A Communication Model for Small Messages with InfiniBand

Torsten Hoefler and Wolfgang Relim
{htor, rehn} @informatik.tu-chemnitz.de
Chemnitz University of Technology - Chair of Computer Atteltiture
Strasse der Nationen 62, 09111 Chemnitz

Abstract

Designing new and optimal algorithms for a specific architexrequires accurate modelling of this ar-
chitecture. This is especially needed to choose one ouffefelnt solutions for the same problem or to proof
a lower bound to a problem. Assumed that the model is hightyirate, a given algorithm can be seen as
optimal solution if it reaches the lower bound. Therefore élacuracy of a model is extremely important for
algorithmic design. A detailed model can also help to urtdedsthe architectural details and their influence
on the running time of different solutions and it can be useddrive better algorithms for a given problem.
This work introduces some architectural specialities efltifiniBand network and shows that most widely
used models introduce inaccuracies for sending small rgessaith InfiniBand. Therefore a comparative
model analysis is performed to find the most accurate modéhfimiBand. Basing on this analysis and a de-
scription of the architectural specialities of InfiniBaadaew, more accurate but also much complexer model
called LoP is deduced from the LogP which can be used to aisesanning time of different algorithms.
The newly developed model can be used to find lower boundddorithmic problems and to enhance several
algorithms.

1 Introduction

Models for parallel programming are often used to develap @stimize time critical sections of algorithms
for parallel systems. These models should reflect all relgparts of real-life-systems for algorithmic design.
Several simplifying assumptions are taken to create theskels. This paper evaluates different models for their
suitability to model the InfiniBan@ network. All models are described and rated by comparinguathges
and disadvantages for modelling InfiniBdMd. If no suitable model is found, the best currently known mode
is used as a base to derive a more accurate model.

Different models are described and evaluated with regastall messages and the mentioned particularities
in section 2.1, followed by the proposal of the new model apdrameter assessment benchmark in section 4.
The results are summarized in section 5 and an outlook toduasearch is given.

1.1 Related Work

Many models have been developed in the past years. Most of #ie dedicated to a specific hardware or
network architecture [13, 2] or the shared memory paradigi CICO [12, 7]). There are also some general
purpose parallel models which try to stay architecture jireahelent as the PRAM [5, 11], the BSP [17], th&

[9] or the LogP [3] model. These generic programming modedcharacterized and used as starting point for
all further work. Several comparative studies and survegskso available [16, 8, 1], but they provide only a

limited view by comparing only a small subset of all avaimbiodels.

Some groups are working on evaluating different models fffer@nt hardware architectures. For example

Estefanel et. al. has shown in [4] that the LogP model is qadtairate for Fast Ethernet.
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But to the current knowledge of the author, there are no gitemo the generate a new more accurate model
for InfiniBand™ .

2 Model Comparison

2.1 Organization

Each mentioned model is described by its main charactsidki reference to the original publication is given

if the reader is interested in further details (e.g. dethilfdormation about execution time estimation). Each
model is analyzed with regards to its advantages and diséatyes for modelling the InfiniBaA¥ architecture.

A conclusion for further usage in the design process of a nedahis drawn. Different enhancements by third
authors have only a small impact on the accuracy of the madtedrhall messages and are omitted. A full
analysis can be found in the full version of the thesis [10je Tast section draws a conclusion and proposes a
suitable model for small messages inside the InfiniB¥maketwork.

2.2 The PRAM Model

The PRAM model was proposed by Fortune et al. in 1978 [6]. thésthe most simple parallel programming
model known. But there are some serious defects in its acgutavas mainly derived from the RAM model,
which bases itself on the "Von Neumannn” model. It is chagzed by P processors sharing a common global
memory. Thus it can be seen as a MIRIBachine. It is assumed that all processors run synchron(eLs.
with a central clock) and that every processor can accessbéraay memory location in one step. All costs
for parallelisation are ignored, thus the model providegachmark for the ideal parallel complexity of an
algorithm.

Evaluation:

The main advantage is the ease of applicability. But to reaishsimplicity, several disadvantages have to be
accepted. The main drawbacks are that all processors armedgo work synchronously, that the interpro-
cessor communication is nearly fleand that it neglects the contention when different cellsrie memory
module are accessed.

Thus, this model is not suitable for modelling InfiniBdNdbecause interprocessor communication is free.

2.3 The BSP Model

The Bulk Synchronous Parallel (BSP) model was proposed hbigntan 1990 [17]. The BSP model divides the
algorithm into several consecutive supersteps. Each stgpeconsists of a computation and a communication
phase. All processors start synchronously at the beginofiregach superstep. In the computation phase, the
processor can only perform calculation on data inside @allmemory. The processor can exchange data with
other nodes in the communication phase. Each processorendyas mosti messages and receive at mbst
messages of a fixed size in each superstep. This is callgélation further on. A cost @j«h (g is a bandwidth
parameter) is charged for the communication.

Evaluation

Latency and (limited) bandwidth are modelled as well as elsggnous progress per processor. Each superstep
must be long enough to send and receive/tiressages This may lead to idle-time in some of the nodes if

2Multiple Instruction Multiple Data

3zero latency, infinite bandwidth leads to excessive finéagthalgorithms

4if this is data from remote nodes, it has been received in 6itfeegrevious supersteps
Sthe maximalk among all nodes!



the communication load is unbalanced. This contains thielenothat messages received in a superstep cannot
be used in the same superstep even if the latency is smalethle remaining superstep length.

Because of the implicit synchronization, the BSP model issn@able for modelling the usually asynchronous
InfiniBand™ network.

2.4 The LogP Model

The LogP Model [3] was propsed by Culler et al. in 1993. It wasedoped in addition to the PRAM model
(see chapter 2.2) to consider the changed conditions f@llphcomputing. It reflects different aspects of
coarse grained machines which are seen as a collection gfletemtomputers, each consisting of one or more
processors, cache, main memory and a network intercdhitigistbased on four main parameters:

e [ - communication delayupper bound to the latency for NIC-to-NIC messages from one pisme®
another)

e 0 - communication overhead (time that a processor is engagdnsmission or reception of a single
message, split up inte, for send overhead ang for receive overhead)

e ¢-gap (indirect communication bandwidth, minimum intetvetween consecutive messades,dwidth ~
1
)

e P - number of processors

Itis easy to understand that developing and programmirtgeiPRAM model is easier than in the LogP model,
but the bigger accuracy of this model should justify the ddal effort.

Evaluation

The LogP model has several advantages over other modedsdésigned for distributed memory processors
and the fact that network speéid far smaller than CPU speed. It is easily applicable fortaniééwvork modél.

It encourages careful scheduling of computation and oppitey communication as well as balanced network
operationdwhich is very profitable for accuracy of determining the rime of many applications.

Some small drawbacks are that the whole communication nooaesists only of point-to-point messages. This
does not respect the fact that some networks (especialhiBaind™ ) are able to perform collective operations
(e.g. multicast) ideally i (1).

2.5 Choosing a Model

As described in 2.4, the LogP model is the most accurate modgls specific case. Thus, it is used for all
running time estimations in the following sections.

Several simplifying architectural assumptions can be mwétt@ut lowering the asymptotical accurance of the
model. Based on the fact that most clusters operate a cemtiteh hierarchy which connects all nodes, the
properties of this interconnect can be assumed as follows:

full bisectional bandwidth

o full duplex operation (parallel send/receive)

the forwarding rate is unlimited and packets are forwardeamon-blocking manner

the latency [ from LogP model) is constant above all messages

the overheadd) is constant for single messages (for simplicity:= o,. = 0)

be.g. the Intel Delta or Paragon, Thinking Machines CM-5 ...
this means latency as well as bandwidth

8central switch based, diameter = 1

°no single processor is "flooded”
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Figure 1: RTT (left) and Overhead (right) Model

3 Modelling the Architecture

A model of the RTT and overhead times for offloading based okswyill be described to generalize the results
of this work (e.g. to Myrinet, Elan) and to show the need foeamodel. This model will be parametrized to
fit to the test cluster mentioned in section 4.7.

A Model for the RTT

The RTT model consists of three sections, the warmup seftidhe NIC (e.g. pipelining or cache effects), the
maximum performance section (NIC CPU is fully saturated) #re network saturation section. This model
assumes that 1:n and n:1 communications are equal in teroasbfThe first section is typically represented
by a pipeline startup function of the shape:

A1
Ao +p

The second section is only defined by the maximiiU — NIC — NIC — CPU throughput (packet
processing rate), and is thus defined as constant:

tpipeline

tprocessing = )\3

The third section reflects the network saturation whichdgfty behaves like an exponential function as:

tsaturation - )\4 . (1 - eksv(p—/\(;))

A4 and); influence the signature of the function akglintroduces a-offset.
Alltogether the RTT time can be described with the followaigstract model, which is depicted in the left side
of figure 1:

trtt ()\16) = tsaturation + tprocessing + tpipeline
A1

F a4 Mg - (1 — e (P=2e)
dotp 0T (1-e )

A Model for the Overhead

The send and receive overheads are modelled as pipelit@pstanctions. This is due to several cache effects
and pipelining effects on the host CPU. The HCA should notelved into this process, because the data is
written into memory mapped registers inside the HCA memory.



The function can be described as:

A2
Az +p

tov(A1.3) = A1+
and is depicted in the right part of figure 1.

Parametrizing the Model

The least squares method is used to find an optimal paraa@riZor all \; . ¢. This method calculates the
sum of the squared deviations of the measured values to tie&idual prediction for all available data-points
and tries to minimize it.

The approximation scheme fay, is omitted because it can be easily derived from the scheowrshbove.

4 A new Model for InfiniBand ™

As described in the analysis of the different models (sedmse.1), the LogP model reflects the needs to
model an InfiniBan&" architecture quite well. The main assumptions, that eacke monsists of a complete
"Von Neumann” computer with its processor, cache, memodyretwork interconnect and that the computing
power is much higher than the network throughput are corelylebnformed by the InfiniBarld" architech-
ture'®. Unfortunately no presently known addition to the LogP mi@gems to be helpful for modelling small
messages within InfiniBad¥ networks, so the original LogP model has to be modified to fispecial needs.

4.1 Message Passing Options

For modelling all architectural details especially thefatiént possibilities for sending and receiving data, the
model has to be provided for each of the mentioned commuaitaptions separately.

4.2 The HCA Processor

The HCA' used to process previously posted work requests, partisi@ctively in the communication and
disburdens the host processor. which strictly lowers tharameters. This implies an additional level of paral-
lelism and introduces new possibilities for overlappingpaitation and communication. This is modelled as a
part of the latency (L) parameter in the standard LogP maedeh can be very accurate under most circum-
stances. But if the HCA is slower than the host CPU (the CPWlis post more work request than the HCA
can process), contention will occur at the HEANd the latency will vary from packet to packet (according to
previously posted packets).

4.3 Hardware Parallelism

The InfiniBand™ standard proposes implicite hardware parallelism or pipre to the vendors, therefore the
easy idea of using a gap as time to wait between single messagaot be very accurate in this architecture.
The HCA can send two messages nearly in parallel until asimgissage fills up the whole bandwidth. Thus
the linear model of LogP is not accurate enough. It is assutmegdhe gap is now part of the Latency which
now depends on the number of previously issued send opesdatitenoted as L(p)). To reflect this behavior
correctly, the model has to pay attention to the followingdseeceive scenarios:

e 1:1 communications

e 1:n communication

10at least with 4x links
HinfiniBand™ Host Channel Adapter
2the Queue Pairs in InfiniBafY will fill up



e N:1 communication

The latter two can be implemented either by a consecutivegiasngle work requests or by a single post of

a list of work requests. The performance implications haveda modelled also. The approximation function
should behave like a normal pipeline startup functions wita o + 3 The parameters a and b have to be
measured for each vendor specific InfiniBEAdolution.

The new model introduces the new paramétéor the time that the HCA spends to process a message (it can
be subdivided intd, andh,. for sender and receiver). Theparameters cannot be measured directly because
all actions are performed in hardware without notificatihng Host CPU. Thus, the model hides theandg
parameter inside the(p) parameter which varies now depending on the number of hdsiiessedy). This
limits the model to be used only if one node does never send than one packet to another node, because the
L(p) does only depend on the number of addressed hosts and na narttber of sent or received messages.
This is for example given by the barrier problem and rounskebaalgorithms. Further enhancements to the
model to allow general use are part of the future work.

The traditional LogP would be a linear function like{p) = hs(p) + L+ (p — 1) * g + h,-(p), but because of

the parallelism and pipeline effects, this function is assd to be non-linear. This parameter is measureable
and can be used to find the best algorithm for problems baseunati messages with InfiniBaf . The

new model, named LoP, is depicted in figure 2. It has to be roeed thatl.(p) ando./o, overlay each other
because they are processed on different CPUs. Thus the H&t& shmediately to process messages after the
CPU posted the first one. It is assumed iat L(p) Vp € N. The only exception is the VAPI call to post a
list of requests, where the HCA has to wait until all requéstee been posted, because all are posted at once.

level
L(p) \

— —
HCA ' — —l '
' — '

Figure 2: A new Model for InfiniBant"

4.4 Measuring the Parameters

All parameters mentioned in the previous section are ham\specific and have to be measured for each
machine. The only possibility to measure this parametets &valuate the running time of different opera-
tions performed by the HCA. The following statements areetdam a typical interaction with the HCA. The
parameters can be measured as follows:

e 04(p) - time to complete the calfAPI _post _sr () or EVAPI _post _sr_list ()
e 0,(p) - time to complete the calfAPI _post _rr () orEVAPI _post_rr_list()

o L(p) = %@ — (0s(p) + 05(1)) (sending ta processors and receiving froprprocessors - the HCA
starts processing after the first request arrived - the dixeefor posting a list of send requests is found
below,o,.(p) does not matter because Receive Requests can be postedintapyv



o Llist(p) = %@ — (p - 0s(p) + 05(1)) (sending top processors and receiving fropprocessors for
posting a list of send requests)

4.5 Benchmarking the Parameters

The only way to verify the model and to measure the paramdgdised in the LoP model is to benchmark the
actual hardware. The used benchmark, written in C with MPpstt is presented in the following section.

4.6 Benchmark Structure

The benchmark implements the scheme described in sectloit dses two different scenarios to measure all
necessary parameters. Scenario 1 is used to measure &léadsifor sending a single message, while scenario
2 measures ping-pong times for 1:n and n:1 communicatidmseXact time is measured by using the RDTSC
CPU instruction which counts the cycles of the CPU. This rsgke benchmark not portable to architectures
which are not i386 compatible.

4.7 Benchmark Results

All benchmarks are extremly implementation specific. Thesoeed values highly depend on the given ar-
chitecture and circumstances. All following benchmarkitisshave been metered on a 64 node InfiniB&hd
cluster, interconnected with a 64 port switch (Mellanox MI&0 switch, 3GHz Xeon nodes with MTPB
23108 InfiniBandM adapters). The general architecture to assess the parameted o of the LoP model for
offloading based systems is modelled in the following sectio

The benchmarks have been conducted for Send/Receive andARDNte without immediate operation.
RDMA Read and RDMA Write with immediate have not been congdebecause the architectural design
and several studies ([15], [14]) show that these operatiwasggenerally slower than RDMA Write without
immediate. Atomic Operations are not available on the useédsi

Send/Receive Results

The minimal RTT results of Send/Receive InfiniBaMperations can be seen in figure 3. The depicted func-
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Figure 3: Minimal and Average Send/Receive RTT Times

tion describeg,:; as described in section 3. The measured and fitted functi@nshreown in figure 3 and



mathematically described in the following:

) 22.4558

send,n —0.0625-(p—101.3065)
t . (p) = 916374+ ——— +0.0174 - (1 — )
rtt,mln( ) *001404’17 &

The difference between normal and inline send is modellé& @acurate. It is constantly aboyts for small
processor counts and vanishes when the network beginsuatap ~ 30).

The measured send,) and received,.) overheads are omitted, because they equal to the RDMAtseshdwn

in Figure 5. The fastest method to post more than two sencestg|is generally to post a list of send requests.
All other methods could be beneficial with special send ajpara (inline send).

RDMA Write Results

The minimal and average RTT results of RDMA Write InfiniBaMdbperations can be seen in figure 4. The
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Figure 4: Minimal and Average RDMA Write RTT Times

shown function depicts.;; as described in section 3 for RDMA Write operation. The agerfanctions show a

big deviation, and are only plotted and fitted up to 50 prowess het,..; values raise quickly up to00us for
bigger processor counts, which could lead to the conclusianharsh memory or bus contention occurs. The
plotted deviation may be caused by memory contention ancklrig/arbiting effects of single RDMA write
operations and varies extremely between different measemnts.

The inline send is again abouts faster than the normal send for small processor couatw this difference
vanishes during the network saturatign¥ 30). The normal send seems to be much better and even more
"stable” in the average case than the inline send. The fanstfor the average case are also quite accurate,
even if the measured values oscillate a lot. This is guaegnly the least squares method, which punishes
bigger deviations more than smaller ones.

The fitted functions for all described data-sets are givehérfollowing:

16.7937 — —
rdmaw,n 0.0642-(p—12.9209)
Lot min P) = 4.4642 + ———— 4+ 4.4751 - (1 — )

rttmi ( ) 0.0058 +p X €

Figure 5 shows the send overheag) for RDMA Write operations. Posting a list of send requestagain the
fastest method of sending multiple packets, but to senddteeidline could lower the latency in the best case.

0.2103

trdmaw,n — 0.5557 eV
(p) t o8+ p
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Calculating the L(p) Parameter

The L(p) parameter is calculated as described in section 4.4 antis@sthe equations shown in the following

(only L% (p) and due to space limitations)
send,n fiziﬁn(m send,n send,n
Lmin (p) = 2 - (tsr,ov (1)) - (tsr,od (p))
11.23 0.84 0.84
— 4584+ —=2 1 0.01- (1 - —0~06'<P—101-31>) —(os24+ —22 ) — (0524 —22
T 001 ¢ T o241 T o121,

All functions for the different possibilities to send or edee 1 byte packets using the send-receive semantics
are shown in figure 5.

Thus the time to sentlmessage ta hosts for each possible post send request / send type cainhinan be
assessed with:

tim, = o(n)+n-Ln)

... for posting a list of send requests:

i = n-o(n)+n-L(n)

5 Conclusions and Future Work

This work shows the analysis of small message performantefiofBand™ and the development of a new
and very accurate model. It shows that the LogP model is quaiterrate for a big number of nodes. But the
LoP model offers different optimization chances, for exéeyy showing the advantages of sending more than
one message per round. This new model made it possible tmealtiae performance of the barrier operation
for InfiniBand™ up to 40% in comparison to the best known solution [10].

The next steps include the evaluation of the LogP model {@ndadifications) for a variable message size and
the simplification of the very complicated equations of tlid°Lmodel to enhance its ease of use.

The full InfiniBand™ model including all derived equations and the process ofetting different barrier
algorithms and developing a new, more efficient algorithmlza found in the original thesis [10].
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