A Performance Analysis of ABINIT on a
Cluster System

Torsten Hoefler!, Rebecca Janisch?, and Wolfgang Rehm'?

! Chair of Computer Architecture, Chemnitz University of Technology, 09107
Chemnitz, Germany

2 Electrical Engineering and Information Technology, Chemnitz University of
Technology, 09107 Chemnitz, Germany

1 Introduction

1.1 Electronic Structure Calculations

In solid state physics, bonding and electronic structure of a material can be in-
vestigated by solving the quantum mechanical (time-independent) Schrédinger
equation,

Hioi® = Ei® (1)

in which the Hamilton operator ﬁmt describes all interactions within the
system. The solution @, the wavefunction of the system, describes the state
of all N electrons and M atomic nuclei, and E}. is the total energy of this
state.

Usually, the problem is split by separating the electronic from the ionic part by
making use of the Born-Oppenheimer approximation [1]. Next we consider the
electrons as independent particles, represented by one-electron wavefunctions
¢;. Density functional theory (DFT), based on the work of Hohenberg and
Kohn [2] and Kohn and Sham [3], then enables us to represent the total
electronic energy of the system by a functional of the electron density n(r):

n(r) =3 1o’ 2)
— E=FEn(r))=F[n]+ / Vext (r)n(r)dr
= Eyxin[n] 4+ Euln] + Exc[n] + / Vext (r)n(r)dr . (3)

Thus the many-body problem is projected onto an effective one-particle prob-
lem, resulting in a reduction of the degrees of freedom from 3N to 3. The

2 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

one-particle Hamiltonian H now describes electron 4, moving in the effective
potential Vg of all other electrons and the nuclei.

) ﬁ ¢i =€ ¢i
{~52 4 Vialn())} 6i(r) = € 6(r), @)
where Veg[n(r)] = Veg(r) = Via(r) + Vie(r) + Vexe (1)

In (4), which are part of the so-called Kohn-Sham equations, — h;—mA is the op-
erator of the kinetic energy, Vi is the Hartree and V. the exchange-correlation
potential. Vo is the external potential, given by the lattice of atomic nuclei.
For a more detailed explanation of the different terms see e.g. [4]. The self-
consistent solution of the Kohn-Sham equations determines the set of wave-
functions ¢, that minimize the energy functional (3). In order to obtain it, a
starting density n;, is chosen from which the initial potential is constructed.
The eigenfunctions of this Hamiltonian are then calculated, and from these
a new density mnoyt is obtained. The density for the next step is usually a
combination of input and output density. This process is repeated until input
and output agree within the limits of the specified convergence criteria.
There are different ways to represent the wavefunction and to model the
electron-ion interaction. In this paper we focus on pseudopotential+planewave
methods.

If the wavefunction is expanded in plane waves,

¢i =Y cixpae T (5)
G

the Kohn-Sham equations assume the form [5]

E Hyigk+@ X G k4G = € kCik+G 5 (6)
G/

with the matrix elements

hQ
Hyicxra = 2—|k + G[*qa
m
+Va(G - G) +Vae (G -G+ Ver (G—-G') . (7)

In this form the matrix of the kinetic energy is diagonal, and the different
potentials can be described in terms of their Fourier transforms. Equation
(6) can be solved independently for each k-point on the mesh that samples
the first Brillouin zone. In principle this can be done by conventional matrix
diagonalization techniques. However, the cost of these methods increases with
the third power of the number of basis states, and the memory required to
store the Hamiltonian matrix increases as the square of the same number. The
number of plane waves in the basis is determined by the choice of the cutoff
energy Eeu, = h%/2m|k+Gy|? and is typically of the order of 100 per atom, if

A Performance Analysis of ABINIT on a Cluster System 3

norm-conserving pseudopotentials are used. Therefore alternative techniques
have been developed to minimize the Kohn-Sham energy functional (3), e.g.
by conjugate gradient (CG) methods (for an introduction to this method see
e.g. [6]). In a band-by-band CG scheme one eigenvalue (band) €; x is obtained
at a time, and the corresponding eigenvector is orthogonalized with respect
to the previously obtained ones.

1.2 The ABINIT Code

ABINIT [7] is an open source code for ab initio electronic structure calcu-
lations based on the DFT described in Sect. 1.1. The code is the object of
an ongoing open software project of the Université Catholique de Louvain,
Corning Incorporated, and other contributors [8] .

ABINIT mostly aims at solid state research, in the sense that periodic bound-
ary conditions are applied and the majority of the integrals that have to be
calculated are represented in reciprocal space (k-space). It currently features
the calculation of various electronic ground state properties (total energy,
bandstructure, density of states,..), and several structural optimization rou-
tines. Furthermore it enables the investigation of electric and magnetic po-
larization and electronic excitations. Originally a pseudopotential+planewave
code, ABINIT for a short time (since version 4.2.x) also features the projector-
augmented wave method, but this is still under developement. In the following
we refer to the planewave method.

To begin the self-consistency cycle, a starting density is constructed, and a
starting potential derived. The eigenvalues and eigenvectors are determined by
a band-by-band CG scheme [5], during which the density (i.e. the potential) is
kept fixed until the whole set of functions has been obtained. The alternative
of updating the density with each new band has been abandoned, to make
a simple parallelization of the calculation over the k-points possible. Only at
the end of one CG loop is the density updated by the scheme of choice (e.g.
simple mixing, or Anderson mixing). For a comparison of different schemes see
e.g. [9]). A more detailed description of the DFT implementation in general
is given in [10].

Different levels of parallelization are implemented. The most efficient par-
allelization is the distribution of the k-points that are used to sample the
Brillouin zone on different processors. Unfortunately the necessary number of
k-points decreases with increasing system size, so the scaling with the num-
ber of atoms is rather unfavourable. One can partially make up for this by
distributing the work related to different states (or bands) within a given k-
point. Since the number of states increases with the system size, the overall
scaling with number of atoms improves. For example a blocked conjugate gra-
dient algorithm can be used to optimize the wavefunctions, which provides the
possibility to parallelize over the states within one block. Instead of a single

4 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

eigenstate, as in the band-by-band scheme, nbdblock states are determined
at the same time, where nbdblock is the number of bands in one block. Of
course this leads to a small increase in the time that is needed to orthogonalize
the eigenvectors with respect to those obtained previously. Furthermore, to
guarantee convergence, a too high value for nbdblock should not be chosen.
The ABINIT manual advises nbdblock < 4 as a meaningful choice.

Both methods, k-point parallelization and parallelization over bands, are im-
plemented using the MPI library. A third possibility of parallelization is given
by the distribution of the work related to different wavefunction coefficients,
which is realized with OpenMP compiler directives. It is used for example in
the parallelization of the FFT algorithm, but this feature is still under devel-
opement.

These parallelization methods, which are based on the underlying physics of
the calculation, are useful only for a finite number of CPUs (a fact, that is not
a special property of ABINIT, but common to all electronic structure codes).
In a practical calculation, the required number of k-points, nkpt, for a specific
geometry is determined by convergence tests. To decrease the computational
effort, the k-point parallelization is then the first method of choice. The best
speedup is achieved if the number of k-points is an integer multiple of the
number of CPUs:

nkpt =n X Ncpy with n € N. (8)

Ideally, n = 1.

If the number of available CPUs is larger than the number of k-points needed
for the calculation, the speedup saturates. In this case, the additional paral-
lelization over bands can improve the performance of ABINIT, if

Ncpy = nbdblock x nkpt . 9)

In principle the parallelization scheme also works for Ncpy = nbdblock,
which results in a parallelization over bands only. However, this is rather
inefficient, as will be seen below.

1.3 Related Work

The biggest challenge after programming a parallel application is to optimize
it according to a given parallel architecture. The first step of each optimization
process is the performance and scalability measurement which is often called
benchmarking. There are methods based on theoretical simulation [11, 12] and
methods based on benchmarking [13, 14]. There are also studies which try to
explain bottlenecks for scalability [15] or studies which compare different par-
allel systems [16]. In the following we analyze parallel efficiency and scalability
of the application ABINIT on a cluster system and describe the results with
the knowledge gained about the application. We also present several simple
ideas to improve the scaling and performance of the parallel application.

A Performance Analysis of ABINIT on a Cluster System 5

2 Benchmark Methodology

The parallel benchmark runs have been conducted on two different cluster
systems. The first one is a local cluster at the University of Chemnitz which
consists of 8 Dual Xeon 2.4GHz systems with 2GB of main memory per CPU.
The nodes are interconnected with Fast Ethernet. We used MPICH2 1.0.2p1
[17] with the ch_p4 (TCP) device as the MPI communication library. The
source code of ABINIT 4.5.2 was compiled with the Intel Fortran Compiler 8.1
(Build 20050520Z). The relevant entries of the makefile_macros are shown
in the following:

FC=ifort

COMMON_FFLAGS=-FR -w -tpp7 -axW -ip -cpp
FFLAGS=$ (COMMON_FFLAGS) -03
FFLAGS_Src_2psp =$(COMMON_FFLAGS) -00

5 | FFLAGS_Src_3iovars =$(COMMON_FFLAGS) -00
FFLAGS_Src_9drive =$(COMMON_FFLAGS) -00
FFLAGS_LIBS=-03 -w

FLINK=-static

Listing 1. Relevant makefile _macros entries for the Intel Compiler

The -O3 optimization had to be disabled for several directories, because of
endless compiling. For the serial runs we also compiled ABINIT with the open
source g95 Fortran compiler, with the following relevant flags:

FC=g95

FFLAGS=-03 -march=pentium4 -mfpmath=sse -mmmx \
-msse -msse2

FLINK=-static

Listing 2. Relevant makefile macros entries for the g95 Compiler

The second system is a Cray Opteron Cluster (strider) of the High Perfor-
mance Computing Center Stuttgart (HLRS), consisting of 256 2 GHz AMD
Opteron CPUs with 2GB of main memory per CPU. The nodes are inter-
connected with a Myrinet 2000 network. ABINIT has been compiled with the
64-bit PGI Fortran compiler (version 5.0). On strider the MPI is implemented
as a port of MPICH (version 1.2.6) over GM (version 2.0.8).

FC=pgf90
FFLAGS=-tp=k8-64 -Mextend -Mfree -04
FFLAGS_LIBS = -04

LDFLAGS=-Bstatic -aarchive

6 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

Listing 3. Relevant makefile macros entries for the pgi Compiler

2.1 The Input File

All sequential and parallelized benchmarks have been executed with an essen-
tially identical input file which defines a (hexagonal) unit-cell of SigNy (two
formula units). We used 56 bands and a planewave energy cut-off of 30 Hartree
(resulting in ~ 7700 planewaves). A Monkhorst-Pack k-point mesh [18] was
used to sample the first Brillouin zone. The number of k-points along the axes
of the mesh was changed with the ngkpt parameter as shown in Table 1.

To use parallelization over bands, we switched from the default band-by-band
wavefunction optimisation algorithm to the blocked conjugate gradient algo-
rithm (wfoptalg was changed to 1) and chose numbers of bands per block
> 1 (nbdblock) according to (9) in section 1.2.

[nkpt [ngkpt|
2222
12204
1128
144[16

Table 1. Number of k-points along the axes of the Monkhorst-Pack mesh, ngkpt,
and resulting total number of k-points in the calculation, nkpt.

3 Benchmark Results

3.1 Sequential Analysis

Due to the fact that a calculation which is done on a single processor in the k-
point parallelization is exactly the same as in the sequential case, a sequential
analysis can be used to analyze the behaviour of the calculation itself.

Call Graph

The call graph of a program shows all functions which are called during a
program run. We used the gprof utility from the gcc toolchain and the pro-
gram cgprof to generate a call graph. ABINIT called 300 different functions
during our calculation. Thus, the full callgraph is much too complicated and
we present only a short extract with all functions that use more than 4% of
the total application runtime (Fig. 1).

A Performance Analysis of ABINIT on a Cluster System 7

cgwf (1.31%) fourwf (0.01%) nonlop (0.01%) orthon (5.66%)
projbd (36.05%) sg_fftrisc (5.65%) nonlop_pl (0.14%)
sg_ffty (14.82%) sg_fftpx (6.65%) opernl4a (10.34%) opernl4b (8.70%)

Fig. 1. The partial callgraph

The percentage of the runtime of the functions is given in the diagram, and the
darkness of the nodes indicates the percentage of the subtree of these nodes
(please keep in mind that not all functions are plotted). About 97% of the
runtime of the application is spent in a subtree of vtowfk which computes the
density at a given k-point with a conjugate gradient minimization method.
The 8 most time consuming functions need more than 92% of the application
runtime (they are called more than once). The most time demanding func-
tion is projbd which orthogonalizes a state vector against the ones obtained
previously in the band-by-band optimization procedure.

Impact of the Compiler

Compilation of the source files can be done with various compilers. We com-
pared the open-source g95 compiler with the commercial Intel Fortran Com-
piler 8.1 (abbreviated with ifort). The Intel compiler is able to auto-parallelize
the code (cmp. OpenMP), this feature has also been tested on our dual Xeon
processors. The benchmarks have been conducted three times and the mean
value is displayed. The results of our calculations are shown in Table 2.

|Compiler /Features|Runtime (s)]

ifort 625.07
ifort -parallel 643.19
g95 847.73

Table 2. Comparison of different compilers

This shows clearly that the Intel Compiler generates much faster code than
the g95. However, the g95 compiler is currently under development and there
is a lot of potential for optimizations. The auto-parallelization feature of the
ifort is also not beneficial, this could be due to the thread spawning overhead
at small loops.

8 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm
Impact of the BLAS Library

Mathematical libraries such as the BLAS Library are used to provide an ab-
straction of different algebraic operations. These operations are implemented
in so called math libraries which are often architecture specific. Many of them
are highly optimized and can accelerate the code by a significant factor (as
compared to “normal programming”). ABINIT offers the possibility to ex-
change the internal math implementations with architecture-optimized vari-
ants. A comparison in runtime (all libraries compiled with the g95 compiler)
is shown in Table 3.

|BLAS Library|Runtime (s)]
internal 847.73
Intel-MKL 845.62
AMD-ACML |840.56
goto BLAS 860.60
Atlas 844.67

Table 3. Comparison of different mathematical libraries.

The speedup due to an exchange of the math library is negligible. One reason
could be that the mathematical libraries are not efficiently implemented and
do not offer a significant improvement in comparison to the reference imple-
mentation (internal). However, this seems unlikely since all the libraries are
highly optimized and several were tested. A more likely explanation is that
the libraries are not used very often in the code (calls and execution do not
consume much time compared to the total runtime). To investigate this we
analyzed the callgraph with respect to calls to math-library functions, and
found that indeed all calls to math libraries such as zaxpy, zswap, zscal,
... make less than 2% of the application runtime (with the internal math li-
brary). Thus, the speedup of the whole application cannot exceed 2% even if
the math libraries are improved.

3.2 Parallel Analysis
Speedup Analysis

Figure 2 shows the speedup versus the number of CPUs on the Xeon Cluster.
In all cases except the case of 16 k-points the scaling is almost ideal as long as
Nepy < nkpt. Saturation is observed for Nopy > nkpt, only for 16 k-points
this occurs already for Nopy = 8, due to overheads from MPI barrier synchro-
nizations in combination with process skew on the Xeon Cluster (see section
3.2). The parallelization over bands, which needs intense communication, only
leads to negligible additional speedup on this Fast Ethernet network. Figure

A Performance Analysis of ABINIT on a Cluster System 9

16 T T T

O-0O 2k-points, K+B
14— @—@ 2 k-points, KPO
-0 4 k-points, K+B 4

T
=]

4 k-points, KPO

A-A 8k-points, K+B
r A—A 8 k-points, KPO T
0= [16 k-points, KPO _
- t i
]
Ells 1
s L X y
—————————————— A
6 A
4 -
-------------------- o |
2 M—8——————— B G S—— O-—mmmmmmm = =
L >
0 | | | | | | |
0 2 4 6 8 10 12 14 16

Fig. 2. Speedup vs. number of CPUs on the Xeon Cluster. Parallelization over
k-points only (KPO - filled symbols): Except for the case of 16 k-points the scaling
is almost ideal as long as Ncpy < nkpt . Saturation is observed for Ncpy > nkpt,
only for 16 k-points this occurs already for Ncpy = 8. Parallelization over k-points
and bands (K+B - open symbols): The number of bands per block at the different
data points equals N¢py /nkpt. Only negligible additional speedup is observed.

3 shows the speedup vs. the number of CPUs on the Cray Opteron Cluster.
For the parallelization over k-points only, an almost ideal speedup is obtained
for small numbers (< 8) of CPUs. The less than ideal behaviour for larger
numbers can be explained by a communication overhead, see section 3.2. For
Nepy > nkpt the speedup saturates, as expected. In this regime the speedup
can be considerably improved (up to 250% in the case of 4 k-points and 16
CPUs) by including the parallelization over bands, as long as the number of
bands per block remains reasonably small (< 4).

Communication Analysis I: Plain k-point Parallelization

We used the MPE environment and Jumpshot [19] to perform a short analysis
of the communication behaviour of ABINIT in the different working scenarios
on the local Xeon Cluster. This parallelization method is investigated in two
scenarios, the almost ideal speedup with 8 processors calculating 8 k-points
and less than ideal speedup with 16 processors calculating 16 k-points. The
MPI communication scheme of 8 processors calculating 8 k-points is shown
in the following diagram. The processors are shown on the ordinate (rank
0-7), and the communication operations are shown for each of them. Each
MPI operation corresponds to a different shade of gray. The processing is not
depicted (black). The ideal communication diagram would show nothing but

10 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

16 \ \ \
[O-0O 2k-points, K+B 77
4= @—@ 2 k-points, KPO
L -0 4 k-points, K+B A
m—a 4 k-points, KPO v
1217 TA-A 8 kepoints, K+B 7
r A—A 8 k-points, KPO ~ 7
Lol |7 16k-points, KPO A
s | - o il
?43 81— 4 7 -
L e
/D/
6 —
b _-O.
L L O N =T
4 e ~o-T |
=< - —*#
L /O/ 4
2 b
0 | | | | | | |
0 2 4 6 8 10 12 14 16
cpu

Fig. 3. Speedup vs. number of CPUs on the Cray Opteron Cluster. Parallelization
over k-points only (KPO - filled symbols): For Nopy < nkpt the scaling is almost
ideal. Saturation is observed for Ncpy > nkpt. Parallelization over k-points and
bands (K+B - open symbols): The number of bands per block at the different data
points equals Ncpy/ nkpt. For reasonable numbers nbdblock < 4) the speedup in
the formerly saturated region improves considerably.

a black screen, every MPI operation delays the processing and increases the
overhead.

Figure 4 shows the duration of all calls to the MPI library. This gives a rough
overview of the parallel performance of the application. The parallelization

Fig. 4. Visualization of the MPI overhead for k-point parallelization over 8 k-
points on 8 Processors. Each MPI operation corresponds to a different shade of
gray: MPI Barrier white, MPI _Bcast light gray, and MPI_Allreduce dark gray. The
overhead is negligible and this case is efficiently parallelized.

is very efficient, all processors are computing most of the time, some CPU
time is lost during the barrier synchronization. The three self consistent field

A Performance Analysis of ABINIT on a Cluster System 11

(SCF) steps can easily be recognized as the processing time (black) between
the MPI_Barrier operations. The synchronization is done at the end of each
step and afterwards a small amount of data is exchanged via MPI_Allreduce,
but this does not add much overhead. The parallelization is very efficient and
only a small fraction of the time is spent for communication. All processors
send their results to rank 0 in the last part, after the last SCF step and
synchronization. This is done with many barrier operations and send-receive,
and could significantly be enhanced with a single call to MPI_Gather.

The scheme for 16 processors calculating 16 k-points, shown in Fig. 5, is
nearly identical, but the overhead resulting from barrier synchronization is
much higher and decreases the performance. This is due to so called process
skew, where the unpredictable and uncoordinated scheduling of operating sys-
tem processes on the cluster system interrupts the application and introduces
a skew between the processes. This skew adds up during the whole application
runtime due to the synchronization at the end of each SCF step. Thus, the
scaling of ABINIT is limited on our cluster system due to the operating sys-
tem’s service processes. Even if the problem is massively parallel the overhead

Fig. 5. Visualization of the MPI overhead for k-point parallelization over 16 k-
points on 16 Processors. Each MPI operation corresponds to a different shade of
gray: MPI_Barrier white, MPI Bcast light gray, and MPI_Allreduce dark gray. The
synchronization overhead is much bigger than in Fig. 4. This is due to the occuring
process skew.

is much bigger as for 8 processors due to the barrier synchronization.

Communication Analysis II: Parallelization over Bands

The communication diagram for 8 processors and a calculation with 4 k-
points and nbdblock=2 is shown in Fig. 6. The main MPI operations besides

12 Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

the MPI_Barrier and MPI_Allreduce are MPI_Send and MPI_Recv in this sce-
nario. These operations are called frequently and show a master-slave principle
where the block specific data is collected at a master for each block and is
processed. The MPI-overhead is significantly higher than for the pure k-point
parallelization and the overall performance is heavily dependent on the net-
work performance. Thus the results for band parallelization are rather bad for
the cluster equipped with Fast Ethernet, while the results with Myrinet are
good.

Il | (AT
[u it H]I Nl |\u |\\ | R H‘\'Hl

- Jew I L4

+r I e

Fig. 6. Visualization of the MPI overhead for k-point and band parallelization over 4
k-points and 2 bands per block on 8 processors. Each MPI operation corresponds to a
different shade of gray: MPI_Barrier white, MPI_Bcast light gray, and MPI_Allreduce
dark gray. This figure shows the fine grained parallelism for band parallelisation. The
overhead is visible but not dominationg the execution time.

The diagram for two k-points calculated on 8 processors is shown in Fig. 7.
This shows that the communication overhead outweighs the calculation and
the parallelization is rendered senseless. Nearly the whole application runtime
is overhead (all but black regions), mainly MPI_Bcast and MPI_Barrier. Thus,
even allowing for the reasons of convergence, mentioned in Sect. 1.2, the band
parallelization is effectively limited to cases with a reasonable MPI overhead,
i.e. 4 bands per block on this system.

A Performance Analysis of ABINIT on a Cluster System 13

|

Fig. 7. Visualization of the MPI overhead for k-point and band parallelization
over 2 k-points and 8 bands per block on 16 processors. Each MPI operation corre-
sponds to a different shade of gray: MPI_Barrier white, MPI_Bcast light gray, and
MPI_Allreduce dark gray. The overhead is clearly dominating the execution and the
parallelization is rendered senseless.

4 Conclusions

We have shown that the performance of the application ABINIT on a clus-
ter system depends on different factors, such as compiler and communication
network. Other factors which are usually crucial such as different implementa-
tions of mathematical functions are less important because the math libraries
are rarely used in the critical path for our measurements. The choice of the
compiler can decrease the runtime by almost 25%. Note that the promising fea-
ture of auto-parallelization is counterproductive. The different math libraries
differ in less than 1% of the running time. The influence on the interconnect
and parallelization technique is also significant. The embarassingly parallel
k-point parallelization hardly needs any communication and is thus almost
independent of the communication network. The scalability is limited to 8 on
our cluster system due to operating system effects, which introduce process
skew during each round. The scalability on the Opteron system is not limited.
Thus, in principle this implementation in ABINIT is ideal for small systems
demanding a lot of k-points, e.g. metals. For systems demanding large super-
cells, the communication wise more demanding band parallelization becomes
attractive. However, the use of this implementation is only advantageous if a
fast interconnect can be used for communication. Fast Ethernet is not suitable
for this task.

14

Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm

5 Acknowledgements

The authors would like to thank X. Gonze for helpful comments. R.J. ac-
knowledges the HLRS for a free trial account on the Cray Opteron Cluster
strider.

References

1.

2.

10.

11.

12.

13.

14.

M. Born and J.R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Physik,
84:457, 1927.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864,
1964.

W. Kohn and L.J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev, 140:A1133, 1965.

R. M. Martin. Electronic Structure. Cambridge University Press, Cambridge,
UK, 2004.

M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Itera-
tive minimization techniques for ab initio total-energy calculations - molecular
dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1992.

. J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Num.,

page 199, 1991.

X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Cara-
cas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y.
Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann,
and D.C. Allan. A brief introduction to the ABINIT software package. Z.
Kristallogr., 220:558, 2005.

http://www.abinit.org/.

V. Eyert. A comparative study on methods for convergence acceleration of
iterative vector sequences. J.Comp.Phys., 124:271, 1995.

X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese,
L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph.
Ghosez, J.-Y. Raty, and D.C. Allan. First-principles computation of material
properties: the ABINIT software project. Comp. Mat. Sci., 25:478, 2002.

A.D. Malony, V. Mertsiotakis, and A. Quick. Automatic scalability analysis of
parallel programs based on modeling techniques. In Proceedings of the 7th inter-
national conference on Computer performance evaluation : modelling techniques
and tools, pages 139-158, Secaucus, NJ, USA, 1994. Springer-Verlag New York,
Inc.

R.J. Block, S. Sarukkai, and P. Mehra. Automated performance prediction
of message-passing parallel programs. In Proceedings of the 1995 ACM/IEEE
conference on Supercomputing, 1995.

M. Courson, A. Mink, G. Marcais, and B. Traverse. An automated benchmark-
ing toolset. In HPCN FEurope, pages 497-506, 2000.

X. Cai, A. M. Bruaset, H. P. Langtangen, G. T. Lines, K. Samuelsson, W. Shen,
A. Tveito, and G. Zumbusch. Performance modeling of pde solvers. In H. P.
Langtangen and A. Tveito, editors, Advanced Topics in Computational Partial
Differential Equations, volume 33 of Lecture Notes in Computational Science
and Engineering, chapter 9, pages 361-400. Springer, Berlin, Germany, 2003.

15

16.

17.

18.

19.

A Performance Analysis of ABINIT on a Cluster System 15

. A. Grama, A. Gupta, E. Han, and V. Kumar. Parallel algorithm scalability
issues in petaflops architectures, 2000.

G. Luecke, B. Raffin, and J. Coyle. Comparing the communication performance
and scalability of a linux and an nt cluster of pcs.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the mpi message passing interface standard. Parallel Comput.,
22(6):789-828, 1996.

H.J. Monkhorst and J.D. Pack. Special points for brillouin-zone integrations.
Phys. Rev. B, 13:5188, 1976.

O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance
visualization with Jumpshot. The International Journal of High Performance
Computing Applications, 13(3):277-288, Fall 1999.

