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State of the Art (what we all know)

0 “Moores law” mandates parallelism
DMM (Clusters) and SMM (Manycores)

0o DMM programming:
Message Passing (de facto standard MPI)
Task abstractions (CHARM++)

o SMM programming:
Task parallelism (Cilk, TBB, OpenMP 3.0)
Data (loop) parallelism (OpenMP, Cilk++)

0 Languages:

UPC, Chapel, Fortress, X10

2




—

Focus of this work

O Large-scale parallel computers
DMM Model

o SMM obfuscates complexity (data distribution)!
o Traditionally MPI

Large interconnection networks

o Topology, Routing issues

Cluster computers

o commodity components keep cost low

Scientific applications
o Upcoming graph/Informatics applications
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Message Passing Interface

o 1998: MPI 2.0 - Well-known (no introduction needed)

o MPI Forum convenes since Jan 2008
Sep 2008: MPI 2.1 (merges and minimal changes)
Sep 2009: MPI 2.2 (bugfixes, APl compatibility)

New scalable graph topology interface

Enhancements to collectives (MPI_IN_PLACE, Reduce_scatter_block)
Access restrictions to send buffers lifted

Better support for libraries (MPI_Reduce_local)

o Deprecated C++ bindings (!)

0o MPI 3 - Updates for the future

Better interoperability, updated collective
operations, fault tolerance
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Focus on MPI Collective Operations

O

O

O

O

High level of abstraction
Limited set of complex data movement operations

Lifts MPI from “the assembler of parallel
programming” to “the C of parallel programming’

Enables standard-optimizations, such as tree
structures for broadcast or reduce

But also network-specific optimizations

Performance portability across specialized architectures
Is one of the key points of MPI

Two examples: MPI|_Barrier and MPI_Bcast on
InfiniBand
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MPI_Barrier on InfiniBand

0 Standard algorithm: Dissemination

o o
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0 Uses logs(P) rounds
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Is this optimal?

0 No! Refine the model (1:N ping pong):
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N-way Dissemination

Round 0 Round 1
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Today’s fastest MPI Barrier on InfiniBand!

Refer to: Hoefler et al. “Fast Barrier Synchronization for
InfiniBand” IPDPS 2006, CAC workshop
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2"d Example: MP| Bcast

O InfiniBand offers Multicast
It's unreliable, but runtime practically € O(1)

stage 1: multicast (unreliable) stage 2: chain broadcast (reliable)

-

Constant-time algorithm in low-loss network
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MPI|_Bcast Results

o IMB 2-byte broadcast
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Refer to: Hoefler, Siebert et al. “A practically constant-time MPI Broadcast Algorithm
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Intermediate Conclusions

0 High level of abstraction
Simplifies implementation
Offers optimization potential
Enables performance portability

0 New directions
Nonblocking collective operations
Sparse collective operations
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Nonblocking Collective Operations

o Simple interface: MPI_Ibarrier()
Standard MPI| semantics

0 Enable new programming techniques
Decouple start from end (Hoefler et al. at SPAA’08)
Relax synchronization (Hoefler et al. at PPoPP’10)

0 Enable communication/computation overlap
Hide Iatency (cf. Alexandrov’s “early binding”)

Should be a standard technique for point-to-
point communications (is it yet?)
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Overlap potential

0o Polling vs. threaded progression
o 64 InfiniBand nodes, MVAPICH vs. LIbNBC

We assume ideal overlap (threaded has 2us constant overhead!)

Runtime (us)
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Applications?

0 Conjugate Gradient (3d Poisson,800% points)

Overlap boundary communication with local matrix product

InfiniBand Gigabit Ethernet (TCP)
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Refer to: Hoefler, Gottschling et al. “Optimizing a Conjugate Gradient Solver with Non-Blocking
Collective Operations ” Elsevier PARCO, Sept. 2007
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Some More Applications

3d Fast Fourier Transform (MPI_Alltoall):

Parallel bzip2 Overhead (MPI_Gather)
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Refer to: Hoefler, Gottschling et al. “Leveraging Non-blocking Collective Communication in
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Sparse Collective Operations

0o Now something completely different
= More power to the users!
= Specify arbitrary “flat” communication patterns
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MPI-2.2 New Topology Interface

o MPI_GRAPH topology to specify communication
Usable (scalable) since MPI-2.2
Also added weights

0 Enables intelligent process-to-node mapping

Of course NP-hard for general graphs
Discussed in literature (Traff, SC'02; Yu, SC’06)

0 Scalable reference implementation available
Already implemented in MPICH-2!
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MPI-3 (?) Sparse Collective Interface

0 Enables optimized communication schedules
Message scheduling equivalent to graph coloring
Again NP-hard in the general case
Good heuristics are ongoing rteac,earch

0 Example:
Sparse Gather

t 3,55

sendbuffer

receivebuffer ra




Scheduling Example
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Applications?

0 Sparse collectives are implemented in LibNBC
= Trivial scheduling / usability study

0 TDDFT/Octopus — trivial change (simpler than before)
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Intermediate Conclusions

0 Collective operations are a good abstraction!
Easy to use
High-level problem specification
Sparse collectives are even more powerful

o Overlapping computation and communication can
be beneficial
Relatively hard to get right
Depends on support in communication middleware
Depends on the application or algorithm
O Process mapping seems important
s it?
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Optimizing Collectives and Mappings

0 Network is the most vital part
Mandates collective algorithms and topology mappings
O Network is defined by:

Topology (Torus, Hypercube, Fat-Tree, ...)
Endpoint technology (Myrinet, InfiniBand, Portals, ...)

0 LogGP models most networks well

Ignores congestion in the network
Assumes full bisection bandwidth (FBB) (?)

0 Do FBB networks solve all problems?
No! (why?)
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Example: InfiniBand

0 30.2 % of Top500 (Jun 2009)
0 Static routing (1-5, 4 — 14):

1 (down) 8 port (to 9+10) 3 (down) port (fo 11+12)
2 (down) [ilaiizy 13 (down) 4 (down) |[WIZEEETL15 (down)
14 (down) 7 (down) 16 (down)
8 (down)
5 (down) 1,9,13 (up) Y
6 (down) 2,10,14 (up)
> 3,11,15 (up) 1,59 (up)
1o Up 3,7,11 (up)
7,11,15 (up) T,
5,9,13 (up) |3 e 8 port 2,6,10 (up)thjelelys
6,10,14 (up) crossbar 8,12, 16 (up) crossbar 412,16 (up) > el e144.8,12 (up)
A1.4A 578 9..12 13 Y 16
. . ;
> No full bandwidth (cf. Valiant’'s bound)
ra
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Quantifying Congestion

40 T T T T T 8000
Latency ==fm—
35 (% Bandwidth =¥ | 20900
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O
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(NetPIPE, IMB ping pong g 1
Netgauge one_one) Lower Bound! z

01 33.6 MiB/s 181.2 MiB/s 281.2 MiB/s 627.4 MiB/s

Reality? ; 5 | 0

Congestion Factor
Refer to: Hoefler, Schneider et al. “Multistage Switches are not Crossbars: e

Effects of Static Routing in High-Performance Networks ” IEEE Cluster 2008 L=
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Full Bisection Bandwidth !'= Full Bandwidth

O expensive topologies do not guarantee high bandwidth

0 deterministic oblivious routing cannot reach full bandwidth!
see Valiant’s lower bound

0 but deterministic routing has many advantages
completely distributed
very simple implementation

0 InfiniBand routing:
deterministic oblivious, destination-based
linear forwarding table (LFT) at each switch
lid mask control (LMC) enables multiple addresses per port

ra
L=
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InfiniBand Routing Continued

0 offline route computation (OpenSM)

0 different routing algorithms:

MINHQOP (finds minimal paths, balances number of
routes local at each switch)

UPDN (uses Up*/Down* turn-control, limits choice but
routes contain no credit loops)

FTREE (fat-tree optimized routing, no credit loops)

DOR (dimension order routing for k-ary n-cubes, might
generate credit loops)

LASH (uses DOR and breaks credit-loops with virtual
lanes)

ra
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Some Theoretical Background

L
L
L
L
L

model network as G=(V UV, E)

path r(u,v) is a path between u,v € V,

routing R consists of A(P-1) paths

edge load I(e) = number of pathsone € FE

edge forwarding index 7(G,R)=max, . l(e)
7(G,R) is a trivial upper bound to congestion!

goal is to find R that minimizes =(G,R)
shown to be NP-hard in the general case
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Routing based on SSSP
O we propose P-SSSP routing

0 P-SSSP starts a SSSP run at each node
finds paths with minimal edge-load i(e)

updates routing tables in reverse
o essentially SDSP

updates [(e) between runs

0O let's discuss an example ...
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P-SSSP Routing (1/3)

Step 1:
Source-node O:




P-SSSP Routing (2/3)

Step 2:
Source-node 1:




P-SSSP Routing (3/3)

Step 3:
Source-node 2:

(G,R)=2




How to Assess a Routing?

0 edge forwarding index is a trivial upper bound

O ability to route permutations is more important
bisect P into two equally-sized partitions

choose exactly one random partner for each node
O(P!/(P/2)!) combinations!

O our simulation approach:
pick N (=5000) random bisections/matchings
compute average bandwidth
shown to be rather precise (Cluster'08)

32
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Comparison to Real Systems

O ibdiagnet, ibnetdiscover, and ibsim

0 we extracted topology and routing from:
Thunderbird (SNL) — 4390 LIDs

thanks to: Adam Moody & Ira Weiny

Ranger (TACC) — 4080 LIDs

thanks to: Christopher Maestas

Atlas (LLNL) — 1142 LIDs

thanks to: Len Wisniewsky

Deimos (TUD) — 724 LIDs

thanks to: Guido Juckeland and Michael Kluge
Odin (IU) — 128 LIDs
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effective Bisection Bandwidth

Real-world Results

0.9
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effective Bisection Bandwidth

Some more Topologies
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Simulations are good, but still Simulations

0 we implemented our routing with OpenSM'’s file method

0 tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine — many thanks to Guido Juckeland)

0o Odinis standard fat-tree, Deimos’ topology:

288 fat tree * 288 fat tree * 288 fat tree
/I/zss /I/zzs /I/zss
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effective Bisection Bandwidth

Benchmark Results Odin

Simulation

0-8 | Odin MINHOP —+— " X
Odin UPDN -
Odin P-SSSP )I(- 1
| 16 32 64 128

Number of Endpoints

Simulation predicts 5% improvement

effective Bisection Bandwidth
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Benchmark
(Netgauge Pattern eBB)

0.8 I Odin MINHOP ——
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8 16 32 64 128
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Benchmark shows 18% improvement!

rA
(=
pervasivetechnolopylabs



Benchmark Results Deimos

Simulation
- Benchmark
@, (Netgauge Pattern eBB)
’.... 0.8 -
0.6 | 07 K

_________
rrrrrrrrr
.

0.6 P
0.5 | ]
0.4 }
0.3}
0.2 Deimos UPDN -

0.1 + Deimos P-SSSP *.

...
L

0.4

Deimos MINHOP ——
0.2 Deimos UPDN -3¢
Deimos P-SSSP 3*5.

32 64 128 256 512 1024
Number of Endpoints

effective Bisection Bandwidth

effective Bisection Bandwidth

Simulation predicts 23% improvement ¢ 3;2 64 198 258 5'12 1024
Number of Endpoints
288 fat tree H 288 fat tree H 288 fat tree BenChmark ShOWS 40% improvement!
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Intermediate Conclusions

O

O

P-SSSP routing for deterministic oblivious routing
(IB) works better than established methods

simulation shows increase in effective bisection

bandwidth over standard OpenSM routing
e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

benchmarks show even higher improvements
Odin 18%, Deimos 40%

Oblivious routing seems suboptimal
Adaptive routing is hard
Random routing needs bandwidth (we have enough in fat-trees)

Refer to: Hoefler, Schneider et al. “Optimized Routing for Large-Scale InfiniBand Networks”

IEEE Hot Interconnects 2009 -
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Effective Bisection Bandwidth

Adaptive Routing in Myrinet

0o 512 nodes Myri 10G two-stage folded Clos network
0 Netgauge, eBB with 50 MiB messages

Static routing Adaptive routing
1200 1200
Minimum ——
*\. ................ *%,’ Avel'age .
1 000 e, ""' MaXImum """ * """ T § 1 000
=
\ :
800 . S 800
\ N | :
600 F N\ T 5 600
\ W * @
vy ﬁ
400 P— o 400
g
200 E 200  Minimum
Average
0 . 0MaX|mum3I€
16 32 64 128 256 512 16 32 64 128 256 512
Number of Nodes Number of Nodes

Refer to: Geoffray, Hoefler “Adaptive Routing Strategies for Modern High Performance Networks” e
IEEE Hot Interconnects 2008 =S
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Final Conclusions

0 From a programmers perspective:

Specify communication at a high level
o Communication pattern

o Communication intensity

o Process arrival pattern?

We aim to simplify and extend specification possibilities

0 From a system designer’'s perspective:

Optimize for applications

o Choose model carefully (endpoint, pattern)
o Design topology and routing accordingly

o Provide hints to the upper layers?

> Parallel systems need to be optimized as a whole
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Backup Slides

Backup Shides
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effective Bisection Bandwidth

Even more Topologies

2-ary n-cube topologies (hypercube)
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effective Bisection Bandwidth
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