
Improving Parallel Computing
Platforms

- programming, topology and routing -

Torsten Hoefler

Open Systems Lab
Indiana University

Bloomington, IN, USA

1

State of the Art (what we all know)

 “Moores law” mandates parallelism
 DMM (Clusters) and SMM (Manycores)

 DMM programming:
 Message Passing (de facto standard MPI)
 Task abstractions (CHARM++)

 SMM programming:
 Task parallelism (Cilk, TBB, OpenMP 3.0)
 Data (loop) parallelism (OpenMP, Cilk++)

 Languages:
 UPC, Chapel, Fortress, X10

2

Focus of this work
 Large-scale parallel computers
 DMM Model

 SMM obfuscates complexity (data distribution)!
 Traditionally MPI

 Large interconnection networks
 Topology, Routing issues

 Cluster computers
 commodity components keep cost low

 Scientific applications
 Upcoming graph/Informatics applications

3

Message Passing Interface
 1998: MPI 2.0 - Well-known (no introduction needed)

 MPI Forum convenes since Jan 2008
 Sep 2008: MPI 2.1 (merges and minimal changes)
 Sep 2009: MPI 2.2 (bugfixes, API compatibility)

 New scalable graph topology interface
 Enhancements to collectives (MPI_IN_PLACE, Reduce_scatter_block)
 Access restrictions to send buffers lifted
 Better support for libraries (MPI_Reduce_local)
 Deprecated C++ bindings (!)

 MPI 3 - Updates for the future
 Better interoperability, updated collective

operations, fault tolerance
4

Focus on MPI Collective Operations
 High level of abstraction

 Limited set of complex data movement operations

 Lifts MPI from “the assembler of parallel
programming” to “the C of parallel programming”

 Enables standard-optimizations, such as tree
structures for broadcast or reduce

 But also network-specific optimizations
 Performance portability across specialized architectures

is one of the key points of MPI
 Two examples: MPI_Barrier and MPI_Bcast on

InfiniBand

5

MPI_Barrier on InfiniBand
 Standard algorithm: Dissemination

 Uses rounds

6

Is this optimal?
 No! Refine the model (1:N ping pong):

7

Minimum around 5-10 processes!
Saturation

N-way Dissemination

8

k peers per round!
rounds

Today’s fastest MPI_Barrier on InfiniBand!

Refer to: Hoefler et al. “Fast Barrier Synchronization for
InfiniBand” IPDPS 2006, CAC workshop

40%

2nd Example: MPI_Bcast
 InfiniBand offers Multicast

 It’s unreliable, but runtime practically

 Constant-time algorithm in low-loss network

9

MPI_Bcast Results
 IMB 2-byte broadcast

10

41%

Refer to: Hoefler, Siebert et al. “A practically constant-time MPI Broadcast Algorithm
for large-scale InfiniBand Clusters with Multicast” IPDPS 2007, CAC workshop

Intermediate Conclusions
 High level of abstraction
 Simplifies implementation
 Offers optimization potential
 Enables performance portability

 New directions
 Nonblocking collective operations
 Sparse collective operations

11

Nonblocking Collective Operations
 Simple interface: MPI_Ibarrier()
 Standard MPI semantics

 Enable new programming techniques
 Decouple start from end (Hoefler et al. at SPAA’08)

 Relax synchronization (Hoefler et al. at PPoPP’10)

 Enable communication/computation overlap
 Hide latency (cf. Alexandrov’s “early binding”)

 Should be a standard technique for point-to-
point communications (is it yet?)

12

Overlap potential
 Polling vs. threaded progression
 64 InfiniBand nodes, MVAPICH vs. LibNBC

 We assume ideal overlap (threaded has constant overhead!)

13

Refer to: Hoefler, et al. “Implementation and Performance Analysis of Non-Blocking
Collective Operations for MPI” IEEE/ACM Supercomputing 2007 (SC07)

Applications?
 Conjugate Gradient (3d Poisson, points)

 Overlap boundary communication with local matrix product

14

Gigabit Ethernet (TCP)InfiniBand

Refer to: Hoefler, Gottschling et al. “Optimizing a Conjugate Gradient Solver with Non-Blocking
Collective Operations ” Elsevier PARCO, Sept. 2007

Some More Applications

15

3d Fast Fourier Transform (MPI_Alltoall): 3d-FFT Overhead

Parallel bzip2 Overhead (MPI_Gather) Medical Image Reconstruction Overhead

Refer to: Hoefler, Gottschling et al. “Leveraging Non-blocking Collective Communication in
High-performance Applications ” ACM SPAA’08

Sparse Collective Operations
 Now something completely different
 More power to the users!
 Specify arbitrary “flat” communication patterns

16

MPI-2.2 New Topology Interface
 MPI_GRAPH topology to specify communication

 Usable (scalable) since MPI-2.2
 Also added weights

 Enables intelligent process-to-node mapping
 Of course NP-hard for general graphs
 Discussed in literature (Träff, SC’02; Yu, SC’06)

 Scalable reference implementation available
 Already implemented in MPICH-2!

17

MPI-3 (?) Sparse Collective Interface
 Enables optimized communication schedules

 Message scheduling equivalent to graph coloring
 Again NP-hard in the general case
 Good heuristics are ongoing research

 Example:
 Sparse Gather

18

sendbuffer

receivebuffer

Scheduling Example

19

33%

Two “heavy” rounds in each topology

Cost depends on scheduling.

8 nodes, SX-8
Dimension-order scheduling

Refer to: Hoefler, Träff et al. “Sparse
Collective Operations for MPI”
IPDPS/HIPS 2009

Applications?
 Sparse collectives are implemented in LibNBC

 Trivial scheduling / usability study
 TDDFT/Octopus – trivial change (simpler than before)

20

Benzene example topology:

6 MPI processes
(METIS decomposition)

Standard stencil:

Refer to: Hoefler, Lorenzen et al. “Sparse Non-Blocking Collectives in Quantum Mechanical
Calculations” EuroPVM/MPI 2008

Intermediate Conclusions
 Collective operations are a good abstraction!

 Easy to use
 High-level problem specification
 Sparse collectives are even more powerful

 Overlapping computation and communication can
be beneficial
 Relatively hard to get right
 Depends on support in communication middleware
 Depends on the application or algorithm

 Process mapping seems important
 Is it?

21

Optimizing Collectives and Mappings
 Network is the most vital part

 Mandates collective algorithms and topology mappings
 Network is defined by:

 Topology (Torus, Hypercube, Fat-Tree, …)
 Endpoint technology (Myrinet, InfiniBand, Portals, …)

 LogGP models most networks well
 Ignores congestion in the network
 Assumes full bisection bandwidth (FBB) (?)

 Do FBB networks solve all problems?
 No! (why?)

22

Example: InfiniBand
 30.2 % of Top500 (Jun 2009)
 Static routing (1→5, 4 → 14):

 No full bandwidth (cf. Valiant’s bound)

23

Quantifying Congestion

24

Lower Bound!

Reality?

CHiC Supercomputer:
• 566 nodes, full bisection IB fat-tree
• effective Bisection Bandwidth: 0.699

3 2 1 0
Congestion Factor

Microbenchmarks
(NetPIPE, IMB ping pong

Netgauge one_one)

Refer to: Hoefler, Schneider et al. “Multistage Switches are not Crossbars:
Effects of Static Routing in High-Performance Networks ” IEEE Cluster 2008

Full Bisection Bandwidth != Full Bandwidth
 expensive topologies do not guarantee high bandwidth
 deterministic oblivious routing cannot reach full bandwidth!

 see Valiant’s lower bound
 random routing is asymptotically optimal but looses locality

 but deterministic routing has many advantages
 completely distributed
 very simple implementation

 InfiniBand routing:
 deterministic oblivious, destination-based
 linear forwarding table (LFT) at each switch
 lid mask control (LMC) enables multiple addresses per port

25

InfiniBand Routing Continued
 offline route computation (OpenSM)
 different routing algorithms:
 MINHOP (finds minimal paths, balances number of

routes local at each switch)
 UPDN (uses Up*/Down* turn-control, limits choice but

routes contain no credit loops)
 FTREE (fat-tree optimized routing, no credit loops)
 DOR (dimension order routing for k-ary n-cubes, might

generate credit loops)
 LASH (uses DOR and breaks credit-loops with virtual

lanes)
26

Some Theoretical Background
 model network as G=(VP[VC, E)
 path r(u,v) is a path between u,v 2 VP

 routing R consists of P(P-1) paths
 edge load l(e) = number of paths on e 2 E

 edge forwarding index ¼(G,R)=maxe2E l(e)
 ¼(G,R) is a trivial upper bound to congestion!

 goal is to find R that minimizes ¼(G,R)
 shown to be NP-hard in the general case

27

Routing based on SSSP
 we propose P-SSSP routing

 P-SSSP starts a SSSP run at each node
 finds paths with minimal edge-load l(e)
 updates routing tables in reverse

 essentially SDSP
 updates l(e) between runs

 let’s discuss an example …

28

P-SSSP Routing (1/3)

29

Step 1:
Source-node 0:

P-SSSP Routing (2/3)

30

Step 2:
Source-node 1:

P-SSSP Routing (3/3)

31

Step 3:
Source-node 2:

¼(G,R)=2

How to Assess a Routing?
 edge forwarding index is a trivial upper bound
 ability to route permutations is more important

 bisect P into two equally-sized partitions
 choose exactly one random partner for each node
 £(P!/(P/2)!) combinations!

 our simulation approach:
 pick N (=5000) random bisections/matchings
 compute average bandwidth
 shown to be rather precise (Cluster’08)

32

Comparison to Real Systems
 ibdiagnet , ibnetdiscover, and ibsim
 we extracted topology and routing from:
 Thunderbird (SNL) – 4390 LIDs

 thanks to: Adam Moody & Ira Weiny

 Ranger (TACC) – 4080 LIDs
 thanks to: Christopher Maestas

 Atlas (LLNL) – 1142 LIDs
 thanks to: Len Wisniewsky

 Deimos (TUD) – 724 LIDs
 thanks to: Guido Juckeland and Michael Kluge

 Odin (IU) – 128 LIDs

33

Real-world Results

34

Real-World Bandwidth

Real-World Runtime

Some more Topologies

35

Fat-tree topologies

k-ary 2,3-cube topologies (torus)
(filled switches with endpoints)

Simulations are good, but still Simulations
 we implemented our routing with OpenSM’s file method

 tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine – many thanks to Guido Juckeland)

 Odin is standard fat-tree, Deimos’ topology:

36

Benchmark Results Odin

37

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!

Benchmark Results Deimos

38

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!

Intermediate Conclusions
 P-SSSP routing for deterministic oblivious routing

(IB) works better than established methods
 simulation shows increase in effective bisection

bandwidth over standard OpenSM routing
 e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

 benchmarks show even higher improvements
 Odin 18%, Deimos 40%

 Oblivious routing seems suboptimal
 Adaptive routing is hard
 Random routing needs bandwidth (we have enough in fat-trees)

39

Refer to: Hoefler, Schneider et al. “Optimized Routing for Large-Scale InfiniBand Networks”
IEEE Hot Interconnects 2009

Adaptive Routing in Myrinet
 512 nodes Myri 10G two-stage folded Clos network
 Netgauge, eBB with 50 MiB messages

40

Static routing Adaptive routing

Refer to: Geoffray, Hoefler “Adaptive Routing Strategies for Modern High Performance Networks”
IEEE Hot Interconnects 2008

Final Conclusions
 From a programmers perspective:

 Specify communication at a high level
 Communication pattern
 Communication intensity
 Process arrival pattern?

 We aim to simplify and extend specification possibilities
 From a system designer’s perspective:

 Optimize for applications
 Choose model carefully (endpoint, pattern)
 Design topology and routing accordingly
 Provide hints to the upper layers?

 Parallel systems need to be optimized as a whole

41

Acknowledgments & Questions
 Thanks to:

 Andrew Lumsdaine @IU (Ph.D., Postdoc Advisor)
 Wolfgang Rehm @TUC (M.Sc. Advisor)
 Timo Schneider @TUC (Student intern, Advisee)
 Christian Siebert @NEC (M.Sc. Student, Advisee)
 Jesper Larsson Traeff @NEC (Co-author)
 … and all other co-authors and colleagues!

 Questions?

42

Backup Slides

43

Backup Slides

Credit Loops

44

Source Network and Routes

Buffer
Dependency

Graph

Even more Topologies

45

2-ary n-cube topologies (hypercube)
(filled switches with endpoints)

random topologies
(12 nodes per switch)

