
Topological Collectives for MPI-2

Torsten Hoefler1, Florian Lorenzen2, Douglas Gregor1 and Andrew Lumsdaine1

1Open Systems Lab, Indiana University
2Freie Universtät Berlin

February 11, 2008

1 Introduction

MPI topologies currently provide the MPI implementation with information about the typical
communication behavior of the processes in a new communicator, illustrating the structure
of communication via a Cartesian grid or a general graph. Topologies contain important
application- and data-specific information that can be used for optimized collective imple-
mentations and improved mapping of processes to hardware. However, from the application
perspective, topologies provide little more than a convenient naming mechanism for pro-
cesses.

This proposal introduces new collective operations that operate on communicators with
process topologies. These topological collectives express common communication patterns for
applications that use process topologies, such as nearest-neighbor data exchange and shifted
Cartesian data exchange. These collectives are usually implemented by the application
programmer. However, a performant implementation of those operations is not trivial and
programmers frequently face problems with deadlocks.

Nearest neighbor exchanges are, e. g., required in real space electronic structure codes that
represent physical quantities on a discrete mesh (like [1]). The mesh’s points are distributed
among the nodes to increase computational throughput. Figure 1(a) shows the geometry
of a benzene molecule on top of a real space grid. The grid points are divided into eight
partitions.

Communication between adjacent partitions is necessary to calculate derivatives by finite-
difference formulas, or, more generally, any nonlocal operator. Figure 1(b) shows the sit-
uation for a third order discretization: to calculate the derivative at point i, the values at
points i − 1, . . . , i − 3 have to be communicated from partition 2 to partition 1.

The communication structure can be represented as a graph with each vertex representing
one computational node and edges representing neighboring partitions (cf. Figure 1(c)).
Using this abstraction, the data exchange prior to the calculation of a derivative can be
mapped onto a general nearest neighbor communication pattern.

1



(a) The benzene ring distributed on
eight nodes.

(b) A third order stencil leaking
into a neighboring partition.

(c) The communication pat-
tern for the benzene ring.

Figure 1: Process topologies in real space electronic structure codes.

All proposed collective operations have been implemented in LibNBC [3] (as non-blocking
operations, but they can easily be used in a blocking way). An experimental version of the
software package Octopus [1] uses those operations and shows good results.

2 Proposed Extensions

2.1 Nearest Neighbor Communication

We propose to add a new collective function named MPI NEIGHBOR XCHG that performs
nearest-neighbor communication on all processes in a communicator with a topology. Each
process transmits data to and receives data from each of its neighbors.

int MPI Neighbor xchg(void ∗sendbuf, int sendcount, MPI Datatype sendtype,
int MPI Neighbor xchg(void ∗recvbuf, int recvcount, MPI Datatype recvtype, MPI Comm comm)

MPI NEIGHBOR XCHG(SENDBUF, SENDCOUNT, SENDTYPE,
MPI NEIGHBOR XCHG(RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)
<type> SENDBUF(∗), RECVBUF(∗)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

void Topocomm::Neighbor xchg(const void∗ sendbuf, int sendcount, const Datatype& sendtype,
void Topocomm::Neighbor xchg(void∗ recvbuf, int recvcount, const Datatype& recvtype) const

IN sendbuf starting address of send buffer
IN sendcount number of elements sent to each neighbor
IN sendtype data type of the send buffer elements
OUT recvbuf address of receive buffer
IN recvcount number of elements received from any neighbor
IN recvtype data type of receive buffer elements
IN comm communicator

2



The neighbors of a process in the communicator can be determined by
MPI COMM NEIGHBORS. As part of this collective, each process sends data to and
receives information from each of its neighbors. The type signature associated with
sendcount, sendtype at a process must be equal to the type signature associated with
recvcount, recvtype at any other process. This implies that the amount of data sent must be
equal to the amount of data received, pairwise between every pair of neighboring processes.
As usual, however, the type maps may be different.

The outcome is as if each process executed a send to each of its neighbors with a call to,

MPI Send(sendbuf + i∗sendcount∗extent(sendtype), sendcount, sendtype, neighbor[i], ...),

and a receive from every neighbor with a call to,

MPI Recv(recvbuf + i∗recvcount∗extent(recvtype), recvcount, recvtype, neighbor[i], ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes. If provided with a communicator that does not have a topology,
returns MPI ERR TOPOLOGY.

int MPI Neighbor xchgv(void∗ sendbuf, int ∗sendcounts, int ∗sdispls, MPI Datatype sendtype,
int MPI Neighbor xchgv(void∗ recvbuf, int ∗recvcounts, int ∗rdispls, MPI Datatype recvtype,
int MPI Neighbor xchgv(MPI Comm comm)

MPI NEIGHBOR XCHGV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,
MPI NEIGHBOR XCHGV(RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(∗), RECVBUF(∗)
INTEGER SENDCOUNTS(∗), SDISPLS(∗), SENDTYPE, RECVCOUNTS(∗),
INTEGER RDISPLS(∗), RECVTYPE, COMM, IERROR

void Topocomm::Neighbor xchgv(const void∗ sendbuf, const int sendcounts[], const int sdispls[],
void Topocomm::Neighbor xchgv(const Datatype& sendtype, void∗ recvbuf, const int recvcounts[],
void Topocomm::Neighbor xchgv(const int rdispls[], const Datatype& recvtype) const

IN sendbuf starting address of send buffer (choice)
IN sendcounts integer array (of length number-of-neighbors) specifying the number of

elements to send to each neighbor
IN sdispls integer array (of length number-of-neighbors). Entry j specifies the displace-

ment (relative to sendbuf) from which to take the outgoing data destined for neighbor
j

IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcounts integer array (of length number-of-neighbors) specifying the number of

elements that can be received from each neighbor
IN rdispls integer array (of length number-of-neighbors). Entry i specifies the displace-

ment (relative to recvbuf) at which to place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

3



MPI Neighbor xchgv adds flexibility to MPI Neighbor xchg by making it possible for different
neighbors to receive a different amount of data.

The jth block sent from process i is received by its jth neighbor and is placed in the kth

block of recvbuf, where i is the kth neighbor of its jth neighbor. These blocks need not all
have the same size.

The type signature associated with sendcount[j], sendtype at process i must be equal to
the type signature associated with recvcount[k], recvtype at the jth neighbor of process i.
This implies that the amount of data sent must be equal to the amount of data received,
pairwise between every pair of processes. Distinct type maps between sender and receiver
are still allowed.

The outcome is as if each process sent a message to every other process with,

MPI Send(sendbuf + displs[i]∗extent(sendtype),sendcounts[i],sendtype,neighbor[i], ...),

and received a message from every other process with a call to

MPI Recv(recvbuf + displs[i]∗extent(recvtype),recvcounts[i],recvtype,neighbor[i], ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes. If provided with a communicator that does not have a topology,
returns MPI ERR TOPOLOGY. Figure 2 shows an example of the communication operation.

1 2

4 5

6 7 8

0

3 1
st d

im

2nd dim

Figure 2: MPI Neighbor exchange, illustrating the communication operations originating at
rank 4 in a 2-dimensional cartesian communicator. The left side of the buffer represents the
send memory and the right side the receive memory.

2.2 Neighbor Query

We propose two new functions that allow one to determine the neighbors of any communica-
tor with a topology. These functions are modeled after MPI GRAPH NEIGHBORS COUNT
and MPI GRAPH NEIGHBORS, but they work for both communicators with graph topology
and for communicators with Cartesian topology.

4



int MPI Comm neighbors count(MPI Comm comm, int rank, int ∗nneighbors)

MPI COMM NEIGHBORS COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

int Topocomm::Get neighbors count(int rank) const

IN comm communicator with graph or cartesian topology (handle)
IN rank rank of process in group of comm (integer)
OUT nneighbors number of neighbors of specified process (integer)

For a graph communicator, nneighbors will receive the number of neighbors in the graph (i.e.,
the same result that MPI Graph neighbors count provides). For a cartesian communicator,
nneighbors will receive the number of processes whose distance from the given rank is 1. If
provided with a communicator that does not have a topology, returns MPI ERR TOPOLOGY.

int MPI Comm neighbors(MPI Comm comm, int rank, int maxneighbors, int ∗neighbors)

MPI COMM NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(∗), IERROR

void Topocomm::Get neighbors(int rank, int maxneighbors, int neighbors[]) const

IN comm communicator with graph or cartesian topology (handle)
IN rank rank of process in group of comm (integer)
IN maxneighbors size of array neighbors (integer)
OUT neighbors ranks of processes that are neighbors to specified process (array of in-

teger)

For a graph communicator, neighbors receives the ranks of each of the neighbors of process
rank (i.e., the same result that MPI Graph neighbors provides). The order of the ranks in
neighbors is unspecified, but successive calls to MPI Comm neighbors for the same communi-
cator will return ranks in the same order.

For a cartesian communicator, neighbors receives the ranks of each of the neighbors
of process rank. The order of the ranks in neighbors is first along the first dimension in
displacement +1 and -1 (either of which may wrap around, if the topology is periodic in
that dimension, or will be omitted, if not periodic in that dimension), then along the second,
third and higher dimensions if applicable.

If provided with a communicator without a topology, returns MPI ERR TOPOLOGY.
Remark: MPI Graph neighbors count and MPI Graph neighbors could be deprecated with

this proposal.

2.3 Cartesian Shift Communication

We propose to add a new collective function named MPI CART SHIFT XCHG that performs
a shift operation along a certain dimension of a cartesian communicator. The operation acts

5



1 2

4 5

6 7 8

0

3

2nd dim (periodic)

1
st d

im
 (n

o
n
−

p
erio

d
ic)

Figure 3: MPI Neighbor exchange, ilustrating the communication originating at node 8 for a
non-periodic and a periodic dimension. The crossed buffer will be ignored by the collective
(but has to be allocated)

on a single buffer with count elements. The dimension is selected by the direction parameter
(0..ndims − 1) and the displacement is selected by disp.

int MPI Cart shift xchg(void ∗sbuf, int scount, MPI Datatype stype,
void ∗rbuf, int rcount, MPI Datatype rtype, int direction,
int disp, MPI Comm comm)

MPI CART SHIFT XCHG(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, DIRECTION, DISP, COMM)

<type> SENDBUF(∗), RECVBUF(∗)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, DIRECTION, DISP, COMM

void Cartcomm::Shift xchg(const void∗ sbuf, const int scount, const Datatype& stype,
const void ∗rbuf, const int rcount, const Datatype& rtype, const int direction,
const int disp)

The communication performed is the same is if the communicator would be queried
with MPI Cart shift and the appropriate sends and receives are issued. However, the col-
lective operation allows for careful message scheduling and simplify the user’s task. If
provided with a communicator that does not have a cartesian topology, the call returns
MPI ERR TOPOLOGY.

Application example: A Cartesian shift operation simplifies the parallel implementation
of Cannon’s matrix multiplication [2] and related algorithms.

Cannon’s algorithm perfoms the multiplication of two matrices A and B by subdividing
each matrix in blocks Aij , Bij with i, j = 1, . . . , M and assigning each block to one of P = M2

nodes, i. e. the matrices are mapped onto a M × M cartesian grid. To calculate the matrix
product AB each node first computes the subproduct of its Aij , Bij , before rotating the rows
of A upwards and the columns of B leftwards along the respective cartesian dimensions. The

6



2

53

0 1

4
1
st d

im

2nd dim (non−periodic)

Figure 4: MPI Cart shift xchg on a 2-dimensional communicator in the second dimension
direction -1.

next subproduct can be calculated and added to the previous result.

2.4 New C++ Class

We propose to add a new C++ class, Topocomm, which contains functionality available
to communicators with any topology. This includes the neighbor query functions and the
nearest-neighbor exchange collectives. We have added the Topocomm class and made both
Graphcomm and Cartcomm derive from this new class.

namespace MPI {
class Comm {...};
class Intracomm : public Comm {...};
class Topocomm : public Intracomm {...};
class Graphcomm : public Topocomm {...};
class Cartcomm : public Topocomm {...};
class Intercomm : public Comm {...};
// ...

}

References

[1] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Mar-
ques, E. K. U. Groß, A. Rubio. phys. stat. sol (b), 243(11):2465–2488, 2006.

[2] L. E. Cannon. PhD thesis, Montana State Univ., 1969.

[3] T. Hoefler, A. Lumsdaine and W. Rehm. Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI In proceedings of the 2007 International
Conference on High Performance Computing, Networking, Storage and Analysis, SC07

7


	Introduction
	Proposed Extensions
	Nearest Neighbor Communication
	Neighbor Query
	Cartesian Shift Communication
	New C++ Class


