
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER, ROBERTO BELLI

Scientific Benchmarking of Parallel Computing Systems
Twelve ways to tell the masses when reporting performance results

Keynote at the EMBRACE Workshop at IPDPS’17, Orlando, FL

spcl.inf.ethz.ch

@spcl_eth

▪ This is an experience talk (published at SC 15 – State of the Practice)!

▪ Explained in SC15 FAQ:

“generalizable insights as gained from experiences with particular HPC

machines/operations/applications/benchmarks, overall analysis

of the status quo of a particular metric of the entire field or

historical reviews of the progress of the field.”

▪ Don’t expect novel insights

Given the papers I read, much of what I say may be new for many

▪ My musings shall not offend anybody

▪ Everything is (now) anonymized

▪ Criticism may be rhetorically exaggerated

▪ Watch for tropes!

▪ This talk should be entertaining!
2

Disclaimer(s)

spcl.inf.ethz.ch

@spcl_eth

1 ~103 ~104 ~106 ~108 ~1010 ~1011

3

~4x

dgemm("N", "N", 50, 50, 50, 1.0, A, 50, B, 50, 1.0, C, 50);

>2x

High Performance Computing

spcl.inf.ethz.ch

@spcl_eth

4

HPC is used to solve complex problems!

Image credit: Serena Donnin, Sarah Rauscher, Ivo Kabashow

spcl.inf.ethz.ch

@spcl_eth

5

Scientific Performance Engineering

1) Observe
2) Model

3) Understand
4) Build

spcl.inf.ethz.ch

@spcl_eth

6

Part I: Observe

Measure systems

Collect data

Examine documentation

Gather statistics

Document process

Experimental design

Factorial design

spcl.inf.ethz.ch

@spcl_eth

▪ We may be interested in High Performance Computing

▪ We (want to) see it as a science – reproducing experiments is a major pillar of the scientific method

▪ When measuring performance, important questions are

▪ “How many iterations do I have to run per measurement?”

▪ “How many measurements should I run?”

▪ “Once I have all data, how do I summarize it into a single number?”

▪ “How do I compare the performance of different systems?”

▪ “How do I measure time in a parallel system?”

▪ …

▪ How are they answered in the field today?

▪ Let me start with a little anecdote … a reaction to this paper ☺

7

How does Garth measure and report performance?

spcl.inf.ethz.ch

@spcl_eth

▪ Original findings:

▪ If carefully tuned, NBC speed up a 3D solver

Full code published

▪ 8003 domain – 4 GB (distributed) array

1 process per node, 8-96 nodes

Opteron 246 (old even in 2006, retired now)

▪ Super-linear speedup for 96 nodes

~5% better than linear

▪ 9 years later: attempt to reproduce ☺!

System A: 28 quad-core nodes, Xeon E5520

System B: 4 nodes, dual Opteron 6274

“Neither the experiment in A nor the one in B could

reproduce the results presented in the original paper,

where the usage of the NBC library resulted in a

performance gain for practically all node counts,

reaching a superlinear speedup for 96 cores (explained

as being due to cache effects in the inner part of the

matrix vector product).”

8

(2006)

(2015)

A

B
1 node

(system B)

spcl.inf.ethz.ch

@spcl_eth

▪ Stratified random sample of three top-conferences over four years

▪ HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)

▪ 10 random papers from each (10-50% of population)

▪ 120 total papers, 20% (25) did not report performance (were excluded)

9

State of the Practice in HPC

▪ Main results:

1. Most papers report details about the hardware but fail to describe the software environment.

Important details for reproducibility missing

2. The average paper’s results are hard to interpret and easy to question

Measurements and data not well explained

3. No statistically significant evidence for improvement over the years 

▪ Our main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough

information to allow scientists to understand the experiment, draw own conclusions, assess their

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!

spcl.inf.ethz.ch

@spcl_eth

Yes, this is a

garlic press!

Well, we all know this - but do we really know how to fix it?

10

1991 – the classic!

2012 – the shocking

2013 – the extension

spcl.inf.ethz.ch

@spcl_eth

Yes, this is a

garlic press!

This is not new – meet Eddie!

11

1991 – the classic!

2012 – the shocking

2013 – the extension

Our constructive approach: provide a set of (12) rules

▪ Attempt to emphasize interpretability of performance experiments

▪ The set is not complete

▪ And probably never will be

▪ Intended to serve as a solid start

▪ Call to the community to extend it

▪ I will illustrate the 12 rules now

▪ Using real-world examples

All anonymized!

▪ Garth and Eddie will represent the bad/good scientist

spcl.inf.ethz.ch

@spcl_eth

12

The most common issue: speedup plots

Check out my

wonderful

Speedup!

I can’t tell if

this is useful

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

13

The most common issue: speedup plots

Check out my

wonderful

Speedup!

I can’t tell if

this is useful

at all!

▪ Most common and oldest-known issue

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ 39 papers reported speedups

15 (38%) did not specify the base-performance 

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as

well as the absolute execution performance of the base case.

▪ A simple generalization of this rule implies that one should never report ratios without

absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NAS CG NAS LU NAS EP

Performance in Gflop/s

ICC LLVM GarthCC

14

Garth’s new compiler optimization

Check out my

new compiler!

How did it

perform for FT

and BT?

Well, GarthCC

segfaulted for FT

and was 20%

slower for BT.

Rule 2: Specify the reason for only reporting subsets of

standard benchmarks or applications or not using all system

resources.

▪ This implies: Show results even if your code/approach stops scaling!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

15

The mean parts of means – or how to summarize data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NAS CG NAS LU NAS EP NAS BT

Performance in Gflop/s

ICC GarthCC

+20% +20% +20% -20%

But GarthCC is

10% faster than

ICC on average!

Ugs, well, BT ran much longer

than the others. GarthCC is

actually 10% slower!

Ah, true, the

geometric mean

is 8% speedup!

You cannot use the

arithmetic mean for

ratios!

The geometric mean has no

clear interpretation! What

was the completion time of

the whole workload?

Rule 3: Use the arithmetic mean only for summarizing costs.

Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or

rates that the ratios base on instead. Only if these are not

available use the geometric mean for summarizing ratios.

▪ 51 papers use means to summarize data, only four (!) specify which mean was used

▪ A single paper correctly specifies the use of the harmonic mean

▪ Two use geometric means, without reason

▪ Similar issues in other communities (PLDI, CGO, LCTES) – see N. Amaral’s report

▪ harmonic mean ≤ geometric mean ≤ arithmetic mean

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

16

The latency of

Piz Dora is

1.77us!

How did you

get to this?

I averaged 106

tests, it must be

right!

u
s
e
c

sample

Why do you

think so? Can I

see the data?

Dealing with variation

Rule 5: Report if the measurement values are deterministic.

For nondeterministic data, report confidence intervals of the

measurement.

▪ Most papers report nondeterministic measurement results

▪ Only 15 mention some measure of variance

▪ Only two (!) report confidence intervals

▪ CIs allow us to compute the number of required measurements!

▪ Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

Dealing with variation

17

The confidence

interval is 1.765us

to 1.775us

Did you assume

normality?

Yes, I used the central

limit theorem to

normalize by summing

subsets of size 100!

Can we test for

normality?

Ugs, the data is not

normal at all! The real

CI is actually 1.6us to

1.9us!

Rule 6: Do not assume normality of collected data (e.g.,

based on the number of samples) without diagnostic checking.

▪ Most events will slow down performance

▪ Heavy right-tailed distributions

▪ The Central Limit Theorem only applies asymptotically

▪ Some papers/textbook mention “30-40 samples”, don’t trust them!

▪ Two papers used CIs around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

▪ Rank-based measures (no assumption about distribution)

▪ Essentially always better than assuming normality

▪ Example: median (50th percentile) vs. mean for HPL

▪ Rather stable statistic for expectation

▪ Other percentiles (usually 25th and 75th) are also useful

18

Dealing with non-normal data – nonparametric statistics

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

19

Comparing nondeterministic measurements

I saw variance

using GarthCC as

well!

Retract the

paper! You have

not shown

anything!

ICC GarthCC

E
x
e
c
u
ti
o
n
 T

im
e

20%

2.5

5.0

7.5

12.5

15

10

17.5

95% CI

Show me the

data!

spcl.inf.ethz.ch

@spcl_eth

20

What if the data looks weird!?
Look what

data I got!

Clearly, the

mean/median are

not sufficient!

Try quantile

regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

Quantile Regression

21

Wow, so Pilatus is better for (worst-

case) latency-critical workloads even

though Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

▪ Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH

Computer Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

▪ Measurements can be expensive!

▪ Yet necessary to reach certain confidence

▪ How to determine the minimal number of measurements?

▪ Measure until the confidence interval has a certain acceptable width

▪ For example, measure until the 95% CI is within 5% of the mean/median

▪ Can be computed analytically assuming normal data

▪ Compute iteratively for nonparametric statistics

▪ Often heard: “we cannot afford more than a single measurement”

▪ E.g., Gordon Bell runs

▪ Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

Can also exploit repetitive nature of many applications

22

How many measurements are needed?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

23

Experimental design

MPI_Reduce

behaves much

simpler!

I don’t believe you, try

other numbers of

processes!

Rule 9: Document all varying factors and their levels as well

as the complete experimental setup (e.g., software, hardware,

techniques) to facilitate reproducibility and provide

interpretability.

▪ We recommend factorial design

▪ Consider parameters such as node allocation, process-to-node mapping, network or

node contention

▪ If they cannot be controlled easily, use randomization and model them as random variable

▪ This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

24

Time in parallel systems

My simple

broadcast takes

only one latency!

That’s nonsense!

But I measured it

so it must be true!

t = -MPI_Wtime();

for(i=0; i<1000; i++) {

MPI_Bcast(…);

}

t += MPI_Wtime();

t /= 1000;

…
Measure each

operation

separately!

spcl.inf.ethz.ch

@spcl_eth

25

Summarizing times in parallel systems!

My new reduce

takes only 30us

on 64 ranks.

Come on, show

me the data!

Rule 10: For parallel time measurements, report all

measurement, (optional) synchronization, and summarization

techniques.

▪ Measure events separately

▪ Use high-precision timers

▪ Synchronize processes

▪ Summarize across processes:

▪ Min/max (unstable), average, median – depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

26

Give times a meaning!

I compute 1010

digits of Pi in

2ms on Dora!

I have no clue.

Can you provide?

- Ideal speedup

- Amdahl’s speedup

- Parallel overheads

Ok: The code runs

17ms on a single

core, 0.2ms are

initialization and it

has one reduction!

Rule 11: If possible, show upper performance bounds to

facilitate interpretability of the measured results.

▪ Model computer system as k-dimensional space

▪ Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

▪ Features are typical rates

▪ Determine maximum rate for each dimension

E.g., from documentation or benchmarks

▪ Can be used to proof optimality of implementation

▪ If the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

My most common

request was

“show me the

data”

27

Plot as much information as possible!

This is how I should

have presented the

Dora results.

Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if

they indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

28

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

t(n=1510)?

t(n=2100)?

Matrix Multiply

t(n) = a*n3

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

29

We have the (statistically sound) data, now what?

The 99% confidence interval is within 1% of the reported median.

The adjusted R2 of the model fit is 0.99

t(n=1510)=0.248s

t(n=2100)=0.667s

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11

spcl.inf.ethz.ch

@spcl_eth

30

Part II: Model

Burnham, Anderson: “A model is a simplification or approximation of

reality and hence will not reflect all of reality. ... Box noted that “all

models are wrong, but some are useful.” While a model can never

be “truth,” a model might be ranked from very useful, to useful, to

somewhat useful to, finally, essentially useless.”

This is generally true for all kinds of modeling.

We focus on performance modeling in the following!

Model

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements Model

spcl.inf.ethz.ch

@spcl_eth

32

Requirements modeling I: Six-step performance modeling

[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11

[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI’10

Input
parameters

Describe application
kernels

Communication
pattern

Communication /
computation overlap

Fit sequential
baseline

Communication
parameters

10-20% speedup [2]



spcl.inf.ethz.ch

@spcl_eth

▪ Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

▪ Idea: Automatically select best (scalability) model from predefined search space

33

Requirements modeling II: Automated best-fit modeling

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13





n

k

ji

k ppcpf kk

1

2)(log)(n Î

ik Î I

jk Î J

I, J Ì

n =1

I = 0,1, 2{ }

J = {0,1}

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Number of

processes

(model) constant

number of terms

spcl.inf.ethz.ch

@spcl_eth

▪ Manual kernel selection and hypothesis generation is time consuming (and boring)

▪ Idea: Automatically select best model from predefined space

34

Requirements modeling II: Automated best-fit modeling

f (p) = ck × pik × log2

jk (p)
k=1

n

å
n Î

ik Î I

jk Î J

I, J Ì

n = 2

I = 0,1, 2{ }

J = {0,1}

c1 + c2 × p

c1 + c2 × p2

c1 + c2 × log(p)

c1 + c2 × p × log(p)

c1 + c2 × p2 × log(p)

)log(

)log()log(

)log(

)log(

)log(

)log()log(

)log(

)log()log(

)log(

2

2

2

1

2

21

2

21

2

21

2

21

21

2

21

2

21

21

21

ppcpc

ppcppc

pcppc

ppcpc

pcpc

ppcpc

ppcpc

pcpc

ppcpc

pcpc





















[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13

spcl.inf.ethz.ch

@spcl_eth

35

Tool support: Extra-P for automated best-fit modeling [1]

[1] Download Extra-P at: http://www.scalasca.org/software/extra-p/download.html

[2] A. Calotoiu, D. Beckingsale, C. W. Earl TH, I. Karlin, M. Schulz, F. Wolf: Fast Multi-Parameter Performance Modeling, IEEE Cluster 2016

Lulesh JUSPICSweep3d Milc HOMME NEST UG4 MP2CBLASTXNS

http://www.scalasca.org/software/extra-p/download.html

spcl.inf.ethz.ch

@spcl_eth

▪ Extra-P selects model based on best fit to the data

▪ What if the data is not sufficient or too noisy?

▪ Back to first principles

▪ The source code describes all possible executions

▪ Describing all possibilities is too expensive, focus on counting loop iterations symbolically

36

Requirements modeling III: Source-code analysis [1]

for (j = 1; j <= n; j = j*2)

for (k = j; k <= n; k = k++)

OperationInBody(j,k);

2log)1(2  nnnN

Parallel program
Loop extraction









p

p

ND

NW
1

Requirements Models
Number of iterations

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Capability Model

Performance Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Requirements ModelInput
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Performance Model

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

spcl.inf.ethz.ch

@spcl_eth

39

Capability models for network communication

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/

[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

The LogP model family and the LogGOPS model [1]

Finding LogGOPS parameters

Netgauge [2], model from first principles, fit to data

using special

kernels

Large scale LogGOPS Simulation

LogGOPSim [1], simulates LogGOPS with 10

million MPI ranks

<5% error

Source

Dest.

o

o o

o
L L

Ping-pong in simplified LogP (g<o, P=2)

https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
https://spcl.inf.ethz.ch/Research/Performance/Netgauge/

spcl.inf.ethz.ch

@spcl_eth

40

2) Design optimal algorithms – small broadcast in LogP

0 4

L=2, o=1, P=7

8 12

0

4 5

8

16 20

9

24

9 10

4

8

6

9 9

5 6 7

8

8

0

5

Binary Tree Binomial Tree

0

4

Fibonacci Tree

o

o o

o
L L

40%

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015

spcl.inf.ethz.ch

@spcl_eth

41

Capability models for cache-to-cache communication

X =

| = Local read: RL= 3.8 ns

Remote read RR ≈ 115 ns

Invalid read RI ≈ 135 ns

S. Ramos, TH: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL”, IEEE IPDPS’17

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

spcl.inf.ethz.ch

@spcl_eth

42

Model-tuned Barrier and Reduce vs. Intel’s OpenMP and MPI

Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)

spcl.inf.ethz.ch

@spcl_eth

Performance Modeling

Requirements Model

c1

c1 × p

c1 × p2

c1 × log(p)

c1 × p × log(p)

c1 × p2 × log(p)

Input
paramet

ers

Describe
application

kernels

Commu
nication
pattern

Communicat
ion /

computation
overlap

Fit
sequenti

al
baseline

Commu
nication
paramet

ers

Capability Model

TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC

Performance Model

spcl.inf.ethz.ch

@spcl_eth

Acknowledgments

▪ ETH’s mathematics department (home of R)

▪ Hans Rudolf Künsch, Martin Maechler, and Robert Gantner

▪ Comments on early drafts

▪ David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy

Roscoe, Gustavo Alonso, Georg Hager, Jesper Träff, and Sascha

Hunold

▪ Help with HPL run

▪ Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)
44

Conclusions and call for action

▪ Performance may not be reproducible

▪ At least not for many (important) results

▪ Interpretability fosters scientific progress

▪ Enables to build on results

▪ Sounds statistics is the biggest gap today

▪ We need to foster interpretability

▪ Do it ourselves (this is not easy)

▪ Teach young students

▪ Maybe even enforce in TPCs

▪ See the 12 rules as a start

▪ Need to be extended (or concretized)

▪ Much is implemented in LibSciBench [1]

No vegetables were harmed for creating these slides!

[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

