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Abstract

We present a micro benchmark suite to evaluate
InfiniBandTM implementations with regards to single mes-
sage performance and the addressing of many hosts. We
use a 1:n communication pattern to assess the latency and
bandwidth for all different combinations of InfiniBandsTM

transport services and functions. The results gathered in
this study are used to optimize MPI collective communi-
cation operations where 1:n communication schemes are
not used widely today. We show that applications as well
as collective algorithms can benefit from sending multi-
ple messages in a single round. Moreover, the results will
be used to choose the transport service and function to
develop InfiniBandTM optimized collective communication
functions. Our study compares all available transport op-
tions and shows that single packet sends can be very expen-
sive compared to multi packet sends.

1. Introduction

Many newly deployed cluster-based supercomputers use
InfiniBandTM [22] as interconnect network and require an
efficient MPI [5, 18] implementation. The InfiniBandTM

nework is able to offer latencies down to 1.3µs [4] and a
bandwidth of up to 60Gb/s[21]. The main goal of the MPI
library is to preserve the low latency and the hign band-
width and to leverage the network as efficient as possi-
ble for collective communication. The usual way of im-
plementing collective operations is to model the opera-
tion as a collection of point-to-point messages, for exam-
ple in a tree-like fashion. Usually point-to-point bench-
marks are used to determine the speed of a specific network
and parametrize a network model. Many different models
could be used to assess the network performance; the most

common are the Hockney model [7] and the LogP model
family [3, 1, 17, 11]. This simple modelling approach ig-
nores architectural details of offloading-based networks like
InfiniBandTM.

Several studies [9, 10] have shown that a node to
multi-node communication pattern can be used to opti-
mize collective communication atop InfiniBandTM. Our
new InfiniBandTM barrier [9], implemented as a collective
module [20] in Open MPI [6], performs up to 40% bet-
ter (with 64 nodes) than the optimized InfiniBandTM bar-
rier in the current version of MVAPICH [15]. It uses the
n-way dissemination principle [8] which sends more than
one message per node in a single round. We also proposed
a new model to assess the 1:n-n:1 communications atop
InfiniBandTM [10]. These results indicate that the impor-
tance of fully analyzing node to multi-node communication
can be crucial for the optimized implementention of MPI
collective operations.

Our study contributes to the understanding of the Infini-
Band hardware in terms of collective multi-node commu-
nication. We analyze the performance of 1:n and n:1 com-
munications atop InfiniBandTM and provide detailed bench-
mark results for a specific cluster system.

Section 1.1 comments related work in the field of micro-
benchmarking cluster performance. We continue in section
2 with a short explanation of InfiniBand’s different transport
types as each of them could be chosen to perform collective
operations atop. The general benchmark principle for the
different transport types is explained in section 3 followed
by detailed benchmark results on a 64 node cluster system.
The last section summarizes the results gathered in this pa-
per and summarizes future steps to optimize collective com-
munication.



1.1. Related Work

Only a few benchmarks are available for InfiniBandTM.
The most common practice is to test the performance atop
MPI with MPI-level benchmarks (e.g. [19]). We had to im-
plement a new benchmark because we want to evaluate the
hardware in all its details and with a special benchmark pro-
cedure. The available MIBA Microbenchmark Suite [2] is
able to measure point-to-point communication performance
for InfiniBandTM. Additional studies [13] used this bench-
mark suite to measure communication and application per-
formance on different systems. However, it does not en-
counter the effects of a node to multi-node communication
pattern.

2. InfiniBand Transport Types

The InfiniBandTM standard offers different transport ser-
vices like stream or datagram to the user. Each transport
service has special features and shows different communi-
cation times and overheads. Additionally, different trans-
port functions can be performed atop each transport ser-
vice (see table 36 at page 245 in [22]). A combination of
transport function and transport service will be called trans-
port type in the following. All different transport types have
to be benchmarked and analyzed in order to draw an accu-
rate conclusion as to which type should be used to gain the
best result for the implementation of a specific MPI Collec-
tive operation. The different transport types are explained
shortly in the following.

2.1. Transport Services

This section explains the different transport services de-
fined in the InfiniBandTM specification briefly.

Unreliable Connection The Unreliable Connection (UC)
offers an unreliable connection based point-to-point trans-
mission without flow control. Packets may be silently dis-
carded during transmission. A queue pair (QP) has to be
created at each host and connected to each other in order to
transmit any data. The queue pair acts as a connection and
endpoint identifier in this way.

Reliable Connection The Reliable Connection (RC) is
basically identical to UC despite the fact that the cor-
rect in order transission of packets is guaranteed by the
InfiniBandTM hardware. An automatic retransmit and flow
control mechanism is used to ensure correct delivery even
if slight network errors occur. The role of the QPs remains
the same as for UC.

Unreliable Datagram The Unreliable Datagram (UD)
transport type offers connectionless data delivery. The re-
ception or in order delivery is not guaranteed in this case.
QPs are only used to send or receive packets and each
packet can have a different destination (they do not denote a
virtual channel as for UC/RC). A single datagram must not
exceed the MTU of the underlying network.

Reliable Datagram The Reliable Datagram (RD) trans-
port type adds a guaranteed reliable in order delivery to UD.
QPs can be used to reach any target as in the UD case. RD
is currently not supported in our test system.

RAW The RAW Transport type can be used to encapsu-
late other transmission protocols as ethernet or ipv6. It has
nearly the same characteristics as UD and will thus not be
discussed in the following.

2.2. Transport Functions

In this section, the possible transport functions are dis-
cussed and bound to a specific transport type for the bench-
mark.

Send The simple send function is available for all IBA
transport services and will be measured for all of them ex-
plicitely.

RDMA Write The Remote Direct Memory Access Write
(RDMAW) can write to explicitely registered memory at a
target without the need to interrupt the target’s CPU. RD-
MAW can be used atop RC, UC and RD. We present re-
sults for RDMAW atop RC because RD is currently not
supported.

RDMA Read The Remote Direct Memory Access Read
(RDMAR) can read from registered memory at a target sys-
tem without influencing the remote CPU. RDMAR can be
used atop RC and RD. We present results for RDMAR atop
RC because RD is currently not supported.

Atomic Operations Atomic Operations (AO) can be very
useful to support the MPI BARRIER collective call. Our
current system does not support the optional AOs and we
cannot present any measurement values.

Multicast Multicast (MC) is available for UD only
and could be used to enhance MPI collective calls like
MPI BCAST. Several studies [14, 12] have been conducted
to leverage the multicast features for different collectiv op-
erations. Our measurements will provide a tool to give a
theoretical proof of their efficiency.



3. Benchmark Principle

We use four different benchmark scenarios to test the
four different InfiniBandTM transport functions. We use no-
tified receives in the send case that each received packet
creates a CQ entry which can be consumed via the poll CQ
VAPI call. The simple send-receive is tested with the fol-
lowing 1:n n:1 principle between n nodes numbered from
0..n− 1:

1. node 0 posts n− 1 send requests to each node 1..n− 1
(ping)

2. node 0 polls it’s CQ until all nodes answered

3. node 1..n−1 waits for the reception of a message (poll
CQ)

4. node 1..n− 1 sends the message back to node 0

The RDMAW benchmark uses basically the same prin-
ciple but the receive (step 2 and 3 above) is unnotified. The
only way to detect the last byte of the receive memory re-
gion is to poll a counter. The RDMAW operation has been
finished when the last byte of the receive buffer is changed
(in order delivery is guaranteed). Checking the whole buffer
would introduce too much memory congestion and the per-
formance would decrease significantly for larger data sizes.
The receive buffer layout in node 0 is depicted in figure 1.
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Figure 1. RDMAW Receive Buffer Layout at
Node 0

Node 0 polls n − 1 bytes to check the receiption from
n− 1 peers. Polling introduces a memory congestion over-
head on node 0 which has to be accepted because there is
no faster method of testing whether a message has been re-
ceived or not (interrupts or CQ elements are to slow in this
context).

RDMAR performance is measured in two stages. First
node 0 reads from all n − 1 nodes and takes the time. The
time for n− 1 nodes to read from a single node is measured
in a slightly more complicated way as described in the fol-
lowing.

1. node 0 sends via RDMAW to node 1..n− 1

2. node 1..n − 1 wait via polling for the RDMAW from
node 0

3. node 1..n− 1 read via RDMA Read from node 0

4. node 1..n − 1 take the used time for their RDMAR
operation

The Multicast benchmark is performed by sending a sin-
gle UD Multicast packet from node 0 to all other nodes. All
other nodes wait for the CQ entry via polling the CQ. Each
node returns a unicast UD packet to node 0.

All round-trip-times (RTT) are usually measured at node
0 between the first send and the last receive (except in the
second stage of RDMAR). The RTT is divided by two and
denotes the latency for the specific communication pattern.

This benchmark also tests the performance of the
InfiniBandTM implementation (the switch as well as the
HCA and the software stack) under heavy load and max-
imum congestion (n nodes send/receive to/from a single
node).

To enable statistical analysis as well as the assessment
of minimal and maximal transmission times we use a dif-
ferent measurement scheme than most other benchmarks.
Common benchmarks (e.g. [19, 2]) often perform a defined
number of repetitions s (e.g. s = 1000) in a loop and di-
vide the measured time of all tests by s afterwards. This
prohibits a fine-grained statistical analysis (to find maver-
icks as well as determine absolute hardware limited min-
ima). Our approach measures each packet separately and
stores the result in an array. This makes it possible to find
minimum and maximum values and to calculate the aver-
age. This measurement scheme has also some impact on
the measured values themselves. We measure each packet,
which means that the whole pipeline startup (in the net-
work cards itself and in the network) has to be charged to
this. This results in very poor performance compared to
the usual fully pipelineable benchmarks (1000 repetitions).
However, because parallel applications do not communicate
1000 messages between two hosts (usually this is done in a
single bigger message), our scheme represents the reality
better.

4. Benchmark Results

We present the benchmark Results for a 64 node
InfiniBandTM system in this section. The system consists
of:

• Processor: 3 GHz dual Xeon

• Memory: 4GB

• OS: Red Hat Linux release 9 (Shrike)



• Kernel: 2.4.27 SMP

• HCA: Mellanox ”Cougar” (MTPB 23108)

A single run returns measurement values for varying
message sizes and a varying number of processors. The
RTT/2 latency scaling with regards to the message size as
well as the scaling with regards to the number of participat-
ing processors is described in the following section.

4.1. Scaling with Message Size

First, we analyze the latency scaling with the message
size for 1:1 communication (normal ping-pong benchmark).
The latency scaling for increasing small message sizes up
to 1k is shown in Figure 2. The MTU has been adjusted
to 2k so that every message fits into a single packet. The
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Figure 2. 1:1 RTT/2 with varying message
sizes

latency scales linearly with the message size as expected.
A LogGP [1] modelling of this scenario would predict ac-
curate communication times as the G in the LogGP model
scales linearly with the message size. The second analysis
determines the latency scaling with the message size for a
1:15 communication (16 nodes). Figure 3 shows the latency
scaling up to 1k. The measurement results show the very in-
teresting result that the single packet latencies to address 16
hosts are lower than the according latencies in the host-to-
host (1:1) case. The only exception is the multicast result,
which uses a single multicast in the 1:15 direction and 15
UD in the 15:1 direction. This leads us to the conclusion
that the interface uses a rather deep pipeline on the sender
side which benefits multiple sucessive packets.

The bandwidth scaling (bandwidth =
messagesize/latency) for larger message sizes up to
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Figure 3. 1:15 Bandwidth with varying mes-
sage sizes
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Figure 4. 1:1 Bandwidth with varying mes-
sage sizes



1M in the 1:1 case ist shown in Figure 4. And the according
bandwith for the 1:15 case is shown in Figure 5. Again,
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Figure 5. 1:1 Bandwidth with varying mes-
sage sizes

this benchmark shows clearly that the full power of the
HCA cannot be reached with single packets and that a
1:n communication pattern should be preferred over a
1:1 communication. This shows that the LogGP model
cannot be very accurate for this type of communication
because its predicted communication times are directly
proportional to the number of addressed hosts (a single g is
accounted for each host). These results are quite interesting
for the optimization of collective communication because
they show that the sending of multiple packets in a single
communication round can increase the throughput and
lower the latency of single packets. Today’s collective
algorithms [16] usually use only a single communication
partner per round.

4.2. Scaling with the Number of addressed
Hosts

The number of addressed hosts (successively sent pack-
ets) seems to play an important role. This will be analyzed
and shown in the following. Figure 6 shows the measured
latency in relation to the host-number for the transmission
of a single byte message. We see that the latency is de-
creasing with a growing the number of addressed hosts for
MC and UD. Other transport services seem to have a lo-
cal minimum around n = 10 and the latency is increasing
for higher processor counts. This may be due to local con-
gestion (polling the memory or creating and/or polling CQ
entries). This result shows clearly that one should send up
to 10 messages in parallel to achieve best results. This dis-
covery has already been used to optimize the InfiniBandTM
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MPI BARRIER implementation [9] with a new algorithm
which sends more than one packet per round (n-way dis-
semination - [8]). We will analyze in the following if this
behavior can also be used to optimize MPI collective oper-
ations which need to communicate bigger data chunks (as
MPI BCAST). Figure 7 shows the appropriate scaling for
a single 1M message. We see the same results for bigger
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message sizes. This leads to the conclusion that one should
send more than one message per collective communication
round regardless of the message size.

All measured parameters are highly system depen-
dent. We have conducted these measurements on different
InfiniBandTM systems (consult [10] for details) and saw the
same results. The shape of all benchmarked curves stayed
the same, only some parameters varied. This makes it pos-
sible to use our benchmark suite to evaluate and compare



the performance of different InfiniBandTM implementations
and to find bottlenecks during InfiniBandTM development.
The benchmark suite is also able to measure parameters like
send and receive overhead and latencies to poll the comple-
tion queue under different circumstances. But these have
been left out due to space restrictions.
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6. Conclusions and Future Work

We propose a new 1:n n:1 benchmarking principle to
assess the performance of the InfiniBandTM network for all
different transport types. Our proposed solution uses time
measurement for each packet to enable detailed statistical
analysis afterwards. We use this benchmark to evaluate
hardware InfiniBandTM implementations and to search for
new optimization possibilities for MPI collective operations
atop InfiniBandTM. The benchmark results are very helpful
to design new collective algorithms. Especially the discov-
ery that single message sends are quite slow compared to
multi message sends is very important for collective algo-
rithms (as most of theme use mainly single message sends).
We can conduct a statistical analysis on our benchmark re-
sults to find mavericks and mean values.
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