
IEEE Computer: Special Issue
Editor: Name, xxxx@email

The Convergence of
Hyperscale Datacenter and
High-performance Computing
Networks
Torsten Hoefler
ETH Zürich

Ariel Hendel
Scala Computing

Duncan Roweth
Hewlett Packard Enterprise

Abstract—The emergence of large-scale distributed data processing and complex datacenter
services led to an increase of intra-datacenter traffic. The characteristics of this emerging traffic
are similar to those in high-performance supercomputers. However, network technologies used
in supercomputers and datacenters are quite different and it is natural to ask whether they could
be unified. We discuss the differences and commonalities between these two workload types
and technologies and outline a path to convergence at multiple layers. We predict that emerging
smart networking solutions will accelerate that convergence.

INTRODUCTION

In recent years, datacenter computing has
experienced an unprecedented growth leading
from in-house server rooms to mega-, hyper-,
and warehouse-scale datacenters. The number of
network endpoints in these systems has passed the
size of the world’s largest supercomputers, which
themselves just reached the Exascale frontier.
The network of first-generation datacenters was
mostly serving data to external clients and sup-
ported simple distributed applications running in

the datacenter. However, with the advent of large-
data processing and machine-learning, datacenter
network requirements quickly incorporate aspects
of traditional high-performance computing. These
new traffic demands started a discussion whether
high-performance and traditional datacenter net-
working should converge. While the resulting
economy of scale is attractive, there are also
several aspects hindering convergence. In this pa-
per, we point out differences and commonalities
between high-performance and datacenter com-

Computer Published by the IEEE Computer Society © 2022 IEEE 1



IEEE Computer

puting and their impact on the technological de-
velopments in large-scale networking. We come
to the conclusion that smart high-performance
datacenter networks enabling both High Perfor-
mance Computing (HPC) and Mega Data Center
(MDC) workloads will be adopted in industry
soon.

HPC has always pushed the limits of com-
puting. The top-class systems, called supercom-
puters, have the highest concentrated compute
capacity on earth. While most supercomputers
are running multiple applications simultaneously,
they are designed to run a single “hero run”
application on the full machine to solve the
world’s most challenging problems such as find-
ing vaccines amidst a pandemic or training the
largest deep learning models. Within today’s tech-
nology constraints, supercomputers are no longer
built as a single server but consist of tens of
thousands of separate servers connected by a
high-speed communication network. The network
(aka., interconnect) is the most critical component
and supercomputer designs are centered around
particular network architectures. This makes the
network a major distinguishing factor because the
“single application” scenario often has stringent
latency and bandwidth requirements. One can say
that it is the interconnect that turns a set of
servers into a supercomputer.

HPC systems run parallel applications that
are most commonly implemented on distributed
memory supercomputers using the Message Pass-
ing Interface (MPI, [1]). MPI programs run
similar code as processes on each server and
algorithms are most often designed using the
bulk synchronous parallel (BSP) computation
model as a series of compute-communication-
synchronization phases. Here, the application can
only progress to the next phase once all pro-
cesses finish synchronization. This has later been
(re)discovered in MDCs as the problem with long
tails [2]. Numerous programming techniques can
reduce synchronization and communication over-
heads (e.g., [3], [4]), however, BSP applications
are limited by latencies in extreme scaling sce-
narios. In fact, the communication latency (tail)
distribution determines the system’s scalability
limits, and determines the maximum number of
processes a single application efficiently use [5].

Supercomputers have been overtaken in size

1 2 6 7 8

A
B C

3 4 5

HTTP/Get
ML training ssh session

6

A
B C

3 4 5

Simulation A
Simulation B Debugging

1 2 7 8 9

Cloud 
Datacenter

HPC
Datacenter

Clos topology
Low-diameter topology

east-west traffic

n
o

rth
-so

u
th

 traffic

Figure 1. Usage scenarios of datacenter and HPC
machines. The cloud datacenter serves multiple cus-
tomers with different interactive services, some of
them distributed (as the ML training job on machines
3-5). The HPC datacenter on the right primarily
serves three distributed simulation workloads where
clients are not waiting for an immediate answer.

by warehouse-scale mega-datacenters. The mod-
ern networked world creates the need to store and
process the data consumed by connected client
devices. Each of us now has multiple such mobile
devices and is generating and consuming an ever-
increasing amount of cloud-centric computation
and storage. Additionally, not all client endpoints
have necessarily humans consuming data or ser-
vices behind a device. As the Internet of Things
(IoT) gains popularity, hundreds of millions of
devices stream data such as images, videos, and
webpages to and from datacenters worldwide.
MDC scale at AWS, Google, Facebook, or Mi-
crosoft is larger than the largest single HPC
system and they run many more diverse simulta-
neous applications on the same compute, storage,
and network infrastructure in support of a larger
number of interactive end users. The scope of an
MDC operator is its global user base, growing
with adoption while the scope of an HPC operator
is a well-defined application capacity planned at
inception time. Figure 1 shows a sketch of HPC
and MDC workloads.

MDC systems run distributed applications in
which asynchronous processes communicate pair-
wise using programming interfaces such as Re-
mote Procedure Calls (RPC). These applications
rarely require the use of multi-server or global
synchronization, therefore reducing the influence
of latency on aggregate application performance.
Increased latency on a single communication

2 Computer



between endpoint pairs only affects individual
requests and not the whole application. Whenever
many-to-one communication patterns emerge in
MDC applications, for example incast patterns in
map-reduce or distributed file systems, developers
typically rely on soft-deadlines to mitigate the
impact of the long tail in response latencies.
The resulting applications do not stall under un-
bounded tail latency but rather compromise on
result quality or efficiency. This is achieved by
simply ignoring late RPC responses or launch-
ing them redundantly on different servers. Thus,
network deficiencies do not slow applications but
instead result in wasted capacity (which can be
recovered by adding more servers).

The traditional role of datacenters was to
store, process, and deliver the data to end-
customers driving so-called north-south traffic
from its servers to the Internet. When the Internet-
facing path was the bottleneck, the datacenter net-
work capacity could be relatively modest. How-
ever, in today’s era of distributed data analytics
and machine learning, the throughput and latency
requirements for interconnection networks have
grown steadily and the east-west traffic associated
with communications between servers dominates
by orders of magnitude. In that sense MDC traf-
fic resembles traditional HPC applications, albeit
with a more latency-forgiving model. For some
emerging applications it becomes apparent that
HPC and modern big data analytics (e.g., deep
learning, document search, or recommendation
systems) have similar computation and commu-
nication patterns. For example, much of machine
learning can be expressed as tensor algebra,
and collaborative filtering resembles traditional
graph analytics on bipartite graphs. The major
differences between those big data workloads
and traditional HPC workloads is that the for-
mer emphasizes programmer productivity, while
the latter emphasizes performance. Programming
environments may continue to evolve along dif-
ferent paths for various reasons but we argue that
the underlying workloads and their computational
characteristics are very similar and converging
quickly.

Yet, these workloads are executed using very
different interconnects: HPC networks are opti-
mized for highest performance while MDC net-
works follow traditional datacenter deployment

and operational philosophies. When looking into
the details, it becomes apparent that the lowest
levels have already converged, and commonal-
ities exist as we move up the stack. Further-
more, the addition of high-performance accelera-
tors (e.g., General Purpose Graphics Processing
Units, GPUs) with higher bandwidth demands
necessitates specialized networking in today’s
MDCs that lead to islands of HPC-like con-
nectivity. These systems often supplement the
frontend datacenter network with a specialized
HPC-like backend network. Examples include
Google TPU’s dedicated torus interconnect and
Azure HPC’s InfiniBand deployments connecting
GPU servers. This duplication leads to significant
inefficiencies—given that the lower layers are
already identical and just the communication pro-
tocols differ! In fact, endpoint solutions such as
AWS Nitro and Microsoft’s Catapult [6] attempt
to optimize existing Ethernet networks. From the
other side, Cray’s Slingshot technology [7] comes
from an HPC-centric view and adds Ethernet
compatibility. These examples show how require-
ments and solutions are suggesting a common
high-performance networking solution.

While the networking requirements of HPC
and MDC are similar at a high level, the devil lies
in the details. We now discuss a series of require-
ments where HPC and datacenter networking
differs, ranging from design and deployment phi-
losophy to application programming interfaces.
We comment on how fundamental each of these
differences is and hint that in-network compute
solutions based on smart network interface cards
(NICs) and switches will bridge many of those
differences in the future. We conclude each sec-
tion with a brief technology prediction.

Design and deployment philosophy
The most significant difference between the

two networking viewpoints is the way machines
are deployed. An MDC is naturally a loosely
connected set of servers from multiple vendors
that is incrementally expanded and upgraded.
The cabling infrastructure lives through multi-
ple generations of machines and technologies.
MDCs install fiber as a building infrastructure and
thus decouple the infrastructure and large parts
of the network topology from the servers. The
rack switch represents the architectural boundary

May/June 2022 3



IEEE Computer

between the datacenter network and the compute
servers. Multi-vendor support is fundamental and
builds on Ethernet for the physical layers and
the internet protocol (IP) for the higher levels.
Speed heterogeneity is also fundamental to MDC
networks where different servers may be attached
at different link speeds, and the interior network
links may be different from the endpoint speeds.
MDC operators cannot afford extensive downtime
for reconfiguration and must run multiple tech-
nologies at the same time. This incremental up-
grade in MDCs makes modernization challenging
and prohibits big jumps in technology.

Supercomputers are traditionally seen as one-
off installations and are often designed and ca-
bled as such: link speeds are identical for all
endpoints and for interior links; their networks
use components from a single vendor; plans for
upgrades are usually made before the initial in-
stallation. Given the importance and cost of high-
bandwidth interconnects, many supercomputers
go beyond Clos networks or fat trees as intercon-
nect topologies. Designs range from hypercubes
or high-dimensional torus networks [8] to more
cost-effective low-diameter topologies [9], [10].
Their deployment model allows supercomputers
to adopt radical changes to network technolo-
gies with each new generation of the system.
HPC sites run old and new systems in parallel,
migrating the workload before decommissioning
systems. This model of operation is expensive in
floor area, power, and cost, and HPC operators
are pressing for a more incremental approach.

The incremental deployment and back-
wards compatibility requirements hinder the
adoption of many innovative technologies in
MDCs. HPC systems will continue to spear-
head completely new, revolutionary directions
in technology.

Operations philosophy
Historically, datacenters and HPC centers took

very different views of their operations. This
was mandated by their clients: cloud datacenters
serve end-customers ranging from users of mobile
phones to banks and hospitals. They run I/O-
heavy workloads as live services where outages
are visible within seconds and can cause large

financial penalties. The data gathered, credit card
transactions for example, cannot be reconstructed,
and any losses are detrimental. Thus, the offered
services must be highly reliable and always avail-
able. Supercomputers have developed along a dif-
ferent path, one that trades reliability for perfor-
mance and cost, where small outages (a few hours
per year) can be tolerated. Individual jobs can
fail, provided they can be rerun within the time
allowed by the service level agreement (SLA) and
computational resources are over-provisioned to
allow this. This enables HPC operators to adopt
much more risky deployments in software and
hardware and in general be much more aggressive
than MDC operators in terms of network and
hardware technologies.

MDC networks prioritize network availabil-
ity by combining mechanisms to ensure partial
operation (e.g., separate network planes for fault
isolation) with distributed protocols for control
plane redundancy. HPC interconnects use sep-
arate management networks for reliability but
rely on a centralized control plane for the high-
performance network accepting short periods of
unavailability in favor of efficient management.
Applications running on MDCs implement relia-
bility using complex redundancy at the software
level (e.g., using standby services on separate
servers or replicated storage). Applications on
failed endpoints are quickly restarted on new
resources and connected back to the service. This
enables operators to use less reliable and cheaper
hardware at the cost of additional software over-
heads. HPC applications on the other hand rely
on restarting applications from checkpoints after
failures. To reduce restart cost at large scale, HPC
vendors use more reliable hardware than MDCs,
e.g., an HPC network protects communication
using both link level and end-to-end retry. Thus,
HPC software has low reliability overheads while
MDCs have to employ expensive replication and
consensus schemes. MDC network operators can
learn from HPC, with more advanced hardware
fault tolerance, e.g., use of link-level retry.

Security is an important consideration for any
computing system. HPC systems have tradition-
ally less stringent requirements for software [11]
and hardware security and often rely on physical
security (e.g., air gapped systems and building
protection) and avoid multi-tenancy on nodes.

4 Computer



The system administrator is a trusted entity and
users are admitted carefully to systems. MDC
systems serve sensitive third-party workloads and
their tenants do not trust the operator or other
tenants, who could literally be anybody with a
credit card. This necessitates much higher levels
of security in MDCs and motivates the emer-
gence of solutions such as trusted execution or
general confidential computing as well as secure
high-performance networking [12]. Recently, a
growing number of HPC systems hosts sensitive
data (e.g., medical records) in shared file systems
necessitating the need for MDC-like security con-
cepts.

MDCs are operated by a remarkably low num-
ber of personnel; their scale is so large that it is
not practical to have a human-based model for op-
erations and automation is a must. This mandates
a sophisticated monitoring, logging, and control
infrastructure that is not present in HPC systems.
Monitoring is key to both troubleshooting and
capacity management. We have not discussed
capacity, but “workload anxiety” is an important
factor in MDC network design. It arises from the
fact that the compute and storage capacity must
be provisioned to absorb unpredictable changes in
end user traffic and application workload profiles.
The network must tolerate such compute, storage,
and workload variations without a major redesign.

MDCs loathe considering physical affinity
when deploying or provisioning apps, because
capacity is deployed chronologically, and affinity
would complicate virtual machine (VM) allo-
cation strategies. Furthermore, availability SLAs
require that applications are distributed across
datacenters within a region or availability zone.
Locality is often considered in HPC application
deployment. While local placement is relatively
simple on recursively structured networks such as
fat tree or Clos networks, it is harder to achieve
on other topologies. Yet, full global bandwidth
networks promise to make placement decisions
less critical.

The fundamental difference lies in the
approach to (network) availability and secu-
rity. The operations side of HPC and MDC
networks will close the gap if HPC operators
implement the more stringent requirements
posed by MDC operations. Other aspects are
more similar and will likely converge.

Service diversity
MDCs reflect the business model of their

operators. An operator that sells VM capacity to
corporate customers (e.g., Microsoft) has differ-
ent network profiles, controls, and SLAs than a
“end-user-centric” operator focusing on interac-
tions between humans (e.g., Facebook). However,
all MDC operators use virtualization and multi-
tenancy to improve management and resource
utilization. Virtualization impacts the network as
it drives the use of overlays allowing traffic to be
routed to virtual rather than physical endpoints.
Current HPC interconnects have no such virtu-
alization or multi-tenancy needs and minimize
overheads using bare-metal addressing.

MDCs host a plethora of services with very
different traffic demands. For example, through-
put workloads such as backup traffic, replication,
and storage will share the same physical links
as latency-sensitive traffic such as distributed
computations and client interactions. This poses
stringent quality of service (QoS) requirements
on MDC networks. HPC networks run parallel
computation and file-I/O and QoS has not been a
priority, although it is becoming more important
as workload diversity increases. For example, all-
reduce operations used in many HPC and AI
applications perform well on a quiet network,
but traffic of other tenants can impact scalability
significantly [13]. It is interesting to note that the
HPC interconnects used in the US Exascale sys-
tems provide both QoS and advanced congestion
management.

The size of MDC networks is limited by the
electrical power that can be reliably supplied, not
by application scalability. Today’s MDC networks
span multiple locations and regions to ensure
availability in the face of massive faults. This
introduces high inter-datacenter traffic, which is
different from traditional intra datacenter east-

May/June 2022 5



IEEE Computer

west traffic and client facing north-south traffic.
HPC traffic, on the other hand, is dominated by
local communication that stays inside a single
datacenter.

Services running on MDC networks will
continue to require a wide range of QoS
classes. HPC systems will see a growing ser-
vice diversity, which will make MDC-style
mechanisms relevant.

Protocol stacks and layers
The Open Systems Interconnect (OSI) layers

specify a design pattern for communication pro-
tocol stacks ranging from the Physical Layer (L1)
to the Application Layer (L7). The distinction
between the layers is debatable but most Internet
services can be mapped to them. The datacenter
world has inherited much of the traditional In-
ternet protocol stacks and only recently started
moving towards more specialized protocols such
as Datacenter TCP (DCTCP) or Datacenter Quan-
tized Congestion Notification (DCQCN). HPC
networking, however, was always tuned for high-
est performance and does not provision the many
headers (one for each protocol level) needed for
a full OSI stack. For example, the transport layer
L3 rarely exists in HPC interconnects because the
network is not intended to be routable. Figure 2
compares the OSI layers of MDC and HPC
systems.

Application

Presentation

Session

Transport

Network

Data Link

Physical

HTTP / DNS / …

Protobuf

RPC

UDP / TCP / QUIC

Internet Protocol

IEEE 802.3

Ethernet Phy Ethernet Phy

MPI / UPC / …
(programming 
languages and 

libraries)

RDMA / RoCE(v2)

IP

IEEE 
802.3

fabric-
specific

OSI Layer MDC Example HPC Example

fully
converged

partially
converged

application
specific

L1

L2

L3

L4

L5

L6

L7

Figure 2. Open Systems Interconnect Layers.

At the electrical or optical signal level (L1),
MDC and HPC networks are identical. Economy
of scale in cabling and device infrastructure and
the numerous technical constraints ensure that
whoever gets there first is the winner. Ethernet has
been winning this race for years with 25G, 56G,

and more recently 112G lanes. Some HPC and
MDC networking technologies share L2-L4 but
other HPC technologies employ proprietary pro-
tocols with more specialized and slimmer headers
to achieve lowest overheads.

An interesting point of convergence is Re-
mote Direct Memory Access (RDMA), which has
long been used in HPC and storage networks to
enable high-performance communication between
the memories of a source and destination process
at L4 or L5. The protocol is typically completely
offloaded into a hardware implementation and
operating system bypass reduces both latency
and latency variance. Many MDC operators use
or plan to use it in production (Azure, Google
1RMA, AWS Nitro). At MDC scale however the
sharing of buffers and bandwidth between RDMA
and TCP/IP flows can victimize some traffic.

The simple hardware-based retransmit mech-
anisms in today’s RDMA network implementa-
tions rely on a lossless transport layer. However,
most datacenter networks traditionally operate,
like the Internet, with lossy routers that drop
packets when queues are full. While the debate
of lossy (endpoint-controlled flow rates) vs. loss-
less (network-controlled flow rates) has not been
concluded, the requirement of lossless network-
ing for RDMA raises a barrier to adoption in
the conservative datacenter environment. For this
reason, and to ensure lossless semantics, MDCs
relegate RDMA traffic into dedicated QoS queues
or physically separated in back-end networks.

With growing link speeds, the rela-
tive bandwidth overheads of additional packet
headers vanish and HPC networks may opt to
support more complex routable protocols. We
expect to see a move to message-based pro-
tocols over UDP/IP; RDMA over converged
Ethernet (RoCE) is the first indication of
this trend. Experimentation and optimization
at MDC and HPC scales will be driven by
discrete event network simulations such as
distributed ns-3, SST, or LogGOPSim.

Network utilization
Utilization equals cost efficiency, one of the

driving factors in both MDC and HPC systems.
Because many MDC applications can tolerate

6 Computer



high latencies, their networks could in principle
run at a high steady utilization and exceed 30-
40% load on average without undue latency ar-
tifacts. However, the impact of dropped packets
can be so detrimental that operators strive to keep
utilization of network links well below the point
at which packets start to be dropped.

Network utilization at network planning time
is about estimating the end-to-end performance of
all superimposed workloads. We found that ap-
plying network simulations to this phase enables
an analysis of how “hot” the individual links can
be operated at, what the switch buffer pressures
are, and of course the level of packet drops and
retransmits. Utilization at operation time is about
monitoring the same links and switch buffers, and
of course correlating drops and retransmits with
links and buffers. Both simulations and operations
can be SLA oriented, where then entire network
utilization is sensed from latency distributions
without much of a need to deal with bandwidth
as a metric.

Large-scale BSP-style HPC applications op-
erate in communication and computation phases,
creating bursty on-off traffic patterns with strin-
gent requirements on the latency distribution.
HPC networks are engineered to meet the peak
bandwidth requirements of bursty traffic. Utiliza-
tion can be increased when the system is running
multiple jobs, but contention between jobs, also
known as the “noisy neighbor” problem, leads to
critical latency variations. Performance isolation
between applications can mitigate this problem
and is thus a concern in both MDC and HPC net-
works. MDC operators enforce rate limiters at the
traffic source (typically a VM) to address network
performance isolation. In HPC, ensuring mini-
mizing performance variability requires limiting
the interaction between applications and their
traffic types because both system noise [5], [14]
and network noise [13], [15] have a detrimental
impact on application performance. The single
vendor model used in HPC networks has allowed
deployment of novel hardware congestion man-
agement mechanisms (e.g., [7]) that operate at
much finer granularity.

Static equal cost multipathing (ECMP) can
create congestion hotspots, especially with a
small number of communication-intensive flows.
Adaptive routing or packet spraying can increase

network utilization while controlling the danger
of transient packet drops. However, up until re-
cently most merchant Ethernet switches did not
offer adaptive routing or packet spraying because
MDC network endpoints do not support out-of-
order packet reception well. Recently, adaptive
flowlet routing, which promises to not change
packet ordering while providing some limited
form of adaptive path selection, was introduced in
MDC switches. Adaptive routing is a prerequisite
for the efficient use of low-diameter topologies
(common in HPC), essentially allowing the simul-
taneous use of minimal and non-minimal paths.
HPC network endpoints support out-of-order de-
livery using the RDMA transport where packets
carry destination addresses and can be written to
memory independently.

The rise of message-based protocols over
UDP/IP that relax ordering requirements at
the endpoints will enable routing approaches
that go beyond static multipathing. We also
predict fast-paced evolution in the congestion
avoidance aspects of these transports, and of
TCP itself.

Application and programming model
requirements

Application requirements are shifting on both
sides and seemingly converge in the middle.
HPC used to be very low-level where programs
run on the bare metal and access the network
through a slim message passing (MPI) [1], [16]
or remote memory access (RMA) [17] interface.
These interfaces can offer overheads of 100ns or
less to reach the wire and sub-microsecond end-
to-end. MDC applications are typically relying
on sockets with expensive copy semantics. Fast
RPC frameworks [18] can potentially bridge the
gap and enable transparent zero-copy in MDC
environments.

Task-based HPC programming models use
and extend these established interfaces to relax
BSP’s latency requirements. Traditional MDC
applications are relatively insensitive to laten-
cies but emerging workloads, for example, new
data analytics and deep learning workloads re-
semble BSP-style HPC applications and have
similarly stringent latency requirements. How-
ever, programmer productivity, rapid prototyping,

May/June 2022 7



IEEE Computer

and quick deployment play a more important
role than performance in MDCs. Only mature
applications and stacks are explicitly tuned for
performance. Many applications are written in
managed languages such as Java or Python and
run in virtualized environments with up to 10
microseconds just to get to the network. HPC
and MDC optimize at different levels: with HPC
focusing on best use of CPU and networking
resources and MDC focusing on productivity and
utilization of the system as a whole.

The different application requirements lead to
different network APIs. The transition to RDMA
networking occurred nearly two decades ago in
HPC which since then has operated with single-
digit microsecond latencies. RDMA allows most
of the communication work to be offloaded to the
network interface. Virtual memory mechanisms
allow the data path to bypass the host operating
system and move data directly between endpoint
memories. HPC programming frameworks expose
the remote memory access semantics to the ap-
plications directly to minimize overheads [17].
MDCs are only slowly realizing the potential of
these technologies [19]. Adoption is slow because
RDMA does not fit the traditional TCP/IP sockets
model and layered routing well but specifications
such as RoCEv2 and Priority Flow Control (PFC)
enable L3 routing and moves RDMA to MDCs.

Modern HPC networks go far beyond RDMA,
with the NICs performing message matching
and collective operations, offloading these tasks
from the CPU or GPU to improve overlap of
computation and communications. Smart NIC ap-
plications in MDCs are typically for the ben-
efit of the provider, ensuring isolation and not
to improve tenant applications. Multi-tenancy in
MDCs makes offloading user-level logic signif-
icantly more complex than in HPC, where the
NIC is typically owned by a single applica-
tion. Generic Smart NIC programming interfaces
such as streaming Processing in the Network
(sPIN [20]) promise a versatile acceleration strat-
egy that can be described as CUDA for the
network.

RDMA is ubiquitous in HPC systems to-
day while MDC operators are adopting RDMA
for a larger share of their traffic. Furthermore,
we expect to see significant developments in
programmable network accelerators in both
MDC and HPC networks moving beyond
RDMA’s simple deposit-to-memory semantics.

Conclusions and predictions
While datacenter providers are busy adjusting

to RDMA and packet-level routing approaches,
the research community is quickly moving on
to versatile stream processing in the network
with smart NICs and switches. New devices for
network acceleration and marketing terms such as
DPU, IPU, or NPU, are hyped and pushed into
the market by various vendors.

Their current main deployments are Mi-
crosoft’s catapult and AWS’ Nitro NICs - both
as infrastructure support. Their main use-cases
are to improve security (tenant isolation), ef-
ficiency (encapsulation and encryption offload),
and cost (specialization and in-house develop-
ment) for multi-tenant hosts. HPC systems yet
have to deploy smart NICs at scale. We predict
that their roles will soon include more generic
network processing and offload of application-
specific protocols to specialized hardware.

Since the main difference between HPC and
MDC lies in the upper layers of the proto-
col stack, smart NICs and in-network computa-
tion may unify both through use of application-
specific protocols. We will see socket-based
(TCP/IP or QUIC) applications and MPI applica-
tions on the same network and smart accelerated
NICs (cf. [21]) will implement the protocol differ-
ences. Furthermore, application-specific protocols
are an exciting opportunity for in-network accel-
eration in both the endpoints and the switches.
We will see switch-based in-network computa-
tion such as reductions for deep learning work-
loads [22] enabling workload specialization at all
levels.

The term “smart” in relation to network
components such as NICs or switches needs a
rigorous definition beyond the current marketing
terminology. We propose to call a network inter-
face smart if it allows stateful computation on

8 Computer



messages or flows. With such a clear definition
one can reason about the behavior of such smart
networks.

We conclude that while HPC and MDC are
converging at the application level, their fea-
ture requirements are different enough to support
two lines of development. The current ecosystem
forms an interesting feedback loop where ground-
breaking new technologies can be driven by and
tested in a risk-accepting HPC environment. Yet,
the mass market will remain Ethernet which
slowly absorbs successful technologies developed
in HPC. One recent example is the advent of
RoCE. Both HPC and MDC could significantly
reduce costs by using the same hardware infras-
tructure if it were configurable through uses of
smart NICs and switches. Central to the Ethernet
brand is the promise of interoperability, which
can form a solid base for both HPC and MDC
networks, yet, vendors supporting RDMA yet
have to live up to that promise.

In summary, while we do not know which
technology will dominate the mass market in
10-15 years, it is certainly going to be called
Ethernet.

Attribution
Binocular, House, Shield, Router, Switch, Computer,

Disks, based on icons from marfuah, Guilherme Furtado, scott

desmond, Creative Stall, Muhajir ila Robbi, DinosoftLab,

respectively, from thenounproject.com.

REFERENCES
1. Message Passing Interface Forum, MPI: a message

passing interface standard. Technical Report, Septem-

ber 2012.

2. J. Dean and L. A. Barroso, “The tail at scale,” Commu-

nications of the ACM, vol. 56, pp. 74–80, 2013.

3. T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable

Communication Protocols for Dynamic Sparse Data

Exchange,” in Proceedings of the 2010 ACM SIGPLAN

Symposium on Principles and Practice of Parallel Pro-

gramming (PPoPP’10), pp. 159–168, ACM, Jan. 2010.

4. T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementa-

tion and Performance Analysis of Non-Blocking Collec-

tive Operations for MPI,” in Proceedings of the 2007

International Conference on High Performance Com-

puting, Networking, Storage and Analysis, SC07, IEEE

Computer Society/ACM, Nov. 2007.

5. T. Hoefler, T. Schneider, and A. Lumsdaine, “Charac-

terizing the Influence of System Noise on Large-Scale

Applications by Simulation,” in International Conference

for High Performance Computing, Networking, Storage

and Analysis (SC’10), Nov. 2010.

6. A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,

K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-

ers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,

S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,

E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,

and D. Burger, “A reconfigurable fabric for accelerating

large-scale datacenter services,” SIGARCH Comput.

Archit. News, vol. 42, p. 13–24, jun 2014.

7. D. D. Sensi, S. D. Girolamo, K. H. McMahon, D. Roweth,

and T. Hoefler, “An In-Depth Analysis of the Slingshot

Interconnect,” in Proceedings of the International Con-

ference for High Performance Computing, Networking,

Storage and Analysis (SC20), Nov. 2020.

8. Yuichiro Ajima, High-dimensional Interconnect Technol-

ogy for the K Computer and the Supercomputer Fu-

gaku. Fujitsu Technical Review, June 2020.

9. J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-

driven, highly-scalable dragonfly topology,” SIGARCH

Comput. Archit. News, vol. 36, p. 77–88, jun 2008.

10. G. Kathareios, C. Minkenberg, B. Prisacari, G. Ro-

driguez, and T. Hoefler, “Cost-Effective Diameter-Two

Topologies: Analysis and Evaluation,” ACM, Nov. 2015.

In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis (SC15).

11. B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler,

“ReDMArk: Bypassing RDMA Security Mechanisms,” in

Proceedings of the 2021 USENIX Security Symposium,

USENIX, 2021.

12. K. Taranov, B. Rothenberger, A. Perrig, and T. Hoe-

fler, “sRDMA – Efficient NIC-based Authentication and

Encryption for Remote Direct Memory Access,” in Pro-

ceedings of the 2020 USENIX Annual Technical Confer-

ence, USENIX, Jul. 2020.

13. D. D. Sensi, S. D. Girolamo, and T. Hoefler, “Miti-

gating Network Noise on Dragonfly Networks through

Application-Aware Routing,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis (SC19), Nov. 2019.

14. F. Petrini, D. J. Kerbyson, and S. Pakin, “The case

of the missing supercomputer performance: Achieving

optimal performance on the 8,192 processors of asci q,”

in Proceedings of the 2003 ACM/IEEE Conference on

Supercomputing, SC ’03, (New York, NY, USA), p. 55,

Association for Computing Machinery, 2003.

May/June 2022 9



IEEE Computer

15. T. Hoefler, T. Schneider, and A. Lumsdaine, “The Effect

of Network Noise on Large-Scale Collective Commu-

nications,” Parallel Processing Letters (PPL), vol. 19,

pp. 573–593, Aug. 2009.

16. G. Ciaccio and G. Chiola, “Gamma and mpi/gamma on

gigabit ethernet,” in Proceedings of the 7th European

PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing Inter-

face, (Berlin, Heidelberg), p. 129–136, Springer-Verlag,

2000.

17. T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji,

W. Gropp, and K. Underwood, “Remote Memory Access

Programming in MPI-3,” ACM Transactions on Parallel

Computing (TOPC), Jan. 2015. accepted for publication

on Dec. 4th.

18. J. Soumagne, P. H. Carns, and R. B. Ross, “Advancing

rpc for data services at exascale,” IEEE Data Eng. Bull.,

vol. 43, pp. 23–34, 2020.

19. L. Barroso, M. Marty, D. Patterson, and P. Ranganathan,

“Attack of the killer microseconds,” Commun. ACM,

vol. 60, p. 48–54, mar 2017.

20. T. Hoefler, S. D. Girolamo, K. Taranov, R. E. Grant,

and R. Brightwell, “sPIN: High-performance streaming

Processing in the Network,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis (SC17), Nov. 2017.

21. S. D. Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schnei-

der, J. Beránek, L. Benini, and T. Hoefler, “A RISC-V in-

network accelerator for flexible high-performance low-

power packet processing,” in Proceedings of the 48th

Annual International Symposium on Computer Archi-

tecture (ISCA’21), Jun. 2021.

22. D. D. Sensi, S. D. Girolamo, S. Ashkboos, S. Li, and

T. Hoefler, “Flare: Flexible In-Network Allreduce,” in Pro-

ceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analy-

sis (SC21), ACM, Nov. 2021.

Torsten Hoefler is a Professor of Computer Science
at ETH Zürich, Switzerland. He is a key member of
the Message Passing Interface (MPI-3) Forum where
he chairs the "Collective Operations and Topologies”
working group. He has worked with high-performance
networking for more than 15 years beginning with
early InfiniBand systems and has played key roles
in the analysis and deployment of various InfiniBand,
IBM’s PERCS, Cray’s Aries and Slingshot networks,
as well as several large-scale Ethernet installations.
For more information see http://htor.inf.ethz.ch.

Ariel Hendel’s interest is Data Center Networks,

guiding silicon innovation to maximize large-scale
Data Center efficiencies. His interest is now applied
to enhancing the network simulation offering of Scala
Computing. Ariel co-founded, as Chief Architect, En-
fabrica Corporation to drive said efficiencies through
new semiconductors. Previously Ariel was an Infras-
tructure Technologist at Facebook, where he relied on
some of the switches and network components cre-
ated during his prior Distinguished Engineer tenure at
Broadcom Corporation.

Duncan Roweth is a Senior Distinguished Technol-
ogist at Hewlett Packard Enterprises in the UK. He
is working on development of future generations of
Slingshot, HPE’s Ethernet based network for HPC.
Duncan joined HPE with the acquisition of Cray,
where he was one of the instigators of the Sling-
shot program, working on the network components
that underpin the US exascale systems and wider
HPE/Cray product line.

10 Computer

http://htor.inf.ethz.ch

	Design and deployment philosophy
	Operations philosophy
	Service diversity
	Protocol stacks and layers
	Network utilization
	Application and programming model requirements
	Conclusions and predictions
	Attribution

	REFERENCES
	Biographies
	Torsten Hoefler
	Ariel Hendel's
	Duncan Roweth


