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Abstract

Designing new and optimal algorithms for a specific architecture requires accurate modelling of this ar-
chitecture. This is especially needed to choose one out of different solutions for the same problem or to proof
a lower bound to a problem. Assumed that the model is highly accurate, a given algorithm can be seen as
optimal solution if it reaches the lower bound. Therefore the accuracy of a model is extremely important for
algorithmic design. A detailed model can also help to understand the architectural details and their influence
on the running time of different solutions and it can be used to derive better algorithms for a given problem.
This work introduces some architectural specialities of the InfiniBand network and shows that most widely
used models introduce inaccuracies for sending small messages with InfiniBand. Therefore a comparative
model analysis is performed to find the most accurate model for InfiniBand. Basing on this analysis and a de-
scription of the architectural specialities of InfiniBand,a new, more accurate but also much complexer model
called LoP is deduced from the LogP which can be used to assessthe running time of different algorithms.
The newly developed model can be used to find lower bounds for algorithmic problems and to enhance several
algorithms.

1 Introduction

Models for parallel programming are often used to develop and optimize time critical sections of algorithms
for parallel systems. These models should reflect all relevant parts of real-life-systems for algorithmic design.
Several simplifying assumptions are taken to create these models. This paper evaluates different models for their
suitability to model the InfiniBandTM network. All models are described and rated by comparing advantages
and disadvantages for modelling InfiniBandTM . If no suitable model is found, the best currently known model
is used as a base to derive a more accurate model.
Different models are described and evaluated with regard tosmall messages and the mentioned particularities
in section 2.1, followed by the proposal of the new model and aparameter assessment benchmark in section 4.
The results are summarized in section 5 and an outlook to future research is given.

1.1 Related Work

Many models have been developed in the past years. Most of them are dedicated to a specific hardware or
network architecture [13, 2] or the shared memory paradigm (e.g. CICO [12, 7]). There are also some general
purpose parallel models which try to stay architecture independent as the PRAM [5, 11], the BSP [17], theC3

[9] or the LogP [3] model. These generic programming models are characterized and used as starting point for
all further work. Several comparative studies and surveys are also available [16, 8, 1], but they provide only a
limited view by comparing only a small subset of all available models.
Some groups are working on evaluating different models for different hardware architectures. For example
Estefanel et. al. has shown in [4] that the LogP model is quiteaccurate for Fast Ethernet.
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But to the current knowledge of the author, there are no attempts to the generate a new more accurate model
for InfiniBandTM .

2 Model Comparison

2.1 Organization

Each mentioned model is described by its main characteristics. A reference to the original publication is given
if the reader is interested in further details (e.g. detailed information about execution time estimation). Each
model is analyzed with regards to its advantages and disadvantages for modelling the InfiniBandTM architecture.
A conclusion for further usage in the design process of a new model is drawn. Different enhancements by third
authors have only a small impact on the accuracy of the model for small messages and are omitted. A full
analysis can be found in the full version of the thesis [10]. The last section draws a conclusion and proposes a
suitable model for small messages inside the InfiniBandTM network.

2.2 The PRAM Model

The PRAM model was proposed by Fortune et al. in 1978 [6]. It isthe the most simple parallel programming
model known. But there are some serious defects in its accuracy. It was mainly derived from the RAM model,
which bases itself on the ”Von Neumannn” model. It is characterized by P processors sharing a common global
memory. Thus it can be seen as a MIMD2 machine. It is assumed that all processors run synchronously (e.g.
with a central clock) and that every processor can access an arbitrary memory location in one step. All costs
for parallelisation are ignored, thus the model provides a benchmark for the ideal parallel complexity of an
algorithm.

Evaluation:

The main advantage is the ease of applicability. But to reachthis simplicity, several disadvantages have to be
accepted. The main drawbacks are that all processors are assumed to work synchronously, that the interpro-
cessor communication is nearly free3 and that it neglects the contention when different cells in one memory
module are accessed.
Thus, this model is not suitable for modelling InfiniBandTM because interprocessor communication is free.

2.3 The BSP Model

The Bulk Synchronous Parallel (BSP) model was proposed by Valiant in 1990 [17]. The BSP model divides the
algorithm into several consecutive supersteps. Each superstep consists of a computation and a communication
phase. All processors start synchronously at the beginningof each superstep. In the computation phase, the
processor can only perform calculation on data inside its local memory4. The processor can exchange data with
other nodes in the communication phase. Each processor may send at mosth messages and receive at mosth

messages of a fixed size in each superstep. This is called ah-relation further on. A cost ofg∗h (g is a bandwidth
parameter) is charged for the communication.

Evaluation

Latency and (limited) bandwidth are modelled as well as asynchronous progress per processor. Each superstep
must be long enough to send and receive theh messages5. This may lead to idle-time in some of the nodes if

2Multiple Instruction Multiple Data
3zero latency, infinite bandwidth leads to excessive fine-grained algorithms
4if this is data from remote nodes, it has been received in one of the previous supersteps
5the maximalh among all nodes!



the communication load is unbalanced. This contains the problem that messages received in a superstep cannot
be used in the same superstep even if the latency is smaller than the remaining superstep length.
Because of the implicit synchronization, the BSP model is not suitable for modelling the usually asynchronous
InfiniBandTM network.

2.4 The LogP Model

The LogP Model [3] was propsed by Culler et al. in 1993. It was developed in addition to the PRAM model
(see chapter 2.2) to consider the changed conditions for parallel computing. It reflects different aspects of
coarse grained machines which are seen as a collection of complete computers, each consisting of one or more
processors, cache, main memory and a network interconnect6. It is based on four main parameters:

• L - communication delay (upper bound to the latency for NIC-to-NIC messages from one processor to
another)

• o - communication overhead (time that a processor is engaged in transmission or reception of a single
message, split up intoos for send overhead andor for receive overhead)

• g - gap (indirect communication bandwidth, minimum intervalbetween consecutive messages,bandwidth ∼
1
g
)

• P - number of processors

It is easy to understand that developing and programming in the PRAM model is easier than in the LogP model,
but the bigger accuracy of this model should justify the additional effort.

Evaluation

The LogP model has several advantages over other models. It is designed for distributed memory processors
and the fact that network speed7 is far smaller than CPU speed. It is easily applicable for a flat network model8.
It encourages careful scheduling of computation and overlapping communication as well as balanced network
operations9 which is very profitable for accuracy of determining the run time of many applications.
Some small drawbacks are that the whole communication modelconsists only of point-to-point messages. This
does not respect the fact that some networks (especially InfiniBandTM ) are able to perform collective operations
(e.g. multicast) ideally inO(1).

2.5 Choosing a Model

As described in 2.4, the LogP model is the most accurate modelin this specific case. Thus, it is used for all
running time estimations in the following sections.
Several simplifying architectural assumptions can be madewithout lowering the asymptotical accurance of the
model. Based on the fact that most clusters operate a centralswitch hierarchy which connects all nodes, the
properties of this interconnect can be assumed as follows:

• full bisectional bandwidth

• full duplex operation (parallel send/receive)

• the forwarding rate is unlimited and packets are forwarded in a non-blocking manner

• the latency (L from LogP model) is constant above all messages

• the overhead (o) is constant for single messages (for simplicity:os = or = o)

6e.g. the Intel Delta or Paragon, Thinking Machines CM-5 ...
7this means latency as well as bandwidth
8central switch based, diameter = 1
9no single processor is ”flooded”
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Figure 1: RTT (left) and Overhead (right) Model

3 Modelling the Architecture

A model of the RTT and overhead times for offloading based networks will be described to generalize the results
of this work (e.g. to Myrinet, Elan) and to show the need for a new model. This model will be parametrized to
fit to the test cluster mentioned in section 4.7.

A Model for the RTT

The RTT model consists of three sections, the warmup sectionfor the NIC (e.g. pipelining or cache effects), the
maximum performance section (NIC CPU is fully saturated) and the network saturation section. This model
assumes that 1:n and n:1 communications are equal in terms ofcost. The first section is typically represented
by a pipeline startup function of the shape:

tpipeline =
λ1

λ2 + p

The second section is only defined by the maximumCPU → NIC → NIC → CPU throughput (packet
processing rate), and is thus defined as constant:

tprocessing = λ3

The third section reflects the network saturation which typically behaves like an exponential function as:

tsaturation = λ4 · (1 − eλ5·(p−λ6))

λ4 andλ5 influence the signature of the function andλ6 introduces ap-offset.
Alltogether the RTT time can be described with the followingabstract model, which is depicted in the left side
of figure 1:

trtt(λ1...6) = tsaturation + tprocessing + tpipeline

=
λ1

λ2 + p
+ λ3 + λ4 · (1 − eλ5·(p−λ6))

A Model for the Overhead

The send and receive overheads are modelled as pipeline startup functions. This is due to several cache effects
and pipelining effects on the host CPU. The HCA should not be involved into this process, because the data is
written into memory mapped registers inside the HCA memory.



The function can be described as:

tov(λ1...3) = λ1 +
λ2

λ3 + p

and is depicted in the right part of figure 1.

Parametrizing the Model

The least squares method is used to find an optimal parametrization for allλ1...6. This method calculates the
sum of the squared deviations of the measured values to the functional prediction for all available data-points
and tries to minimize it.
The approximation scheme fortov is omitted because it can be easily derived from the scheme shown above.

4 A new Model for InfiniBand TM

As described in the analysis of the different models (see section 2.1), the LogP model reflects the needs to
model an InfiniBandTM architecture quite well. The main assumptions, that each node consists of a complete
”Von Neumann” computer with its processor, cache, memory and network interconnect and that the computing
power is much higher than the network throughput are completely conformed by the InfiniBandTM architech-
ture10. Unfortunately no presently known addition to the LogP model seems to be helpful for modelling small
messages within InfiniBandTM networks, so the original LogP model has to be modified to fit our special needs.

4.1 Message Passing Options

For modelling all architectural details especially the different possibilities for sending and receiving data, the
model has to be provided for each of the mentioned communication options separately.

4.2 The HCA Processor

The HCA11 used to process previously posted work requests, participates actively in the communication and
disburdens the host processor. which strictly lowers the o parameters. This implies an additional level of paral-
lelism and introduces new possibilities for overlapping computation and communication. This is modelled as a
part of the latency (L) parameter in the standard LogP model,which can be very accurate under most circum-
stances. But if the HCA is slower than the host CPU (the CPU is able post more work request than the HCA
can process), contention will occur at the HCA12 and the latency will vary from packet to packet (according to
previously posted packets).

4.3 Hardware Parallelism

The InfiniBandTM standard proposes implicite hardware parallelism or pipelining to the vendors, therefore the
easy idea of using a gap as time to wait between single messages cannot be very accurate in this architecture.
The HCA can send two messages nearly in parallel until a single message fills up the whole bandwidth. Thus
the linear model of LogP is not accurate enough. It is assumedthat the gap is now part of the Latency which
now depends on the number of previously issued send operations (denoted as L(p)). To reflect this behavior
correctly, the model has to pay attention to the following send-receive scenarios:

• 1:1 communications

• 1:n communication
10at least with 4x links
11InfiniBandTM Host Channel Adapter
12the Queue Pairs in InfiniBandTM will fill up



• n:1 communication

The latter two can be implemented either by a consecutive post of single work requests or by a single post of
a list of work requests. The performance implications have to be modelled also. The approximation function
should behave like a normal pipeline startup functions witht = a + b

x
. The parameters a and b have to be

measured for each vendor specific InfiniBandTM solution.
The new model introduces the new parameterh for the time that the HCA spends to process a message (it can
be subdivided intohs andhr for sender and receiver). Theh parameters cannot be measured directly because
all actions are performed in hardware without notificating the Host CPU. Thus, the model hides theh andg

parameter inside theL(p) parameter which varies now depending on the number of hosts addressed (p). This
limits the model to be used only if one node does never send more than one packet to another node, because the
L(p) does only depend on the number of addressed hosts and not on the number of sent or received messages.
This is for example given by the barrier problem and round-based algorithms. Further enhancements to the
model to allow general use are part of the future work.
The traditional LogP would be a linear function like:L(p) = hs(p) + L + (p− 1) ∗ g + hr(p), but because of
the parallelism and pipeline effects, this function is assumed to be non-linear. This parameter is measureable
and can be used to find the best algorithm for problems based onsmall messages with InfiniBandTM . The
new model, named LoP, is depicted in figure 2. It has to be mentioned thatL(p) andos/or overlay each other
because they are processed on different CPUs. Thus the HCA starts immediately to process messages after the
CPU posted the first one. It is assumed thato ≪ L(p) ∀p ∈ N. The only exception is the VAPI call to post a
list of requests, where the HCA has to wait until all requestshave been posted, because all are posted at once.

CPU

Network

L

level

time

HCA

o s orh s h r

L(p)

g g

Figure 2: A new Model for InfiniBandTM

4.4 Measuring the Parameters

All parameters mentioned in the previous section are hardware specific and have to be measured for each
machine. The only possibility to measure this parameters isto evaluate the running time of different opera-
tions performed by the HCA. The following statements are based on a typical interaction with the HCA. The
parameters can be measured as follows:

• os(p) - time to complete the callVAPI_post_sr() or EVAPI_post_sr_list()

• or(p) - time to complete the callVAPI_post_rr() or EVAPI_post_rr_list()

• L(p) = RTT (p)
2 − (os(p) + os(1)) (sending top processors and receiving fromp processors - the HCA

starts processing after the first request arrived - the exception for posting a list of send requests is found
below,or(p) does not matter because Receive Requests can be posted in advance)



• Llist(p) = RTT (p)
2 − (p · os(p) + os(1)) (sending top processors and receiving fromp processors for

posting a list of send requests)

4.5 Benchmarking the Parameters

The only way to verify the model and to measure the parametersdefined in the LoP model is to benchmark the
actual hardware. The used benchmark, written in C with MPI support is presented in the following section.

4.6 Benchmark Structure

The benchmark implements the scheme described in section 4.4. It uses two different scenarios to measure all
necessary parameters. Scenario 1 is used to measure all overheads for sending a single message, while scenario
2 measures ping-pong times for 1:n and n:1 communications. The exact time is measured by using the RDTSC
CPU instruction which counts the cycles of the CPU. This makes the benchmark not portable to architectures
which are not i386 compatible.

4.7 Benchmark Results

All benchmarks are extremly implementation specific. The measured values highly depend on the given ar-
chitecture and circumstances. All following benchmark results have been metered on a 64 node InfiniBandTM

cluster, interconnected with a 64 port switch (Mellanox MTS9600 switch, 3GHz Xeon nodes with MTPB
23108 InfiniBandTM adapters). The general architecture to assess the parameters L and o of the LoP model for
offloading based systems is modelled in the following section.
The benchmarks have been conducted for Send/Receive and RDMA Write without immediate operation.
RDMA Read and RDMA Write with immediate have not been considered because the architectural design
and several studies ([15], [14]) show that these operationsare generally slower than RDMA Write without
immediate. Atomic Operations are not available on the used HCAs.

Send/Receive Results

The minimal RTT results of Send/Receive InfiniBandTM operations can be seen in figure 3. The depicted func-
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Figure 3: Minimal and Average Send/Receive RTT Times

tion describestrtt as described in section 3. The measured and fitted functions are shown in figure 3 and



mathematically described in the following:

t
send,n
rtt,min(p) = 9.1637 +

22.4558

−0.0140 + p
+ 0.0174 ·

(

1 − e−0.0625·(p−101.3065)
)

The difference between normal and inline send is modelled quite accurate. It is constantly about1µs for small
processor counts and vanishes when the network begins to saturate (p ≈ 30).
The measured send (os) and receive (or) overheads are omitted, because they equal to the RDMA results shown
in Figure 5. The fastest method to post more than two send requests is generally to post a list of send requests.
All other methods could be beneficial with special send operations (inline send).

RDMA Write Results

The minimal and average RTT results of RDMA Write InfiniBandTM operations can be seen in figure 4. The
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Figure 4: Minimal and Average RDMA Write RTT Times

shown function depictstrtt as described in section 3 for RDMA Write operation. The average functions show a
big deviation, and are only plotted and fitted up to 50 processors. Thetrtt values raise quickly up to700µs for
bigger processor counts, which could lead to the conclusionthat harsh memory or bus contention occurs. The
plotted deviation may be caused by memory contention and blocking/arbiting effects of single RDMA write
operations and varies extremely between different measurements.
The inline send is again about1µs faster than the normal send for small processor countsp and this difference
vanishes during the network saturation (p > 30). The normal send seems to be much better and even more
”stable” in the average case than the inline send. The functions for the average case are also quite accurate,
even if the measured values oscillate a lot. This is guaranteed by the least squares method, which punishes
bigger deviations more than smaller ones.
The fitted functions for all described data-sets are given inthe following:

t
rdmaw,n
rtt,min (p) = 4.4642 +

16.7937

0.0058 + p
+ 4.4751 ·

(

1 − e−0.0642·(p−12.9209)
)

Figure 5 shows the send overhead (os) for RDMA Write operations. Posting a list of send requests is again the
fastest method of sending multiple packets, but to send the data inline could lower the latency in the best case.

trdmaw,n
srov (p) = 0.5557 +

0.2103

−0.7728 + p
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Figure 5: RDMAos overhead and minimalL(p) overhead

Calculating the L(p) Parameter

TheL(p) parameter is calculated as described in section 4.4 and results in the equations shown in the following
(only L

send,n
min (p) and due to space limitations)

L
send,n
min (p) =

t
send,n
rtt,min(p)

2
−

(

tsend,n
sr,ov (1)

)

−
(

tsend,n
sr,ov (p)

)

= 4.58 +
11.23

−0.01 + p
+ 0.01 ·

(

1 − e−0.06·(p−101.31)
)

−

(

0.52 +
0.84

−0.12 + 1

)

−

(

0.52 +
0.84

−0.12 + p

)

All functions for the different possibilities to send or receive 1 byte packets using the send-receive semantics
are shown in figure 5.
Thus the time to send1 message ton hosts for each possible post send request / send type combination can be
assessed with:

t1:n = o(n) + n · L(n)

. . . for posting a list of send requests:

tlist
1:n = n · o(n) + n · L(n)

5 Conclusions and Future Work

This work shows the analysis of small message performance ofInfiniBandTM and the development of a new
and very accurate model. It shows that the LogP model is quiteaccurate for a big number of nodes. But the
LoP model offers different optimization chances, for example by showing the advantages of sending more than
one message per round. This new model made it possible to enhance the performance of the barrier operation
for InfiniBandTM up to 40% in comparison to the best known solution [10].
The next steps include the evaluation of the LogP model (and its modifications) for a variable message size and
the simplification of the very complicated equations of the LoP model to enhance its ease of use.
The full InfiniBandTM model including all derived equations and the process of modelling different barrier
algorithms and developing a new, more efficient algorithm can be found in the original thesis [10].
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