-
tive operations, in a non-blocking manner. Hoefler et. al. [7, 8] have shown that
non-blocking collective operations can be used to improve the performance of
parallel applications. Finally, several studies of the use of non-blocking collectives
to optimize three-dimensional FFTs have been done [5, 9–11]. The results of ap-
plying these non-blocking communication algorithms (replacing MPI All-To-All
communications) were inconclusive. In some cases the non-blocking collectives
improved performance, and in others performance degraded a bit.

The remainder of the paper is structured as follows. Section 2 describes our
proposed application programming interface followed by a discussion of different
implementation options in Section 3. Microbenchmarks of two fundamentally
different implementations are presented in Section 4. Section 5 presents a case
study of the applicability of non-blocking collective operations to the problem
of a parallel three-dimensional Fourier Transformation.

2 Application Programming Interface

We propose an API for the non-blocking collectives that is very similar to
that of the blocking collectives and the former proprietary IBM extension. We
use a naming scheme similar to the one used for the non-blocking point-to-
point API (e.g., MPI Ibarrier instead of MPI Barrier). In addition, request objects
(MPI Request) are used for a completion handle. The proposed interfaces to all
collective operations are defined in detail in [12]. For example, a non-blocking
barrier would look like:

1 MPI_Ibarrier(comm, request);

...

/* computation, other MPI communications */

...

MPI_Wait(request, status);

Our interface relaxes the strict MPI convention that only one col-
lective operation can be active on any given communicator. We extend
this so that we can have a huge number (system specific, indicated by
MPI ICOLL MAX OUTSTANDING, cf. [12]) of parallel non-blocking collectives
and a single blocking collective outstanding at any given communicator. Our
interface does not introduce collective tags to stay close to the traditional syn-
tax of collective operations. The order of issuing a given collective operation
defines how the collective-communications traffic matches up across communi-
cators. Similar to point-to-point communications, progress for these non-blocking
collective operations depends on both underlying system hardware and software
capabilities to support asynchronous communications, as well implementation of
these collectives by the MPI library. In some cases MPI Test or MPI Wait may
need to be called to progress these non-blocking collective operations. This may
be particularly true for collective operations that transform user data, such as
MPI Allreduce.
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Fig. 1. Execution of NBC calls in separate threads

3 Advice to Implementors

There are two different ways to implement support for non-blocking collective
operations. The first way is to process the blocking collective operation in a
separate thread and the second way is to implement it on top of non-blocking
point-to-point operations. We will evaluate both implementations in the follow-
ing. We use a library approach, e.g., both variants are implemented in a library
with a standardized interface which is defined in [12]. This enables us to run
identical applications and benchmarks with both versions. The following section
discusses our implementation based on threads.

3.1 Implementation with Threads

The threaded implementation, based on the pthread interface, is able to spawn
a user-defined number of communication threads to perform blocking collective
operations. It operates using a task-queue model, where every thread has its
own task queue. Whenever a non-blocking collective function is called, a work
packet (containing the function number and all arguments) is placed into the
work queue of the next thread in a round robin scheme.

The worker threads could either poll their work queue or use condition signals
to be notified. Condition signals may introduce additional latency while constant
polling increases the CPU overhead. We will analyze only the condition wait
method in the next section because experiments with the polling method showed
that it is worse in all regards. Since there must be at least one worker thread
per MPI job, at most half of the processing cores is available to compute unless
the system is oversubscribed.

Whenever a worker thread finds a work packet in its queue (either during busy
waiting or after being signaled), the thread starts the corresponding collective
MPI operation and sets a flag after its completion. All asynchronous operations
have to be started on separate communicators (mandated by the MPI standard).
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Thus, every communicator is duplicated on its first use with any non-blocking
collective and cached for later calls. Communicator duplication is a blocking
collective operation in itself and causes matching problems when it’s run with
threads (cf. [3]). The communicator duplication has to be done in the user thread
to avoid any race conditions, which makes the first call to a non-blocking collec-
tive operation with every communicator block. All subsequent calls are executed
truly non-blocking.

When the user calls NBC Test, the completion flag is simply checked and
the appropriate return code generated. A call to NBC Wait waits on a condition
variable.

3.2 Implementation with non-blocking Point-to-Point

The point-to-point message based implementation is available in LibNBC.
LibNBC is written in ANSI C using MPI-1 functionality exclusively to ensure
highest portability. The full implementation is open source and available for
public download on the LibNBC website [13]. The detailed implementation doc-
umentation is provided in [14], and the most important issues are discussed in
the following.

The central part of LibNBC is the collective schedule. A schedule consists
of the operations that have to be performed to accomplish the collective task
(e.g., an MPI Isend, MPI Irecv). The collective algorithm is implemented like in
the blocking case, based on point-to-point messages. But instead of performing
all operations immediately, they are saved in the collective schedule together
with their dependencies. However, the internal interface to add new algorithms
is nearly identical to the MPI interface. A detailed documentation about the ad-
dition of new collective algorithms and the internal and external programming
interfaces of LibNBC is available in [14]. The current implementation is opti-
mized for InfiniBandTM and implements different algorithms for most collective
operations (cf. [15]).

All communications require an extra communicator to prevent collisions with
the user program. This communicator is duplicated from the original one in the
first NBC call with a new communicator and cached for subsequent calls. This
makes the first call blocking, as in the threaded implementation described in the
previous section.

4 Microbenchmarking the Implementations

We developed a micro-benchmark to assess the performance and overlap poten-
tial of both implementations of non-blocking collective operations. This bench-
mark uses the interface described in [12]. For a given collective operation, it
measures the time to perform the blocking MPI collective, the non-blocking
collective in a blocking way (without overlap) and the non-blocking collective
interleaved with busy loops to measure the potential computation and commu-
nications overlap. A detailed description of the benchmark is available in [8]. In
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Fig. 2. Left: Share of the freed CPU time with the non-blocking MPI and NBC alltoall
operation with regards to the blocking MPI implementation. Right: Blocking and non-
blocking NBC Ialltoall overhead for different CPU configurations. Measured with 128
processes in 64 and 128 nodes respectively.

addition, the benchmark measures the communication overhead of blocking and
non-blocking collective operations. Overhead is defined as the time the calling
thread spends in communications related routines, i.e., the time the thread can’t
spend doing other work. The communication overhead of blocking operations is
the amount of time to finish the collective operation, as the collective call does
not complete until the collective operation had completed locally. Non-blocking
operations allow for overlap of the communication latency and the overhead
has the potential to be less than the time to complete the given collective, and
providing the calling thread compute cycles. The communication overhead of
non-blocking operations is highly implementation, network, and communications
stack dependent. We could not run these thread-based tests on the Cray XT4,
as it does not provide thread support.

Using both implementations and the benchmark results, four different times
are measured:

– Blocking MPI collective in the user thread (MPI/BL)
– Blocking MPI collective in a separate communications thread to emulate

non-blocking behavior (MPI/NB)
– Non-blocking NBC operation without overlap, i.e., the initiation is directly

followed by a wait (NBC/BL)
– Non-blocking NBC operation with maximum overlap, i.e., computing at least

as long as an NBC/BL operation takes (NBC/NB)

We benchmarked both implementations with Open MPI 1.2.1 [16] on the
Coyote cluster system at Los Alamos National Labs, a 1290 node AMD Opteron
cluster with an SDR InfiniBand network. Each node has two single core 2.6 GHz
AMD Opteron processors, 8 GBytes of RAM and a single SDR InfiniBand HCA.
The cluster is segmented into 4 separate scalable units of 258 nodes. The largest
job size that can run on this cluster is therefore 516 processors.
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Figure 2 shows the results of the microbenchmark for different CPU configu-
rations of 128 processes running on Coyote. The threaded MPI implementation
allows nearly full overlap (frees nearly 100% CPU) as long as the system is not
oversubscribed, i.e., every communication thread runs on a separate core. How-
ever, this implementation fails to achieve any overlap (it shows even negative
impact) if all cores are used for computation. The implementation based on
non-blocking point-to-point (LibNBC) allows decent overlap in all cases, even if
all cores are used for computation.

5 Case Study: Three-dimensional FFT

Parallel multi-dimensional Fast Fourier Transformations (FFTs) are used as
compute kernels in many different applications, such as quantum mechanical
or molecular dynamic calculations. In this paper we also study the application
of non-blocking collective operations to optimize a three-dimensional FFT to
demonstrate the benefit of overlapping computation with communication for
this important kernel. This operation is used at least once per application com-
putational step.

The three-dimensional FFT can be split into three one-dimensional FFTs
performed along all data points. We use FFTW to perform the 1d-FFTs and
distribute the data block-wise (blocks of xy-planes) so that the x and y dimen-
sions can be transformed without redistributing the data between processors.
The z transformation requires a data redistribution among all nodes which is
efficiently implemented by an MPI Alltoall function.

A pipeline scheme is used for the communication. As soon as the first data
elements (i.e., planes) are ready, the communication of them is started in a
non-blocking way with NBC Ialltoall. This enables the communication of those
elements to overlap with the computation of all following elements. As soon as
the last element is computed and its communication is started, all outstanding
collective operations are completed with NBC Wait (i.e., the last operation has
no overlap potential).

We benchmark the strong scaling of a full transformation of a 10243 point
FFT box (9603 for 32 processes due to memory limitations) on the the Cray XT4,
Jaguar, at the National Center for Computational Sciences, Oak Ridge National
Laboratory. This cluster is made up of a total of 11,508 dual socket 2.6 GHz
dual-core AMD Opteron chips, and the network is a 3-D torus with the Cray-
designed SeaStar [17] communication processor and network router designed to
offload network communication from the main processor. The compute nodes run
the Catamount lightweight micro-kernel. All communications use the Portals 3.3
communications interface [18]. The Catamount system does not support threads
and can thus not run the threaded implementation. An unreleased development
version of Open MPI [16] was used to perform these measurements, as Open MPI
1.2.1 does not provide Portals communications support. However, using the NIC-
supported overlap with LibNBC results in a better overall system usage and an
up to 14.2% higher parallel efficiency of the FFT on 128 processes.
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Fig. 3. Left: Blocking and non-blocking FFT times for different process counts on the
XT4 system. Right: Communication overhead.
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of 128 processes on the Coyote system (using 128 or 64 nodes respectively). Right:
Communication overhead.

Another benchmark on the Coyote system (cf. 4), shown on Fig. 4, shows
results for runs of the 10243 FFT box transformation on 128 processes with
either 1 process per node (1ppn) or two processes per node (2ppn). This effec-
tively compares the efficiency of the MPI approach (perform the non-blocking
collectives in a separate thread) with the LibNBC approach (use non-blocking
point-to-point communication). We clearly see the the LibNBC approach is su-
perior on this system. As soon as all available CPUs are used for computation,
the threaded approach even slows the execution down (cf. Section 4). Our con-
clusion is that with the currently limited number of CPU cores, it does not pay
off to invest half of the cores to process asynchronous collectives with the MPI
approach; they should rather be used to perform useful computation. Thus, we
suggest the usage of non-blocking point-to-point as in LibNBC.
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6 Conclusions

As modern computing and communication hardware is becoming more powerful,
it is providing more opportunities for delegation of communication operations
and hiding of communication costs. MPI has long supported asynchronous point-
to-point operations to take advantage of these capabilities. It is clearly time for
the standard to support non-blocking functionality for collective operations.

The interface we propose is a straightforward extension of the current MPI
collective operations and we have implemented a prototype of these extensions
in a library using MPI point-to-point operations. We note however, that im-
plementing non-blocking collective operations as a separate library in this way
requires implementing (potentially quite similar) collective algorithms in two
different places (the blocking and non-blocking cases). Having those operations
standardized in MPI would enable a single shared infrastructure inside the MPI
library. In addition, communicator duplication is necessary in both implementa-
tions and can not be done in a non-blocking way without user interaction.

Our results with a microbenchmark and an application clearly show the per-
formance advantages of non-blocking collectives. In the case of an all-to-all com-
munication, we are able to overlap up to 99% of the communication with user
computation on our systems. The application of a pipelined computation/com-
munication scheme to a 3d-FFT shows application performance gains for a 128
process job of up to 14.2% on a Cray XT4 and 13.7% on an InfiniBand-based
cluster system. In particular, we show that using the MPI-2 threaded model for a
real-world problem to perform non-blocking collective operations is clearly sub-
optimal to an implementation based on non-blocking point-to-point operations.
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