
14

QIRO: A Static Single Assignment-based Quantum Program
Representation for Optimization

DAVID ITTAH, ETH Zurich

THOMAS HÄNER and VADYM KLIUCHNIKOV, Microsoft Quantum

TORSTEN HOEFLER, ETH Zurich

We propose an IR for quantum computing that directly exposes quantum and classical data dependencies

for the purpose of optimization. The Quantum Intermediate Representation for Optimization (QIRO)

consists of two dialects, one input dialect and one that is specifically tailored to enable quantum-classical

co-optimization. While the first employs a perhaps more intuitive memory-semantics (quantum operations

act on qubits via side-effects), the latter uses value-semantics (operations consume and produce states) to

integrate quantum dataflow in the IR’s Static Single Assignment (SSA) graph. Crucially, this allows for

a host of optimizations that leverage dataflow analysis. We discuss how to map existing quantum program-

ming languages to the input dialect and how to lower the resulting IR to the optimization dialect. We present

a prototype implementation based on MLIR that includes several quantum-specific optimization passes. Our

benchmarks show that significant improvements in resource requirements are possible even through static

optimization. In contrast to circuit optimization at run time, this is achieved while incurring only a small con-

stant overhead in compilation time, making this a compelling approach for quantum program optimization

at application scale.

CCS Concepts: • Software and its engineering → Compilers; • Computer systems organization →
Quantum computing;

Additional Key Words and Phrases: Quantum compilation, dataflow optimization, intermediate representa-

tion, MLIR

ACM Reference format:

David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler. 2022. QIRO: A Static Single Assignment-

based Quantum Program Representation for Optimization. ACM Trans. Quantum Comput. 3, 3, Article 14

(June 2022), 32 pages.

https://doi.org/10.1145/3491247

1 INTRODUCTION

In recent years, the quantum programming landscape has seen a boom of new languages, tools, and
environments [5, 6, 9, 12, 17–19, 27, 30–32]. The focus of these projects varies widely, ranging from
low-level interfaces for prototype hardware [9, 30] to high-level algorithm development [5, 12, 32].
When tasked with supporting common components of the compilation stack, these projects have

Authors’ addresses: D. Ittah and T. Hoefler, ETH Zurich, Raemistrasse 101, 8092 Zurich, Switzerland; emails:

david.ittah@mail.mcgill.ca, htor@inf.ethz.ch; T. Häner and V. Kliuchnikov, Microsoft Quantum, 1 Microsoft Way, Redmond,

WA 98052, USA; emails: thhaner@microsoft.com, v.kliuchnikov@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2643-6817/2022/06-ART14 $15.00

https://doi.org/10.1145/3491247

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

https://orcid.org/0000-0003-0975-6448
https://orcid.org/0000-0002-4297-7878
https://orcid.org/0000-0002-7076-5864
https://doi.org/10.1145/3491247
mailto:permissions@acm.org
https://doi.org/10.1145/3491247

14:2 D. Ittah et al.

opted for one of two approaches; either (1) a complete (re-)implementation of these components
or (2) re-use of existing infrastructure by embedding the domain-specific language in a widely-
used programming language such as Python. Indeed, most quantum programming languages that
target Noisy Intermediate-Scale Quantum (NISQ) [28] hardware are embedded in a classical
programming language. Such embedded domain-specific languages (eDSLs) can be viewed as
libraries that generate a data structure representing a quantum circuit. These data structures can
be seen as very simple and flat intermediate representations (IRs) without any control flow.

In light of the large number of quantum gates required to achieve practical quantum speedups,
however, it is clear that a more advanced IR is needed to support large-scale algorithms. Indeed,
many chemistry applications of practical interest require between 109 and 1015 gates [29, 33] and
applications in the domain of cryptography similarly lead to programs with 1010 gates [11, 14].
Consequently using flat data structures such as lists of gates1 or directed acyclic graphs (DAGs)

to represent quantum programs is infeasible at application scale. Instead, a special purpose IR that
incorporates classical and quantum control flow is needed.

Designing a more advanced IR for quantum programs poses some unique challenges not present
in classical computing. Most notably, “values” held in qubits cannot be copied due to the no-cloning
theorem of quantum mechanics [25, Box 12.1]. Existing quantum IRs such as the recently proposed
QIR [10] therefore opt to only represent references to quantum data, while operations on qubits
are modeled via side-effects. Unfortunately, such a representation severely limits reuse of existing
compiler components, which often rely on the dataflow to be explicit in the IR. As a remedy, we
introduce a quantum-analog of SSA2 where dataflow is explicit.

The no-cloning theorem might also seem to rule out a large set of classical program optimiza-
tions that rely on the duplication of values across the program such as common sub-expression

elimination (CSE). However, such techniques are useful for optimization of mixed quantum-
classical programs, as illustrated by the example in Figure 1(b): While two successive CNOT (com-
monly CX) gates may be eliminated from the IR if they are applied to the same qubits, it is difficult
to carry out such an optimization in the presence of dynamic accesses to quantum registers, espe-
cially if dataflow is not explicit in the IR. However, if existing optimization passes such as partial
evaluation succeed at inferring, e.g., that i=k=0 and j=h=1, then the two CNOTs may be removed
by leveraging our optimization dialect, which directly exposes (quantum and classical) dataflow.
Classical program optimization thus immediately increases the usefulness of quantum-specific op-
timization passes.

1.1 Quantum Multi-Level IR

In this work, we introduce the Quantum Intermediate Representation for Optimization

(QIRO), an IR for universal quantum computation that leverages MLIR [21] to support quantum-
classical co-optimization. In contrast to existing IRs for quantum computing, we design our
optimization dialect in a way such that data dependencies are explicit for both quantum and clas-
sical variables. This enables the use of existing infrastructure as well as the development of future
quantum-specific optimization passes that leverage dataflow analysis. Figure 1(b) depicts how a
code fragment is translated from our input dialect (Quantum) to the optimization dialect (Quan-

tumSSA). An IR-specific optimization transforms the code in the middle section to that of the
bottom section by consolidating combine and extract instructions, which are used to represent
quantum register accesses in the optimization dialect. Optimizing such patterns in the IR enables

1Representing a quantum program as a flat list of gates is similar to representing a classical program as a list of ALU

instructions without any control flow.
2Static Single Assignment (SSA) is an IR property where each variable is assigned exactly once, see Section 2.1.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:3

Fig. 1. (a) Proposed compilation stack incorporating our IR infrastructure, along with the features and main
concepts of the different levels. (b) In the input dialect (Quantum), operations act on unique qubit references
via side-effects (memory-semantics). We designed our optimization dialect to facilitate dataflow analysis and
to maximally leverage existing optimization infrastructure. Therefore, operations in the optimization dialect
(QuantumSSA) consume and return quantum states (value-semantics) and quantum register accesses are
translated to pairs of extract/combine instructions.

subsequent optimizations (such as the CX-CX elimination) by exposing quantum data dependen-
cies inside registers.

The use of MLIR presents significant benefits over a single-level IR such as LLVM. For exam-
ple, our approach leverages several application-specific abstractions from MLIR such as classical
(low-level) computation, domain-specific quantum computation, and specialized affine loop repre-
sentations. Furthermore, language or domain-specific optimizations are comparatively difficult to
implement in LLVM due to a lack of high-level information. LLVM’s rigidness implies that domain-
specific operations must be represented by opaque functions, and additional types by opaque point-
ers (the approach taken by QIR, see Section 7). In contrast, MLIR provides multiple abstractions via
which to interact with the IR on a high level, even across application domains. This includes, for
instance, extensible types that can be mixed and matched, operation attributes for compile-time
information, and operation traits for the reuse of passes in an extensible system (see Section 2).

Finally, MLIR features an extensive validation mechanism for operations, types, and traits. We
leverage this mechanism to express invariants of the IR and to statically enforce constraints on
quantum operations wherever possible.

1.2 Contributions

We design and implement QIRO, a novel IR for quantum-classical co-optimization in MLIR. Our
dual dialect approach guarantees simple translation from high-level quantum programming lan-
guages as well as broad re-use of existing compilation infrastructure for optimization.

In short, our main contributions are:

• We propose an optimization dialect, which can be seen as a quantum-analog of SSA. The
optimization dialect (1) is compatible with the no-cloning theorem and (2) allows for reuse
of existing compiler components (quantum and classical dataflow is explicit in the IR).

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:4 D. Ittah et al.

• We define a higher-level IR that serves as an input dialect with the same semantics that
are commonly used for quantum IRs, so-called memory-semantics (quantum operations are
modeled as side-effects).
• We leverage existing work (MLIR) to implement the two proposed dialects, including the

lowering from the input dialect to the optimization dialect.
• We describe how a variety of existing quantum programming languages can be mapped to

our input dialect.
• We show that our IR enables optimization and resource estimation at application-scale up

to 5-6 orders of magnitude faster than existing frameworks that rely on optimization at run
time such as Qiskit [9] and ProjectQ [31].
• We implement several optimization passes that aim to reduce the quantum resource re-

quirements (operations and qubits). We demonstrate that for Shor’s algorithm, practically
all (∼99.8%) savings identified by ProjectQ’s run-time circuit optimization may be obtained
statically, at significantly lower cost in terms of optimizer run time.

By directly exposing quantum and classical dataflow, QIRO enables future quantum and
quantum-classical optimizations that make use of this information. Combined with its advantages
in terms of compilation time, our IR may serve as a helpful tool for resource estimation of optimized
quantum-classical programs. In turn, this allows for more efficient hardware-software co-design
and for achieving a quantum advantage for real-world problems once fault-tolerant quantum com-
puters become available.

2 BACKGROUND

This section provides a short introduction to classical IRs, compiler optimization, and quantum
computing. For more in-depth treatments of these subjects, we refer the reader to the textbooks
by Aho et al. [1] and Nielsen and Chuang [25], respectively.

2.1 Intermediate Representation

In general, intermediate representations (IR) are extremely useful for the implementation of multi-
language/multi-architecture compiler suites, as well as simplifying and enhancing verification,
analysis, and optimization tasks. While various forms of intermediate representations exist, SSA
and SSA-based IRs have played a key role in the design of our approach, so we will briefly introduce
these concepts below.

Static Single Assignment. A common property of intermediate representations in compilers of
imperative languages, SSA form mandates that every value is assigned exactly once (in a static
sense), while imposing no restrictions on the number of uses. In order to handle assignments to a
variable from different control paths, IRs traditionally rely on the use of a pseudo-operation called
the ϕ-function. At points of control flow merges, these ϕ-functions represent the selection of the
correct value from a set of assignments according to the actual execution path. This encodes the
static uncertainty of where a value in use was defined, while also obeying the single-definition
rule. The code listing below illustrates the use of ϕ-functions with a translation from pseudo-code
(left) to SSA-form (right).

1 if (cond)
2 x = 6
3 else
4 x = 4
5 y = x*2

−→

1 if (cond)
2 x1 = 6
3 else
4 x2 = 4
5 x3 = phi(x1 ,x2)
6 y1 = x3*2

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:5

Having a representation in SSA form is of great advantage to certain optimizations as data de-
pendencies are explicit in the program structure. Reaching definitions analysis3 becomes obsolete,
def-use graphs remain compact, and dataflow analysis is simple and sparse, all of which are bene-
ficial to optimizations that rely on such information.

SSA-based IRs. SSA form has been used for many internal compiler representations, including
GCC’s GIMPLE, LLVM IR, and others. We briefly describe LLVM as it has had a strong influence
on the design of MLIR, which we use in this work.

LLVM [20] models an architecture close to traditional processors with a RISC-like instruction
set. It features an infinite set of registers represented by SSA values (of primitive type: Boolean,
integer, floating-point, pointer), which exposes the dataflow of the program. This allows LLVM to
perform transformations without expensive dataflow analysis. Control flow is also explicit in the
IR by organizing function bodies into basic blocks, i.e., sections of linear code that always end in
a terminator operation that transfers control to another block. Merging control flow with regards
to SSA value definitions is handled using explicit ϕ instructions, in direct correspondence with
theoretical ϕ-functions.

2.2 MLIR

In contrast to the rigidity of LLVM, MLIR [21] provides an extensible representation with infras-
tructure for transformations, analysis, and debugging. There exists a variety of mechanisms to
enable and manage extensibility in MLIR.

An extension to MLIR is structured into a dialect, akin to a namespace, in which all specialized
types, operations, and other IR objects are defined. An operation is the fundamental unit of execu-
tion in MLIR, similar to instructions in LLVM. Each operation defines its own semantics, allowing
dialects to represent constructs at arbitrary levels of abstraction. It is important to note that this
freely extensible system need not result in a proliferation of disjoint and self-contained dialects.
Instead, dialect components such as operations, but also types and transformations, can be freely
mixed and reused across dialects.

Moreover, MLIR provides an extensive IR validation mechanism, with which to verify require-
ments upon IR construction, invariants across transformations, and so on. Verifiers can be defined
at the level of operations, types, and traits. These constructs are vital to the extensible system, and
encourage designers to focus on reusable and modular components, without inhibiting dialect-
specific implementations where appropriate.

The following table summarizes the syntax of relevant MLIR components described in this sec-
tion. In order to avoid naming collisions between dialects, operation and type names besides the
built-in ones are prefixed with a dialect shorthand.

Construct Syntax Example

SSA Value % %0
Symbol (e.g. function name) @ @mod
Block name ˆ ˆwhile
Dialect Prefix dp. std.
Dialect Operation dp.name scf.for
Dialect Type !dp.name !linalg.range

3A definition of a variable d reaches a point in the code p if there is an execution path from d to p with no occurrence

along that path that ends the validity of d [1]. This form of dataflow analysis becomes obsolete in SSA form since every

variable has exactly one definition.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:6 D. Ittah et al.

Fig. 2. Modulo function implemented in MLIR.

The MLIR code of a modulo function in Figure 2 will be used to illustrate the concepts that
follow. At its core, MLIR employs a functional form of SSA, which distinguishes itself from tradi-
tional ϕ-based SSA forms (such as the one found in LLVM) via the use of block arguments. Basic
blocks (e.g. L5, L11) that form the nodes in the control-flow graph use block arguments for values
that are defined in multiple parent blocks. Every block must end in a terminator operation that
determines where to transfer control next (e.g. jump, conditional branch (L9), return (L12)). Termi-
nators that transfer control to a block with arguments must provide the desired values, similar to a
function call. SSA values in MLIR can appear as either block arguments (e.g. %a_0 on L5), operation
operands (e.g. %a_0 on L6), or operation results (e.g. %cond_1 on L8), and always have associated
type information (e.g. i64) available. Compile-time arguments to operations can also be stored in
attributes instead of SSA values, such as the "uge" attribute telling the cmpi operation to perform
an ‘unsigned greater or equal than’ comparison (L8).

Another advantage of MLIR is its capability to represent hierarchical code. Operations can de-
fine regions, which themselves contain other operations, allowing for arbitrary nesting. A function
in MLIR (e.g. func @mod on L1) is such an operation with a single nested region (L2-L12) containing
the function body. As a consequence, loop nests for example need not be represented as linearized
control flow via blocks and branches, but can use nested loop operations if more appropriate. The
affine dialect makes extensive use of this, and we will later see how this benefits resource estima-
tion (see Section 5.4). The code listing below illustrates the difference in representation between
linearized control flow (left) and structured control flow (right), omitting some boilerplate in com-
puting the loop condition to highlight the structural difference.

1 %i = constant 0 : index
2 br ^header
3 ^header:
4 cond_br %loop_cond , ^body , ^exit
5 ^body:
6 cond_br %if_cond , ^true , ^false
7 ^true:
8 ...
9 br ^more_body

10 ^false:
11 ...
12 br ^more_body
13 ^more_body:
14 br ^header
15 ^exit:

⇐⇒

1 scf.for %i = 0 to 100 {
2 scf.if %if_cond {
3 ...
4 } else {
5 ...
6 }
7 }

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:7

Several transformation mechanisms are available in MLIR. Every operation can implement spe-
cialized hooks for canonicalization and folding purposes. A DAG-to-DAG pattern rewriter simpli-
fies the implementation of transformations that can be expressed as a simple replacement of one
DAG pattern with another. A DAG pattern constitutes of a set of operations connected by the us-
age of values (via arguments) and their definitions (via return values), so-called def-use chains (e.g.
the operations subi (L6) and cmpi (L8) in Figure 2 are linked via the def-use chain of the value %a_1).
The pattern rewriter can then identify patterns by traversing def-use chains in the IR, and trans-
form any matches accordingly. Besides the pattern rewriting framework, general operation passes
can be written that arbitrarily modify an operation and all those nested within. Finally, further
infrastructure is provided to simplify dialect lowering and type conversions.

2.3 Quantum Computing

Quantum State. The quantum analog of a classical bit is a quantum bit or qubit. Whereas a
classical bit can be in one of two states at any given time, a qubit is in a complex superposition of
two basis states |0〉 , |1〉 corresponding to the values 0 and 1, respectively. The state |ψ 〉 of a qubit
can thus be written as

|ψ 〉 = α0 |0〉 + α1 |1〉 ,
where α0,α1 ∈ C are complex numbers, so-called probability amplitudes, such that |α0 |2+ |α1 |2 = 1.
As the name suggests, these complex numbers are related to probabilities. Namely, measuring a
qubit yields a classical bit equal to 0 or 1 with probabilityp = |α0 |2 or |α1 |2 = 1−p, respectively. Mea-
surement also collapses the state onto the observed outcome, meaning that the post-measurement
state will be |0〉 or |1〉.

The quantum state |ϕ〉 of n qubits may be written as a superposition over all 2n n-bit strings,

|ϕ〉 = α0 |0 · · · 0︸︷︷︸
n

〉 + · · · + α2n−1 |1 · · · 1︸︷︷︸
n

〉 ,

where the amplitudes again satisfy the normalization condition
∑

i |αi |2 = 1. Usually, the n-bit
strings are interpreted as integers, resulting in a shorter notation:

|ϕ〉 =
∑

i

αi |i〉 .

Measuring all n qubits collapses the state onto |i〉 with probability pi = |αi |2 and yields the
outcome i .

In contrast to the state of a classical bit, general quantum states cannot be copied due to the
no-cloning theorem [25, Box 12.1]. Specifically, the theorem implies that there exists no unitary
operator (see below) U such that U |ϕ〉 |0〉 = |ϕ〉 |ϕ〉 for all states |ϕ〉.

Quantum Operations. Similarly to classical computers, the state of a quantum computer may be
altered by applying quantum operations to qubits. These operations can be represented as unitary4

matricesU ∈ C2n×2n
, and the state after applying a quantum operation with matrix-representation

U is

|ϕ ′〉 = U |ϕ〉 ,
where |ϕ〉 is interpreted as a column vector of amplitudes (α0, . . . ,α2n−1)T and then multiplied
with the matrix U . The inverse of an operation is defined by its Hermitian adjoint (conjugate
transpose), denoted U †. Operations that are hermitian5 form their own inverses, and commonly
appear in optimization techniques.

4Recall that U is unitary if U †U = U U † = 1.
5Recall that U is hermitian if U = U †.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:8 D. Ittah et al.

Fig. 3. Common single- and multi-qubit gates. Rx and Ry (not shown) are defined analogously to Rz, with

Rx (θ) = e−iθ X /2 and Ry (θ) = e−iθY /2. The collection of gates shown is a superset of the universal gate set
{CX ,H , S,T }.

A few common single-qubit gates are shown in Figure 3, such as the Hadamard gate H , the
Pauli X , Y , Z gates, and the T and S gates. Moreover, we use the standard definition from Nielsen
and Chuang [25, Exercise 4.1] for the rotation gates R, Rx , Ry, Rz. Many important multi-qubit
gates are controlled versions of single-qubit gates, which apply the single-qubit gate only on the
subspace where all control qubits are equal to |1〉. An n-ary controlled single-qubit gate U can be
written as

cU = (1 − |1 · · · 1〉 〈1 · · · 1|) ⊗ 1 + |1 · · · 1〉 〈1 · · · 1| ⊗ U ,
where ⊗ is the Kronecker product and |i〉 〈i | denotes the projector onto |i〉. For example, the con-
trolled NOT operation (or CNOT /CX) is a controlled X gate and is also shown in Figure 3.

A set of quantum logic gates G is termed universal if for any unitary U ∈ 2n × 2n and preci-
sion parameter ϵ , there exists a finite sequence of gates S = Gm ...G2G1 where Gi ∈ G such that
max |ψ 〉 | |(S − U) |ψ 〉 | | ≤ ϵ . That is, G can be used to approximate U to arbitrary precision. An
example of a commonly used universal gate set is the Clifford+T set {CNOT ,H , S,T }.

Execution Model. We model quantum computation using a classical “host” computer in combi-
nation with a quantum co-processor, or quantum processing unit (QPU), with bidirectional
real-time communication available. The QPU must be able to support (at minimum) state prepara-
tion, a universal gate set, and measurement. A quantum program then consists of a combination
of classical and quantum instructions. In each step of the program, the classical host may send
sequences of quantum instructions to the quantum co-processor for execution. The responsibility
of managing and communicating with the quantum co-processor falls on the quantum runtime

environment (RTE), in particular for such tasks as qubit allocation. Consequently, the intricacies
of quantum memory management are not considered for the compilation process presented in this
work. Sequences of quantum operations may be seen as quantum circuits similar to classical logic
circuits. Once the circuit has been executed, the co-processor can return measurement outcomes
to the classical host, which may also use these outcomes to alter the execution path.

We distinguish two phases of a program’s lifecycle for the purposes of optimization, defined
below:

• compile time: The program is analyzed and transformed in a fully static way, without the
execution of either classical or quantum program parts. In particular, program inputs are
unavailable at this stage.
• run time: Strictly speaking, this term might be used to describe the execution stage of the

program on quantum hardware. However, in the context of optimizations, we also consider
any circuit generation phases to be at run time. The reason is that such phases already per-
form “run-time” operations such as classical program execution, control flow resolution, and

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:9

program input propagation, clearly distinguishing it from the static scenario above. The ex-
ecution of classical meta-programs that perform circuit generation in eDSLs falls into this
category.

3 A QUANTUM PROGRAMMING STACK

An overview of the proposed quantum programming stack is presented in Figure 1(a). We envision
that high-level quantum programming languages are translated to QIRO in the proposed input di-
alect (labeled Quantum in the diagram), which can then be lowered to the optimization dialect (la-
beled QuantumSSA). Code examples for both dialects can be found in Figure 1(b) and Figure 4. We
designed the optimization dialect specifically to enable quantum-classical co-optimization and to
enable maximal reuse of compiler components by exposing data dependencies explicitly in the IR.
In addition to quantum-specific optimization passes, the IR may thus be optimized using classical
transformation passes such as inlining, loop unrolling, and common subexpression elimina-

tion (CSE). In a last target-specific step, the optimization dialect may be lowered, e.g., to LLVM
IR [20] for simulation, execution on hardware, or resource estimation.

The design of QIRO is guided by the following principles:

(1) Lowering of existing programming languages into the IR must be simple.
(2) The IR must be capable of supporting state-of-the-art optimization algorithms (quantum and

classical).
(3) The IR should enable re-use of existing compilation infrastructure.

We propose two MLIR dialects in order to separate the first requirement from the other two,
which are quite different in their nature. As their names suggest, the goal of the input dialect
is to enable simple and efficient lowering from existing quantum programming languages, while
the optimization dialect is geared toward enabling maximal re-use of existing infrastructure and
supporting a wide range of optimizations. Structurally, the two dialects primarily differ in the
semantics of how quantum operations interact with qubits.

The input dialect represents qubits using memory-semantics. That is, qubit allocation returns a
unique reference to a qubit. Quantum operations that act on such qubit references do not consume
the qubit value, and affect the quantum state via side-effects. Qubit registers function in a similar
way, in that allocation returns a unique reference to a register of newly-allocated qubits. An im-
mediate benefit of using memory-semantics is that the structure of the IR inherently prevents a
program from violating the no-cloning theorem. As each operation always interacts with the state
of the processor via side-effects, there simply is no mechanism available via which a quantum state
could be copied. We note, however, that it is not possible to statically guarantee that the same qubit
is not passed multiple times to the same quantum operation (and thus aliased), since we allow for
quantum register access using dynamic indices. Such cases may be addressed by emitting code
that performs this check at run time, e.g. through the RTE.

By contrast, the optimization dialect can be viewed as a quantum-version of SSA that emulates
value-semantics. By this, we mean that quantum operations consume and return quantum state
values instead of operating on qubits via side-effects. These values represent the state of a qubit at
a particular time-step in the execution of the quantum program. Note however that such quantum
state values are never computed as they would be in a classical setting, instead they merely pro-
vide a representation for the purposes of SSA. Using SSA in this way comes with similar benefits
to its classical counterpart: (1) the dataflow graph is made explicit in the IR and (2) quantum op-
erations in this dialect are free of side-effects, facilitating optimization (e.g. dead-code elimination
for operations whose return values are never consumed).

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:10 D. Ittah et al.

Table 1. Types Defined by the Quantum Dialects

Type Quantum QuantumSSA

Qubit !q.qubit !qs.qstate
Qubit Register !q.qureg<n> !qs.rstate<n>
Native 1-Qubit Gate !qs.u1
Native 2-Qubit Gate !qs.u2
Circuit !qs.circ
Controlled Op !qs.cop<n, baseT>

n - register size/number of control qubits.

baseT - type of the underlying operation.

4 THE QUANTUM DIALECTS IN DETAIL

In this section, we discuss the two proposed dialects in detail, including how to map existing
quantum programming languages to the input dialect and how to lower the input dialect to the
optimization dialect.

4.1 Describing Quantum Programs

In MLIR, all operations are grouped into self-contained units called modules, allowing the compiler
to process these in parallel. The region of a module is then usually composed of subroutine defini-
tions and external declarations. We distinguish between classical and quantum subroutines. Purely
classical subroutines can be placed inside an MLIR function, while quantum program segments can
be placed inside quantum functions termed circuits.

The quantum dialects feature a powerful instruction set with which to interact with the quantum
co-processor. This set is composed of all the components for universal quantum computation: qubit
initialization into a known state, qubit readout (measurement), and a universal gate set (a set of
unitary transformations with which all unitary transformations can be approximated to arbitrary
precision).

Additionally, to represent operations at a higher level of abstraction, our IR also features meta-
operations (sometimes called functors [32]) that modify existing operations in some way. Unless
natively supported by the target architecture, these will be lowered via standard or user-defined
decomposition routines before execution on the quantum processor.

4.2 Types

QIRO defines qubit and quantum register types that are used to represent all quantum data. Higher-
level type abstractions, such as integers, fixed-point numbers, and so on, can be implemented
on top of these basic types. Each quantum dialect has its own version of the qubit and register
types, which reflects the distinction between value- and memory-semantics of the two dialects.
We introduce several additional types to represent quantum operations themselves: a basic type
for native single- and two-qubit gates, a type for circuits, and a type for controlled operations
(containing the base operation type and number of control qubits). We provide the full list of
types in Table 1. The dialect shorthands are q. for the input dialect (Quantum) and qs. for the
optimization dialect (QuantumSSA).

4.3 Operations

The quantum operations can be broadly separated into four categories: qubit management, native
gates, meta-operations, and user-defined operations. An overview can be found in Table 2.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:11

Table 2. Operations Defined by the Quantum Dialects (Dialect Prefixes and Types Omitted)

Qubit Management Native Gates Meta-Operations User-defined Operations
%qb = alloc H/X/Y/Z/S/T %q %op = ctrl %op, %q circ @name(%arg..) {...}
%r = allocreg(n) R/Rx/Ry/Rz(ϕ) %q %op = adj %op call @name(%arg..)
free %qb CX %qb, %q %circ = getval @name
freereg %r SWAP %qb, %qb apply %circ(%arg..)
%m = meas %q
%qb.., %r = extract %r[i..]
%r = combine %r[i..], %qb..

%qb - qubit value, %r - register value, %q - value of either quantum data type.

%op - any quantum op, @name - circuit symbol, %circ - circuit value.

n, i - integers, ϕ - floating point, %arg - any value.

Qubits and registers are allocated and initialized to the |0〉 state using the appropriate opera-
tions. Allocation errors due to space constraints or other reasons are expected to be handled by
the runtime environment. To reinitialize (or reset) a qubit, one can perform a combination of mea-
surement and conditional bit-flip. Note that qubit resources must be explicitly freed, which allows
us to enforce that quantum resources may not be used after deallocation, since the freeing opera-
tions act as sinks for quantum state values. Measurement operations return a classical bit value or
an array thereof, depending on whether the input is a qubit or a register. Note that measurements
are performed in the z-basis by default.

The usual single- and two-qubit gates used in the literature are provided as native gate oper-
ations and it is straightforward to extend the gate library. All native gates (excluding SWAP) are
overloaded to accept both qubits and registers as their target. The latter can be interpreted as a
foreach loop, meaning the gate is applied to all qubits inside the given register. Rotation gates
additionally accept a continuous angle parameter as either a constant (operation attribute) or a
variable (SSA value). A hermitian trait is attached to all self-inverse gates, which is used in peep-
hole optimizations.

As the current design of MLIR does not enable operations to directly act on other operations,
meta-operations instead act on SSA values representing a quantum instruction. These values can
be obtained from native gates by omitting the target qubit operands, which must be passed to the
meta-operation instead. Multiple meta-operations can also be chained by only supplying target
qubit operands to the final one.

Circuits act as “quantum functions”, in that they form a grouping of operations (quantum and
classical) that only have access to values provided as function arguments and those created inside.
To enable maximal flexibility, circuits are allowed to accept and return any type of values. There are
two ways to invoke a quantum circuit. A direct call via the circuit name, and an indirect application

via a generated circuit value. Indirect circuit application is intended for circuits that have been
modified by meta-operations. The code listing below illustrates the use of both constructs.

1 q.circ @qft(%r , %n) {
2 // define custom QFT operation
3 }
4

5 q.call @qft(%r , %n) // apply QFT
6

7 %qft = q.getval @qft
8 %qft_inv = q.adj %qft
9 q.apply %qft_inv(%r, %n) // apply inverse QFT

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:12 D. Ittah et al.

Table 3. Quantum Programming Constructs and their Representation in High-level Languages and QIRO

Constructs Q# Qiskit Silq QIRO

Allocation resArr = ClassicalRegister(n)
using (q = Qubit()) {} q := 0:B %q = q.alloc -> !q.qubit
using (r = Qubit[n]) {} r = QuantumRegister(n) r := array(n,0:B):B[] %r = q.allocreg(n) -> !q.qureg<n>

c = QuantumCircuit(r, resArr)
Deallocation automatic automatic automatic q.free %q : !q.qubit

q.freereg %r : !q.qureg<n>

Measurement let res = M(q) c.measure(r[i], resArr[i]) res := measure(q) %res = q.meas %q : !q.qubit -> i1
let resArr = MultiM(r) c.measure(r, resArr) resArr := measure(r) %resArr = q.meas %r : !q.qureg<n> -> memref<nxi1>

Native gates H(q) c.h(r[i]) q := H(q) q.H %q : !q.qubit
Rz(ϕ, q) c.rz(ϕ, r[i]) q := rotZ(ϕ,q) q.Rz(ϕ) %q : !q.qubit
CNOT(qc, qt) c.cx(r[i], r[j]) – q.CX %qc, %qt : !q.qubit, !q.qubit

User operations function Foo(args..) : resT {} def Foo(args..): def Foo(args..) {} func @Foo(args..) -> !resT {}
let ret = Foo(args..) ret = Foo(args..) ret := Foo(args..) %ret = call @Foo(args..) : (!argT) -> !resT

operation Bar(args..) : Unit {} bar = QuantumCircuit(m) def Bar(args..) {} q.circ @Bar(args..) -> !resT {}
Bar(args..) Bar = bar.to_instruction() args.. = Bar(args..) q.call @Bar(args..) : !argT -> !resT

c.append(Bar, r[0, m])

Meta-operations Controlled X(qc, qt) CX = XGate().control() if qc { %X = q.X -> !q.gate
c.append(CX, [r[i], r[j]]) qt := X(qt) q.ctrl %X, %qc, %qt : !q.gate, !q.qubit, !q.qubit

}
Adjoint X(q) Xdg = XGate().inverse() q := reverse(X)(q) q.adj %X, %qt : !q.gate, !q.qubit

c.append(Xdg, r[i])

Adjoint Bar(q) Bar = bar.to_instruction() q := reverse(Bar)(q) %Bar = q.getval @Bar -> !q.circ
BarA = Bar.inverse() %BarA = q.adj %Bar : !q.circ -> !q.circ
c.append(BarA, r[0, m]) q.apply %BarA(%q) : !q.circ(!q.qubit)

Conditionals if (res = One) { c.x(r[i]).c_if(resArr[j], 1) if res { scf.if %res {
X(q) q := X(q) q.X(%q) : !q.qubit

} } }

Loops for (i in 0 .. Length(r)) {} for i in range(0, len(r)): for i in [0, n) {} affine.for %i = 0 to %n {}
scf.for %i = %c0 to %n step %c1 {}

- - - - register size must be kept around as a value - - - -

repeat { – while res { ^repeat:
...
let res = M(q) res = measure(q) %cond = q.meas %q : !q.qubit -> i1

} until (res == Zero) } cond_br %cond, ^repeat, ^next

Automatic here refers to scope-based deallocation. As a special case in Qiskit, all operations must be called from a

circuit object (e.g. c.h()). This object-oriented notation is not to be confused with dialect prefixes in QIRO (q. and

qs.).

4.4 Meta-Operations

Meta-operations require some special care, as they are intended to modify other quantum opera-
tions in a way that must be consistent with the laws of quantum mechanics. For native gates, this
requirement is always satisfied. However, it is only legal to apply meta-operations to circuits (i.e.
user-defined operations) that are also unitary. In practice this implies that such circuits must not
contain any measurements, and may only contain calls to pure functions, conditions which are
asserted on the input IR.

Standard lowering routines for meta-operations on circuits can be placed anywhere in the pass-
pipeline, such as the one used in the benchmarks of Section 6. They may also enable certain
optimization opportunities, as described in Section 5.3. At the lowest level, adjoint/control de-
composition of native gates may be left to the runtime environment, until the final control qubit
count or adjoint parity is known.

QIRO also supports custom implementations of adjoint and controlled versions of circuits. These
must (1) be marked with a special attribute to identify them as adjoint/control decompositions, and
(2) follow the respective naming convention to identify them with the original circuit.

4.5 Mapping Quantum Languages to the Input Dialect

Since QIRO is capable of representing languages based on the widely used circuit model of quan-
tum computing, many such languages are able to benefit from performant static code optimization
enabled by our design. In Table 3 we show how high- and low-level constructs map to our IR from
a selection of languages with different foci, namely Q# (high-level quantum and classical code),
Qiskit (NISQ/eDSL), and Silq (intuitive algorithm development).

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:13

Fig. 4. An entanglement circuit is lowered from the input dialect to the optimization dialect. The qubit %qb
is entangled with a register %r of size %n using an affine loop. In the optimization dialect, loop structures
make use of loop-carried values to enable value-semantics.

Qubit and register allocation, measurement, and low-level quantum gates all map to our IR
in a straightforward fashion. Higher-level quantum operations should be translated to circuits,
whereas functions are reserved for purely classical code. An advantage of MLIR is the ability to
express both conditional expressions and for loops in the form of structured control flow, using
operation nesting rather than the flat block structure traditionally used in SSA. More complex
control flow can be represented using blocks, such as the while or repeat until success loops shown
in Table 3. Whenever possible, for loops should be mapped to the affine dialect to take advantage of
the dialect’s powerful optimization passes. For further information we refer to Appendix A, where
we discuss how Q# constructs may be mapped to our IR in more detail.

4.6 Lowering to the Optimization Dialect

The input dialect is lowered to the optimization dialect by recursively traversing the nested struc-
ture inside a module in a post-order fashion. This ensures that nested operations are replaced first,
since these need to be available when constructing the new parent operation. The main purpose
of the lowering pass is to transform from memory-semantics into value-semantics, as well as to
transform some convenience features into explicit code. Figure 4 depicts a small example program
lowered to the optimization dialect.

Gates. In the input dialect, gates act on qubit references implicitly via side-effects. To convert
this behaviour to value-semantics, a gate operation needs to generate a new state value for each
unique quantum argument. During lowering, the transformation pass keeps an updated map of
the most recent state value for each qubit reference. Gate arguments are then replaced with the
latest state value, and the map is updated with the return values of the quantum operation.

Circuits. Similar to MLIR functions, circuits are isolated portions of code that can only refer-
ence those SSA values defined in the body and argument list. Thus, the lowering pass can keep a
local map for qubit state values when entering a circuit, which is initially populated with the cir-
cuit’s arguments. The signature must also be updated to include the return type of each quantum

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:14 D. Ittah et al.

argument. Block terminators that transfer control flow back out of the circuit (often implicit in
the input dialect) are replaced with a return operation that returns all values present in the qubit
state map when reaching the end of the circuit (see Figure 4).

Loops. For loops from both the structured control flow (SCF) and affine dialects are lowered
to value-semantics by exploiting loop-carried values for quantum states, as shown in Figure 4. The
iter_args parameter defines these loop-carried values and provides their initial values. Closing
off the loop body, the yield operation returns the values to be passed to the next iteration, or to
be returned upon reaching the final iteration.

Register access. At its core, SSA form is best suited to represent dataflow of scalar variables.
When dealing with aggregate structures such as arrays (qubit registers) and global memory, it
has traditionally been difficult to directly represent these via SSA [1]. Consequently, memory is
frequently modeled and represented separately, such as in LLVM and MLIR. Memory references
can be used to load memory elements into scalar SSA values, which can be easily operated on,
and eventually stored back into memory.

This problem is also side-stepped in the input dialect, which conveniently represents qubit reg-
ister access via indices whenever the register value is used. This preserves the uniqueness of qubit
and register references required by the input dialect. However, it does obscure data dependencies
between individual qubits of the register in the dataflow graph. To enable optimizations requiring
single qubit dataflow, we make these data dependencies locally explicit in the optimization dialect.
Similar to the memory load/store model, individual qubits or qubit slices are extracted from reg-
isters and re-combined after use. Whenever possible, we use static data analysis to consolidate
such extract/combine operations in order to directly expose the dataflow of register elements. In
this way, we can exploit proper SSA semantics inside optimization passes, without needing to han-
dle register dataflow analysis for every optimization. This is in line with our design principle of
modularizing reusable components.

5 TRANSFORMATIONS & ANALYSES

QIRO supports and facilitates the implementation of many transformations and analyses impor-
tant to compilation of mixed quantum-classical programs. In particular, static optimization passes
are much better suited for large-scale quantum program optimization, in contrast to NISQ-focused,
run-time optimization systems, as we show in Section 6. Furthermore, quantum resource estima-
tion is a compute-intensive analysis that can profit from our proposed IR and compilation stack.

5.1 Classical Optimizations

MLIR provides us with a variety of useful transformations applicable to a program written in our
IR, maximizing reuse of compiler components where appropriate. The following MLIR passes can
be used out-of-the-box on mixed classical-quantum programs, with the exception of Inlining which
was slightly modified to work on quantum callables.6

Canonicalization. While this technically refers to bringing code into a single “canonical” form,
this pass includes many important optimizations such as constant folding and dead code elimina-

tion (DCE). Note that DCE not only applies to classical operations, but also directly to side-effect
free quantum operations whose return values go unused (such as in Figure 5) due to the SSA struc-
ture of the optimization dialect.

6While the list provided here focuses on classical passes that affect the quantum program parts, purely classical program

sections can naturally be optimized with the usual passes both at the IR-level within MLIR, and at the backend-level e.g.

within LLVM.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:15

Fig. 5. Application example showing different passes interacting with each other to remove superfluous
computations. This modular adder routine makes successive calls to constant-addition routines which each

begin and end by invoking the QFT and QFT† operations, respectively.

CSE. This pass can eliminate duplicate (classical) expressions and replace them with a single
value. Similar to the canonicalizer, this can improve knowledge of dataflow inside registers, similar
to what is demonstrated in Figure 1(b).

Inlining. Traditional function inling is generally useful for speeding up the computation of
small functions, trading program size for speed. Moreover, this pass was slightly adapted to inline
quantum circuits, which is often vital to expose optimization opportunities. As the instruction
sequences inside circuits are often pre-optimized by hand, many more opportunities arise once
multiple circuit calls are merged together (as demonstrated in Figure 5).

Affine loop unrolling. Loops in a quantum program expressed via the affine dialect can be un-
rolled (full or by a factor) using this pass. In the same vein as the inlining pass, unrolling allows for
the optimization of quantum gates on the boundary of loop iterations. One should note that the
loop boundary optimization described below is an alternative to using affine loop unrolling which
can be applied to non-affine loops as well.

5.2 Quantum Circuit Optimizations

It is clear that traditional approaches to circuit optimization can be supported by running optimiz-
ers on sections consisting only of quantum operations, say e.g. a loop body. We note, however, that
the interaction between quantum and classical optimizations, such as peephole optimization and
loop-unrolling, may further increase the impact on the quantum resource requirements. Moreover,
many identity-based heuristics found in quantum circuit optimization papers [24] are naturally
suited for implementation using MLIR’s pattern rewriter, as these represent simple DAG-to-DAG

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:16 D. Ittah et al.

transformations. Whereas the classical optimizations given above are already available in MLIR,
the quantum optimization passes below were re-implemented in QIRO to demonstrate its capabil-
ity to support optimization passes.

5.2.1 Local Register Dataflow. This pass is not based on existing optimizations, instead being
devised for the specifics of QIRO’s design. As a precursor to other optimizations, we wish to consol-
idate extract/combine operations that occur when translating register accesses from the input
dialect to the optimization dialect (see Figure 1(b)). To enable optimizations in these scenarios,
we introduce a transformation pass that merges combine instructions with subsequent extracts
whenever they are linked in the use-def chains and satisfy the following restrictions: If there exists
overlapping qubit indices, these can be removed from both operations extending the qubit values
lifetime from the first block into the second. If all indices are distinct, we delay re-combining qubits
from the first block until the end of the second block, merging the two combine operations. With
static indices, these assertions can always be made. With dynamic indices, on the other hand, we
perform this optimization only if dataflow analysis on the indices can guarantee one of the condi-
tions. Additionally, combine–combine, extract–extract, and empty extract–combine patterns
are optimized in a similar fashion to expand the regions of locally available register dataflow.

5.2.2 Peephole Optimizations. Simple peephole (or window) optimizations are straightforward
to implement on the optimization dialect using MLIR’s pattern rewriting framework. Unitary gate
cancellation is among the most common ones, where we differentiate between two cases: two
identical but Hermitian (or self-inverse) gates, and a general gate followed by its unitary inverse.
Additionally, a quantum analog to classical constant folding, namely merging parametrized rota-
tion gates, also falls in this category.

Hermitian Operations. Matching is performed on all quantum operations carrying the Hermitian
trait. As every quantum data type in the input must also be present in the output, we follow the
use-def chain of each quantum operand value to its defining operation. If the operation is the
same for all such operands, is the same kind as the operation we started with, and all remaining
arguments are identical, we have found a match. Replacing the matched pattern is then as simple
as replacing all uses of the returned values from operation 2 by the input values of operation 1,
and erasing both operations.

1 %a1 , %b1 = qs.CX %a0 , %b0
2 %a2 , %b2 = qs.CX %a1 , %b1
3 %a3 = qs.H %a2

−→
1

2

3 %a3 = qs.H %a0

General Operations. In the more general case, we must extend the matching over the adjoint
meta-operation, but otherwise remains largely the same. Starting from either the unitary gate or
the adjoint op, we trace back all quantum data operands for a match, and additionally follow the
unitary operand of the adjoint op to its definition to determine if the operation kind matches.

The replacement step consists of erasing the matched adjoint and unitary gate operations, along
with replacing all uses of the quantum data operands. We note that this pattern may be extended
straightforwardly from native operations to user-defined quantum circuits.

1 %a1 = qs.T %a0
2 %t = qs.T
3 %a2 = qs.adj %t , %a1
4 %a3 = qs.H %a2

−→

1

2 %t = qs.T
3

4 %a3 = qs.H %a0

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:17

Merging of Rotations. Again we follow a similar procedure for matching two adjacent (in this
case rotation) gates on the use-def graph, this time replacing them with a single operation that has
as parameter the sum of the individual rotation angles. The new rotation angle is computed by a
classical operation inserted in front of the rotation, or directly inserted into the operation in case
of static arguments.

1 %a1 = qs.Rz (0.1) %a0
2 %a2 = qs.Rz (0.3) %a1
3 %a3 = qs.H %a2

−→
1 %a1 = qs.Rz(0.4) %a0
2

3 %a3 = qs.H %a1

5.2.3 Loop Boundary Optimization. This optimization analyzes loop structures across their it-
eration boundaries, which is particularly effective on loop bodies with a symmetric structure, such
as compute/uncompute segments. Repeating such a body multiple times leads to many redundant
instructions that undo and redo the same operation at the end and beginning of every iteration.
The optimization is performed by walking use-def chains from both ends of the loop body and
keeping track of matches, similar to previously described peephole optimizations. Operations that
cancel can be hoisted out of the loop body and placed right before and after the loop operation (for
the first and last iteration). A similar optimization is possible for rotations, which can be merged
across loop iterations.

1 %a1 = scf.for %i=0 to 6 ←↩
iterargs(%a_0 = %a) {

2 %a_1 = qs.H %a_0
3 %a_2 = qs.T %a_1
4 %a_3 = qs.H %a_2
5 yield %a_3
6 }

−→

1 %a0 = qs.H %a
2 %a1 = scf.for %i=0 to 6 ←↩

iterargs(%a_0 = %a0) {
3 %a_2 = qs.T %a_0
4 yield %a_2
5 }
6 %a2 = qs.H %a1

5.3 Partial Lowering & Decompositions

In the process of translating a quantum program to executable code, it is necessary to decompose

complex quantum operations into simpler gates supported by the instruction set of the target
architecture. At the lowest level, this is best left to an architecture-aware backend, but, where
sensible, one should aim to perform these decompositions within the IR so as to leverage the
multi-level rewrite infrastructure. These decompositions can then be interleaved with optimization
passes to maximize optimization potential. For example, adjoint and controlled versions of user-
defined operations are fully expressible within the IR, and can benefit from optimizations pre- and
post-decomposition.

Adjoint-Circuit Lowering. A standard adjoint lowering pass on unitary circuits can be imple-
mented by generating a new circuit in which the order of quantum operations has been reversed,
and the adjoint meta-operation is applied to each of the operations inside. An optimization oppor-
tunity arises here for native gates with the hermitian trait, as such gates are self-inverse and need
not be modified with an adjoint operation.

Controlled-Circuit Lowering. Similarly, controlled unitary circuits can be lowered by generating
a new circuit and propagating the control meta-operations to each quantum operation inside. The
qubits and registers upon which the circuit is controlled must be passed as new arguments to the
generated circuit. Another optimization opportunity arises here when using attributes, provided
by the frontend, to mark special compute/uncompute sections in the code [15]. This allows omitting
the control propagation on these sections, while still producing the same computation.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:18 D. Ittah et al.

5.4 Resource Estimation

One particularly efficient way to generate resource (or quantum gate) counts, is to strategically
lower and replace quantum operations by classical ones in a way that preserves the structure of
the quantum program, and increments simple counters for each measured resource [23]. In this
process, all adjoint and controlled circuits must first be lowered using the passes described above.
Then, for each native gate, a formula can be provided to indicate the decomposition cost of their
controlled and adjoint versions in terms of the tracked resources. Thus, all native gate invocations
can directly be replaced with classically computed counter increments.

Any remaining and unused operations from the quantum dialects must be stripped, and circuit
definitions and calls must be converted to standard MLIR functions. Special care must be taken
when removing measurements, so as to provide a conservative estimate for computations that de-
pend on measurement outcomes [23]. Finally, the purely classical IR can be lowered to LLVM IR
using standard MLIR infrastructure, and subsequently compiled into an executable outputting the
final resource counts for a given input size. A simplified implementation of this resource estimator
was used to compute the rotation gate counts in Section 6.3. We note that the run time for com-
puting resource estimates may be reduced further using custom compiler passes such as the ones
employed by Meuli et al. [23].

5.5 Run-time Optimization

We stress that while it is beneficial to run optimizations at compile time, certain optimizations may
provide additional benefits at run time, and should be seen as complementary to our work. This
is especially important for quantum programs where the quantum circuits being executed on the
QPU depend heavily on run-time parameters (user-input as well as qubit measurements). In such
cases, run-time optimizations may further reduce resource requirements. Additionally, mapping of
a quantum program to specific quantum computer architectures often introduces new optimization
opportunities as well, due to transformations required by varying qubit layouts and connectivities,
as well as differing native gate sets.

6 EVALUATION

We evaluate the performance of our IR for optimization and resource estimation on the example
of Shor’s algorithm. Similarly, we evaluate the effectiveness of standard optimizations performed
at compile time compared to those performed at run time on the same algorithm. Factoring large
numbers is anticipated to be one of the earlier applications of large-scale quantum computers with
proven exponential speed-up. With the number of elementary gates growing quickly with the in-
put size, compilation systems that rely on building up large circuit data structures in Python (such
as ProjectQ and Qiskit) are slow at optimization and estimating resource requirements. With the
projected need for error-corrected computation, non-Clifford gates such as general rotation gates
are expected to make up the bulk of computation time. We thus focus on reporting the number
of single-qubit rotations during our evaluation. Results from our prototype implementation are
labeled QIRO.

Our evaluation uses an implementation of Shor’s algorithm by Beauregard [4], excluding man-
ual optimizations such as canceling the (inverse) QFTs of subsequent Fourier adders [7], result-
ing in an identical implementation to the one in ProjectQ [31]. We implemented the algorithm
directly in QIRO’s input dialect as a starting point for our compilation pipeline. This imple-
mentation can be found in full in Appendix B. The program is then subjected to the following
steps:

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:19

Table 4. Pass Sequence used Within QIRO to Run Optimizations and Perform Resource
Estimation on Shor’s Algorithm

Pass Description

–convert-mem-to-val Converts from the input to the optimization dialect, switching qubit se-
mantics in the process.

–lower-ctrl Converts controlled circuit to new circuit with controls propagated to
operations inside, does not propagate on compute/uncompute sections
indicated by compute/uncompute attribute.

–strip-circ Removes unused circuit definitions.
–canonicalize Built-in MLIR canonicalization pass, also performs DCE, constant fold-

ing, and operation rewrite patters, including the local register dataflow

patters.
–strip-circ Removes unused circuit definitions.
–circuit-inline Inlines circuit calls with the corresponding circuit body (except where

no_inline/no_inline_target attribute present).
–strip-circ Removes unused circuit definitions.
–canonicalize Built-in MLIR canonicalization pass, also performs DCE, constant fold-

ing, and operation rewrite patters, including the local register dataflow

patters.
–strip-circ Removes unused circuit definitions
–quantum-gate-opt Performs hermitian gate cancellation, adjoint gate cancellation, adjoint

circuit cancellation, rotation gate folding, controlled-rotation gate fold-
ing, and loop-boundary optimization.

–canonicalize Built-in MLIR canonicalization pass, also performs DCE, constant fold-
ing, and operation rewrite patters, including the local register dataflow

patters.
–count-resources Replaces quantum gates with resource counters.
–convert-scf-to-std Built-in MLIR conversion from structured control flow to standard di-

alect.
–convert-vector-to-
llvm

Built-in MLIR conversion from vector to llvm dialect. (Final resource
counts are printed using the vector.print operation.)

–convert-std-to-llvm Built-in MLIR conversion from standard to llvm dialect.

input-to-optimization dialect lowering −→ program optimization −→ resource

estimation conversion −→ translation to LLVM IR −→ LLVM compilation + linking

−→ execution

During this process, we collect three different benchmark metrics: the compilation time (every-
thing up to the execution step), the execution time, and the resource estimates reported by the
generated executable. Note that this executable is a classical one, stripped of all quantum instruc-
tions for the purpose of resource estimation as described in Section 5.4. We thus evaluate how
quickly our framework is able to perform optimizations (compilation time), how quickly it can
provide resource estimates (compilation + execution time), and how effective its static optimiza-
tions are (reported resource requirements). Our results are then compared to those obtained in
ProjectQ and Qiskit, where the optimization and resource estimation process used is the standard
one for the respective framework, with similar optimization levels. We note that Q# does not cur-
rently offer quantum program optimizations and is thus unsuitable for this comparison.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:20 D. Ittah et al.

Fig. 6. Execution time to process Shor’s algorithm by different frameworks and output resource counts. Pro-
jectQ and Qiskit perform circuit optimizations at run time, whereas QIRO performs these exclusively at
compile time. The number to factor is chosen as N = 2n − 1 with n ∈ [2, 64]. The insert is a scaled version to
show large measurement values.

6.1 Experimental Setup

Benchmarking was performed on an Intel Core i7-7700HQ @ 3.5GHz running Windows 10 build
18363. The software packages used include: Python 3.7.6, ProjectQ 0.5.1, Qiskit 0.23.1, LLVM/Clang
10.0.0, and MLIR built from source from the master branch dated 2020/10/25. Program transforma-
tion at the MLIR level is handled by an adapted version of the modular MLIR optimizer (mlir-opt).
Further tools are used in the translation from MLIR to LLVM IR (mlir-translate), the compilation of
LLVM IR by the LLVM static compiler (llc), and the linking phase (clang). Table 4 shows the built-
in and custom QIRO passes used in the benchmark. Execution was timed using the hyperfine7

command-line tool, using the median and standard deviation from each sample set.

6.2 Optimization & Resource Estimation Run Time

A comparison of the time it takes to optimize and obtain resource counts for Shor’s algorithm
is shown in Figure 6. The numbers to factor were chosen as N = 2n − 1, where n ∈ {2, . . . , 64}
is the number of bits. Inputs beyond 64-bit integers are also possible but would require to adapt
our implementation to larger fixed-precision or infinite-precision arithmetic. As shown, compila-
tion in QIRO including all implemented optimizations took a mere 551±4 ms, independent of n.
Moreover, the run time of the resource estimation executable on the entire input range is situated
between 10.2±0.4 ms to 560±20 ms. By contrast, inputs to ProjectQ were limited to n = 8 due
to execution times (optimization + resource estimation) reaching 162±3 s, an almost 300-fold in-
crease over QIRO’s total running time on the same input (0.561±0.004 s). Similarly, Qiskit reaches
74.4±0.1 s on 11 qubits for optimization and resource estimation, a 130-fold increase over QIRO
(0.562±0.004 s).

While some of the difference in the measured run times may be attributed to different implemen-
tation details (e.g. loop-heavy operations in Python compared to MLIR’s C++ implementation), a

7https://github.com/sharkdp/hyperfine.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

https://github.com/sharkdp/hyperfine

QIRO: A Static Single Assignment-based Quantum Program 14:21

Fig. 7. Fraction of optimization opportunities identified by QIRO at compile time. Rotation gate counts for
Shor’s algorithm factoring N = 2n − 1, with n ∈ [2, 8], are compared to those obtained in ProjectQ using
run-time optimizations.

remarkable distinction of conceptual nature is the fact that the run time of optimizations in QIRO
is independent of program inputs, and thus inherently more efficient. This can be attributed to the
fact that QIRO is able to perform optimizations at compile time, while the two other frameworks
require program input propagation and control flow resolution before performing optimizations.

We note that true application-scale inputs for breaking RSA are expected to be n ∼ 2000. Extrap-
olating our measurements to 2000 bits based on a polynomial of degree 4 (as the number of gates
scales quartically), we roughly estimate to be able to process Shor’s algorithm in QIRO on the order
of a week, rather than upwards of 104 years in ProjectQ and 103 years in Qiskit. To further speed
up resource estimation, we plan to implement custom compiler passes such as the ones proposed
by Meuli et al. [23].

6.3 Effectiveness of Static Optimizations

For this benchmark, we implemented a series of simple peephole optimizations and measure their
effectiveness in QIRO compared to ProjectQ. Our focus is not on the effectiveness of the opti-
mizations themselves, but rather to investigate the difference in effectiveness when the same op-
timizations are performed at compile time rather than run time. The implemented optimizations
include Hermitian gate cancellation on the native gate set, generalized adjoint cancellation via
meta-operations (including on user-defined circuits), successive rotation gate merging, and loop
boundary optimization. As shown in Figure 7, practically all (∼99.8% at n = 8) optimization op-
portunities on rotation gates exploited by ProjectQ are also identified by our optimizer at compile
time, not least due to our ability to statically optimize across loop boundaries, without which only
∼ 69.4% would be identified. Our approach comes with the additional benefit that the optimizer’s
execution time is independent of a program’s input size, making it especially promising for opti-
mization of very large-scale quantum programs.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:22 D. Ittah et al.

7 RELATED WORK

7.1 Intermediate Representations

To the best of our knowledge, the results presented by McCaskey and Nguyen [22] have been the
only other effort to leverage the MLIR framework for quantum compilation. We see their work
as complementary to ours, as it strictly focuses on translation aspects of compiling quantum pro-
grams down from QASM to the LLVM-based QIR, without considering the MLIR-based represen-
tation as a platform for quantum program optimization.

The recently introduced Quantum Intermediate Representation (QIR) [10] is another IR
specifically crafted as a language- and hardware-agnostic intermediate representation for inte-
grated classical-quantum programs. QIR is a set of specifications for representing quantum pro-
grams in the LLVM IR, with the goal of leveraging the performant LLVM compiler infrastructure.
However, we note that the employed memory-semantics for quantum operations limits reuse of
optimization passes that rely on dataflow analysis – a problem that we address by introducing a
separate optimization dialect in MLIR.

LLVM IR has also been used in the ScaffCC compiler [18] for the C-based Scaffold programming
language [17]. However, Scaffold programs are restricted to descriptions of fully specified circuits,
i.e. all classical control flow present in the input must be statically resolvable to produce flattened
circuits. This constitutes a limitation that is not present in our work.

Most existing quantum programming languages represent quantum circuits as gate lists or
DAGs, e.g. Qiskit [9], ProjectQ [31], pyQuil [30], and Cirq [6]. As a result, static co-optimization of
quantum-classical programs with nontrivial control flow is infeasible. As a remedy, these frame-
works usually employ run-time optimizations. However, the execution time of optimizations then
scales with problem size, as can be seen in Figure 6. This makes these approaches ill-suited for
quantum program optimization at application scale.

7.2 Quantum Program Optimization

In addition to quantum analogs of classical optimizations (e.g. constant-folding at different lev-
els of abstraction [15]), there exists a host of quantum-specific optimizations that are mostly
targeted at quantum circuits: Circuit synthesis may be employed to re-synthesize small subcir-
cuits [3, 8, 16, 26]. Furthermore, optimization using phase polynomials has proven to be effec-
tive [2], especially when combined with other heuristics to tackle larger universal circuits [24].
Moreover, assertion-based optimization has been proposed to optimize quantum programs at
higher levels of abstraction [13].

All of these optimization algorithms may be integrated into QIRO as transformation passes.
Indeed, we have implemented a generalization of constant-folding and we show that it successfully
reduces the resource requirements of our implementation of Shor’s algorithm that is based on the
work by Beauregard [4]. Further optimizations could be applied in our IR, for example to quantum
circuit definitions or to loop bodies that are free of control flow.

To the best of our knowledge, optimizations that explicitly target mixed quantum-classical pro-
grams do not exist yet, in part due to the lack of IRs that are capable of representing such programs.
Our IR may thus enable such quantum-classical optimizations. For example, assertion-based opti-
mization may be extended to take branching and loop conditions into account [13].

8 CONCLUSION

Our proposed multi-level IR for quantum computing is specifically targeted at quantum-classical
co-optimization. In contrast to previous work, it supports carrying out such optimizations at
application scale, allowing for optimized resource estimates of large-scale quantum programs.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:23

Moreover, QIRO supports quantum-specific optimization passes that may fully leverage the infras-
tructure provided by MLIR. Crucially, the employed value-semantics in the optimization dialect
directly exposes quantum data dependencies. In addition to reuse of existing components, this
may enable future quantum program optimizations that leverage dataflow analysis.

APPENDICES

A MAPPING Q# TO QIRO

In this section, we discuss in detail how to map a quantum program in Q# to our input dialect. We
choose Q# as an example front-end for its completeness, most notably with respect to its support
for mixed quantum-classical programs.

A.1 Organization

Q# code lives inside (non-nestable) namespaces. We can map these to MLIR modules as they serve
a similar purpose. Furthermore, Q# allows to bring symbols defined in other namespaces into the
current one with an open directive. In this case, the modules should be nested inside the main ex-
ecution module. When resolving symbols, the front-end should append the corresponding MLIR
module identifiers to all references to symbols in those external namespaces, according to the fol-
lowing syntax: @ModuleName::@SymbolName. The inside of namespaces is composed of global vari-
able definitions, callable definitions such as operations and f unctions , and invocations of callables.
How these constructs map to QIRO is described below.

A.2 Data Types

Immutable let bindings and mutable variable assignments in Q# are treated no different in the IR,
both which can be mapped to value definition statements. Note that statically, due to MLIR’s SSA
structure, every value is already defined precisely once.

A.2.1 Numeric. MLIR provides standard integer and floating point types of arbitrary bit-width.
Literals can be passed to operations that accept arguments in the form of attributes, if not, they
must first be bound to a value with the constant op. Arithmetic expressions can be represented
with the appropriate operations from the standard dialect.

A.2.2 Boolean. Booleans should be represented by the i1 type.

A.2.3 Qubit. Q#’s Qubit type directly maps to the one present in QIRO. New qubits are created
in Q# with Qubit(), which translates to a %q = q.alloc : !q.qubit operation in our IR. Once
qubit values go out of scope in Q#, they are automatically deallocated. The front-end should insert
explicit q.free %q : !q.qubit operations at this point to make the qubit resource available
again.

A.2.4 Arrays. Note that there is distinction in how Qubit arrays and other arrays are handled.
In general, Q# can build immutable arrays out of any valid type. These are null initialized, and
support slicing and concatenation, which always creates a new array with element copies. Such
classical arrays might be represented by the memref type, see the MLIR documentation for more
details.

Qubit arrays created with Qubit[n] must instead be represented with the Qureg type from the
quantum dialect. The allocation looks as follows: %r = q.allocreg(n) : !q.qureg<n>, where
the size attribute n can also be replaced with a dynamic value, in which case the type will not
contain a size. Multidimensional qubit arrays are not supported, so they must be unrolled into a
1D array. Static bounds checking is implemented where possible, but for dynamic out-of-bounds

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:24 D. Ittah et al.

accesses a run-time exception is expected. Indexing and slicing is supported at the point of use
for quantum registers, as all operations accepting the Qureg type optionally also accept a register
access expression for each such argument. It is composed of up to three dynamic or static values,
corresponding to start, stop, step. If only start is present, a single qubit is accessed. If additionally
stop is present, the slice [start, stop) with a step of 1 is accessed. An example operation would look
like this: q.X %r[%a, %b, 2] : !q.qureg<n>. As with qubits, registers need to be explicitly
freed when they go out of scope with q.freereg %r : !q.qureg<n>.

A.2.5 Tuples. While a tuple type is available in MLIR, there are no operations in the standard
or quantum dialects that take advantage of them. Functions and circuits have no need for tuples as
they are capable of accepting and returning multiple values. Thus the argument and return tuples
of Q# callables should be deconstructed into their components.

A.2.6 Pauli. The Pauli type in Q# is used to indicate rotation axes and measurement bases. For
rotations, the corresponding rotation operation should be used {Rx , Ry, Rz}. Single qubit measure-
ments in bases other than the Z-basis can be simulated by conjugating the measurement with
the corresponding unitary. Joint multi-qubit measurements (e.g. ZX, ZZ, ...) are currently not sup-
ported but could easily be added as additional native operations in our IR.

A.3 Quantum Gates

Built-in quantum gates (intrinsic operations) in Q# for the most part have a direct analog in QIRO. If
that is not the case, the front-end must express such gates in terms of the provided ones, for which
standard algorithms exist. Measurement is done with a q.measure %q : !q.qubit operation in
the computational (Z) basis.

A.3.1 Functors. Functors in Q# are the analog to QIRO’s meta-operations. These are “functions”
which take in an operation and produce a new one, modifying its behaviour in the process. The
default ones, adjoint for inverting an operation and control for conditioning the execution based
the quantum state of control qubits, are both supported by the quantum dialect. To use them, the
desired operation to be modified must be constructed without target qubits, which produces a
value representing the operation. Meta-operations then accept the operation value and the target
qubits as arguments. See below for an example of applying an inverted and a controlled rotation
gate:

%R = q.R(%pi) -> !q.u1
q.adj %R, %q : !q.u1, !q.qubit
q.ctrl %R, %c, %t : !q.u1, !q.qubit, !q.qubit

A.4 Callables

We deal with two types of callables in Q#: functions and operations. Functions contain purely clas-
sical code, and intuitively map to functions in MLIR:

func @name(arg: argT ..) -> resT.. { ... }
call @name(arg: argT ..) : (argT..) -> resT..

In contrast, operations contain quantum code (alongside classical one), and this division is exactly
reflected by functions and circuits in QIRO. Circuits are similar to functions except that they also
operate on quantum data arguments. They can be defined and called as follows:

q.circ @name(arg: argT ..) -> resT.. { ... }
q.call @name(arg: argT ..) : argT.. -> resT..

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:25

In order to support meta-operations on circuits, there is also an indirect call mechanism via the
apply operation that operates on the !q.circ type, or the !q.cop<n, baseT> type with !q.circ
as its base type.

%op = q.getval @name -> !q.circ
%inv_op = q.adj %op : !q.circ -> !q.circ
q.apply %inv_op(arg..) : !q.circ(argT..)

A.5 Conditionals

Control flow in SSA-based IRs is explicit due to their block structure, which have a single entry
and exit point. If/else constructs can easily be represented in MLIR using this block structure and
conditional branching.

cond_br %cond, ^bb1(arg..), ^bb2(arg..) # if
^bb1(arg..): # then

...
br ^bb3(arg..)

^bb2(args..): # else
...
br ^bb3(arg..)

Here we’ve shown a simple if-else structure, where %cond is a previously calculated Boolean condi-
tion, and arg.. represents arbitrary block arguments. Arbitrary many else-if sections can be added
by inserting more blocks creating conditional branching chains, each with a then block (True) and
and a successor block (False) in the chain.

A.6 Loops

Index-based for loops in Q# are well represented by the structured control flow dialect in MLIR.
The syntax goes as follows:

scf.for %i = <low> to <up> step <step> { ... },

where the lower/upper bounds and step operands are SSA values. For-each loops in Q# can be
transformed to this form as well by using the length of the array being traversed as an upper
bound. This is one reason that qubit register arguments to circuits always need an accompanying
size argument if their size is not statically specified in the type.

Q#’s while loops (for classical loop conditions) and repeat-until-success loops (for measurement
based conditions) are represented by MLIR’s standard control flow via blocks and branches. A
while (i < n) { ...; i++; } loop would be translated as follows:

^bb1(%i: i32):
...
%ip1 = addi %i, %1 : i32
%cond = cmpi "slt", %ip1, %n : i32
cond_br %cond, ^bb1(%ip1), ^bb2

where %1 is the result of the constant op with the value 1, and ^bb2 is the next block after the
loop. The entering condition check is omitted for brevity.

B SHOR’S ALGORITHM IN QIRO

func @mod(%a: i64 , %N: i64) -> i64 {

%0 = divi_unsigned %a, %N : i64

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:26 D. Ittah et al.

%1 = muli %N, %0 : i64

%2 = subi %a, %1 : i64

return %2 : i64

}

func @mod_exp(%b: i64 , %e: i64 , %N: i64) -> i64 {

%c0 = constant 0 : i64

%c1 = constant 1 : i64

%c2 = constant 2 : i64

%cond = cmpi "eq", %N , %c1 : i64

cond_br %cond , ^ret(%c0 : i64), ^reduce

^reduce:

%res = constant 1 : i64

%base = call @mod(%b , %N) : (i64 , i64) -> i64

%cond2 = cmpi "ugt", %e , %c0 : i64

cond_br %cond2 , ^while(%base , %e, %res : i64 , i64 , i64), ^ret(%res : i64)

^while(%base_0: i64 , %exp_0: i64 , %res_0: i64):

%0 = call @mod(%exp_0 , %c2) : (i64 , i64) -> i64

%cond3 = cmpi "eq", %0, %c1 : i64

%res_1 = scf.if %cond3 -> i64 {

%1 = muli %res_0 , %base_0 : i64

%2 = call @mod(%1, %N) : (i64 , i64) -> i64

scf.yield %2 : i64

} else {

scf.yield %res_0 : i64

}

%exp_1 = shift_right_unsigned %exp_0 , %c1 : i64

%3 = muli %base_0 , %base_0 : i64

%base_1 = call @mod(%3, %N) : (i64 , i64) -> i64

%cond4 = cmpi "ugt", %exp_1 , %c0 : i64

cond_br %cond4 , ^while(%base_1 , %exp_1 , %res_1 : i64 , i64 , i64), ^ret(%res_1 : i64)

^ret(%r: i64):

return %r : i64

}

func @mod_inv(%C: i64 , %N: i64) -> i64 {

%c0 = constant 0 : i64

%c1 = constant 1 : i64

br ^while(%N, %C , %c0 , %c1 : i64 , i64 , i64 , i64)

^while(%r_0: i64 , %old_r: i64 , %s_0: i64 , %old_s: i64):

%q = divi_unsigned %old_r , %r_0 : i64

%qr = muli %q, %r_0 : i64

%r_1 = subi %old_r , %qr : i64

%qs = muli %q, %s_0 : i64

%s_1 = subi %old_s , %qs : i64

%cond = cmpi "ne", %r_1 , %c0 : i64

cond_br %cond , ^while(%r_1 , %r_0 , %s_1 , %s_0 : i64 , i64 , i64 , i64), ^ret(%s_0 : i64)

^ret(%s: i64):

%0 = addi %s , %N : i64

%1 = call @mod(%0 , %N) : (i64 , i64) -> i64

return %1 : i64

}

func @calc_qft_angle(%j: index) -> f64 {

%pi = constant 3.141592653589793238 : f64

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:27

%c1 = constant 1 : index

%0 = addi %c1 , %j : index

%1 = shift_left %c1 , %0 : index

%2 = index_cast %1 : index to i64

%3 = uitofp %2 : i64 to f64

%4 = divf %pi , %3 : f64

return %4 : f64

}

func @calc_add_angle(%i: index , %j: index) -> f64 {

%pi = constant 3.141592653589793238 : f64

%c1 = constant 1 : index

%0 = subi %i , %j : index

%1 = shift_left %c1 , %0 : index

%2 = index_cast %1 : index to i64

%3 = uitofp %2 : i64 to f64

%4 = divf %pi , %3 : f64

return %4 : f64

}

func @calc_cur_a(%N: i64 , %n: index , %a: i64 , %i: index) -> i64 {

%c1 = constant 1 : i64

%c2 = constant 2 : i64

%k = index_cast %i : index to i64

%nbits = index_cast %n : index to i64

%0 = muli %nbits , %c2 : i64

%1 = subi %0 , %c1 : i64

%2 = subi %1 , %k : i64

%3 = shift_left %c1 , %2 : i64

%4 = call @mod_exp(%a, %3, %N) : (i64 , i64 , i64) -> i64

return %4 : i64

}

func @calc_shor_angle(%i: index , %j: index) -> f64 {

%mpi = constant -3.141592653589793238 : f64

%c1 = constant 1 : index

%0 = subi %i , %j : index

%1 = shift_left %c1 , %0 : index

%2 = index_cast %1 : index to i64

%3 = uitofp %2 : i64 to f64

%4 = divf %mpi , %3 : f64

return %4 : f64

}

// quantum fourier transform on register r

q.circ @QFT(%r: !q.qureg <>, %n : index) attributes {no_inline} {

%c0 = constant 0 : index

%c1 = constant 1 : index

%c2 = constant 2 : index

scf.for %i = %c0 to %n step %c1 {

%0 = addi %i, %c1 : index

%k = subi %n, %0 : index

q.H %r[%k] : !q.qureg <>

scf.for %j = %c0 to %k step %c1 {

%phi = call @calc_qft_angle(%j) : (index) -> f64

%R = q.R(%phi: f64) -> !q.u1

%1 = addi %j , %c1 : index

%h = subi %k , %1 : index

q.ctrl %R, %r[%h], %r[%k] : !q.u1, !q.qureg <>, !q.qureg <>

}

}

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:28 D. Ittah et al.

%nd2 = divi_unsigned %n, %c2 : index

scf.for %i = %c0 to %nd2 step %c1 {

%0 = addi %i , %c1 : index

%j = subi %n , %0 : index

q.SWAP %r[%i], %r[%j] : !q.qureg <>, !q.qureg <>

}

}

// add a positive or negative number to register of size n

q.circ @addConstant (%C: i64 , %r: !q.qureg <>, %n: index) {

%c0 = constant 0 : index

%s1 = constant 1 : index

%c1 = constant 1 : i64

// compute

q.call @QFT(%r, %n) {compute} : !q.qureg <>, index

scf.for %i = %c0 to %n step %s1 {

%ip1 = addi %i, %s1 : index

scf.for %j = %c0 to %ip1 step %s1 {

%k = subi %i , %j : index

%0 = index_cast %k : index to i64

%1 = shift_right_signed %C , %0 : i64

%2 = and %1, %c1 : i64

%cond = cmpi "eq", %2, %c1 : i64

scf.if %cond {

%phi = call @calc_add_angle(%i , %k) : (index , index) -> f64

q.R(%phi: f64) %r[%i] : !q.qureg <>

}

}

}

// uncompute

%qft = q.getval @QFT -> !q.circ
%qft_inv = q.adj %qft : !q.circ -> !q.circ
q.apply %qft_inv(%r, %n) {uncompute} : !q.circ(!q.qureg <>, index)

}

// substract a number from register of size n

q.circ @subConstant (%C: i64 , %r: !q.qureg <>, %n: index) {

%cm1 = constant -1 : i64

%mC = muli %C , %cm1 : i64

q.call @addConstant (%mC , %r , %n) : i64 , !q.qureg <>, index

}

// add a positive number to register modulo N

q.circ @addCmodN(%C: i64 , %N: i64 , %r: !q.qureg <>, %n: index) {

%c1 = constant 1 : index

%nm1 = subi %n, %c1 : index

q.call @addConstant (%C, %r, %n) : i64 , !q.qureg <>, index

// compute

q.call @subConstant (%N, %r, %n) {compute} : i64 , !q.qureg <>, index

%anc = q.alloc -> !q.qubit

q.CX %r[%nm1], %anc {compute} : !q.qureg <>, !q.qubit

%addOp = q.getval @addConstant -> !q.circ
%ctrlAdd = q.ctrl %addOp , %anc : !q.circ , !q.qubit -> !q.cop <1, !q.circ >
q.apply %ctrlAdd(%N, %r, %n) {compute} : !q.cop <1, !q.circ >(i64 , !q.qureg <>, index)

q.call @subConstant (%C, %r, %n) : i64 , !q.qureg <>, index

// uncompute

q.X %r[%nm1] {uncompute} : !q.qureg <>

q.CX %r[%nm1], %anc {uncompute} : !q.qureg <>, !q.qubit

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

QIRO: A Static Single Assignment-based Quantum Program 14:29

q.X %r[%nm1] {uncompute} : !q.qureg <>

q.free %anc : !q.qubit

q.call @addConstant (%C, %r , %n) : i64 , !q.qureg <>, index

}

// subtract a positive number to register modulo N

q.circ @subCmodN(%C: i64 , %N: i64 , %r: !q.qureg <>, %n: index) {

%NmC = subi %N, %C : i64

q.call @addCmodN(%NmC , %N, %r , %n) : i64 , i64 , !q.qureg <>, index

}

// multiply a positive number by a register modulo N, need gcd(C, N) = 1

q.circ @mulCmodN(%C: i64 , %N: i64 , %r: !q.qureg <>, %n: index) {

%c0 = constant 0 : index

%c1 = constant 1 : index

%np1 = addi %n, %c1 : index

%anc = q.allocreg(%np1) -> !q.qureg <>

%Cinv = call @mod_inv(%C, %N) : (i64 , i64) -> i64

scf.for %i = %c0 to %n step %c1 {

%addOp = q.getval @addCmodN -> !q.circ
%ctrlAdd = q.ctrl %addOp , %r[%i] : !q.circ , !q.qureg <> -> !q.cop <1, !q.circ >

%0 = index_cast %i : index to i64

%1 = shift_left %C, %0 : i64

%2 = call @mod(%1, %N) : (i64 , i64) -> i64

q.apply %ctrlAdd(%2 , %N, %anc , %np1) : !q.cop <1, !q.circ >(i64 , i64 , !q.qureg <>, index)

}

scf.for %i = %c0 to %n step %c1 {

q.SWAP %anc[%i], %r[%i] : !q.qureg <> , !q.qureg <>

}

scf.for %i = %c0 to %n step %c1 {

%subOp = q.getval @subCmodN -> !q.circ
%ctrlSub = q.ctrl %subOp , %r[%i] : !q.circ , !q.qureg <> -> !q.cop <1, !q.circ >

%3 = index_cast %i : index to i64

%4 = shift_left %Cinv , %3 : i64

%5 = call @mod(%4, %N) : (i64 , i64) -> i64

q.apply %ctrlSub(%5 , %N, %anc , %np1) : !q.cop <1, !q.circ >(i64 , i64 , !q.qureg <>, index)

}

q.freereg %anc : !q.qureg <>

}

q.circ @shor(%N: i64 , %a: i64) {

%c0 = constant 0 : index

%c1 = constant 1 : index

%c2 = constant 2 : index

%0 = uitofp %N : i64 to f64

%1 = log2 %0 : f64

%2 = ceilf %1 : f64

%3 = fptoui %2 : f64 to i64

%n = index_cast %3 : i64 to index

%n2 = muli %n, %c2 : index

%m0 = constant 0 : i1

%meas = alloc(%n2) : memref <?xi1 >

scf.for %i = %c0 to %n2 step %c1 {

store %m0 , %meas[%i] : memref <?xi1 >

}

%r = q.allocreg(%n) -> !q.qureg <>

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

14:30 D. Ittah et al.

%cqb = q.alloc -> !q.qubit

q.X %r[0] : !q.qureg <>

scf.for %i = %c0 to %n2 step %c1 {

%cur_a = call @calc_cur_a(%N, %n, %a, %i) : (i64 , index , i64 , index) -> i64

q.H %cqb : !q.qubit

%mulOp = q.getval @mulCmodN -> !q.circ
%ctrlMul = q.ctrl %mulOp , %cqb : !q.circ , !q.qubit -> !q.cop <1, !q.circ >
q.apply %ctrlMul(%cur_a , %N, %r , %n) : !q.cop <1, !q.circ >(i64 , i64 , !q.qureg <>, index)

scf.for %j = %c0 to %i step %c1 {

%cond = load %meas[%j] : memref <?xi1 >

scf.if %cond {

%phi = call @calc_shor_angle(%i, %j) : (index , index) -> f64

q.R(%phi: f64) %cqb : !q.qubit

}

}

q.H %cqb : !q.qubit

%m = q.meas %cqb : !q.qubit -> i1

store %m, %meas[%i] : memref <?xi1 >

scf.if %m {

q.X %cqb : !q.qubit

}

}

%mres = q.meas %r : !q.qureg <> -> memref <?xi1 >

q.free %cqb : !q.qubit q.freereg %r : !q.qureg <>

// process result

}

q.circ @mlir_main(%N : i64 , %a : i64) attributes {no_inline_target} {

q.call @shor(%N, %a) : i64 , i64

}

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools

(2nd Edition). Addison-Wesley, USA.

[2] M. Amy, D. Maslov, and M. Mosca. 2014. Polynomial-time t-depth optimization of Clifford+t circuits via matroid

partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (2014), 1476–1489.

https://doi.org/10.1109/TCAD.2014.2341953

[3] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. A meet-in-the-middle algorithm for fast

synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 32, 6 (June 2013), 818–830. https://doi.org/10.1109/tcad.2013.2244643

[4] Stephane Beauregard. 2003. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Comput. 3, 2 (March 2003),

175–185. https://dl.acm.org/doi/10.5555/2011517.2011525

[5] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high-level quantum language

with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI’20). Association for Computing Machinery, New York, NY, USA,

286–300. https://doi.org/10.1145/3385412.3386007

[6] Cirq Developers. 2020. Cirq. (Oct. 2020). https://doi.org/10.5281/zenodo.4062499

[7] Thomas G. Draper. 2000. Addition on a quantum computer. (2000). arXiv:quant-ph/0008033.

[8] Simon Forest, David Gosset, Vadym Kliuchnikov, and David McKinnon. 2015. Exact synthesis of single-qubit uni-

taries over Clifford-cyclotomic gate sets. J. Math. Phys. 56, 8 (2015), 082201. https://doi.org/10.1063/1.4927100

[9] Jay Gambetta, Diego M. Rodríguez, Salvador de la Puente González, Matthew Treinish, Ali Javadi-Abhari, Paul Kasse-

baum, Marco Pistoia, Shaohan Hu, tigerjack, Carlos Azaustre, Zlatko Minev, Travis L. Scholten, Steven Oud, Matthieu

Dartiailh, Maddy Tod, Juan Cruz-Benito, Christopher J. Wood, and Albert Frisch. 2019. Qiskit: An Open-source Frame-

work for Quantum Computing. (2019). https://doi.org/10.5281/zenodo.2573505

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/tcad.2013.2244643
https://dl.acm.org/doi/10.5555/2011517.2011525
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.5281/zenodo.4062499
http://arxiv.org/abs/quant-ph/0008033
https://doi.org/10.1063/1.4927100
https://doi.org/10.5281/zenodo.2573505

QIRO: A Static Single Assignment-based Quantum Program 14:31

[10] Alan Geller. 2020. Introducing Quantum Intermediate Representation (QIR). (Sep. 2020). https://devblogs.microsoft.

com/qsharp/introducing-quantum-intermediate-representation-qir.

[11] Craig Gidney and Martin Ekerå. 2019. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits.

(2019). arXiv:quant-ph/1905.09749.

[12] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A

scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’13). Association for Computing Machinery, New York, NY, USA, 333–

342. https://doi.org/10.1145/2491956.2462177

[13] Thomas Häner, Torsten Hoefler, and Matthias Troyer. 2020. Assertion-based optimization of quantum programs. Proc.

ACM Program. Lang. 4, OOPSLA, Article 133 (Nov. 2020), 20 pages. https://doi.org/10.1145/3428201

[14] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. 2020. Improved quantum

circuits for elliptic curve discrete logarithms. In Post-Quantum Cryptography, Jintai Ding and Jean-Pierre Tillich

(Eds.). Springer International Publishing, Cham, 425–444. https://doi.org/10.1007/978-3-030-44223-1_23

[15] Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. 2018. A software methodology for compiling

quantum programs. Quantum Science and Technology 3, 2 (2018), 020501. https://doi.org/10.1088/2058-9565/aaa5cc

[16] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl. 2016. Quantum circuits for

isometries. Phys. Rev. A 93 (Mar. 2016), 032318. Issue 3. https://doi.org/10.1103/PhysRevA.93.032318

[17] Ali JavadiAbhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu

Chiang, Seth Vanderwilt, John Black, Fred Chong, Margaret Martonosi, Martin Suchara, Ken Brown, Massoud Pe-

dram, and Todd Brun. 2012. Scaffold: Quantum Programming Language. Technical Report. Princeton University.

https://www.cs.princeton.edu/research/techreps/TR-934-12.

[18] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.

2014. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the

11th ACM Conference on Computing Frontiers (CF’14). Association for Computing Machinery, New York, NY, USA,

Article 1, 10 pages. https://doi.org/10.1145/2597917.2597939

[19] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook. 2019.

Strawberry fields: A software platform for photonic quantum computing. Quantum 3 (March 2019), 129. https:

//doi.org/10.22331/q-2019-03-11-129

[20] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In

International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, San Jose, CA, USA, 75–86.

https://doi.org/10.1109/CGO.2004.1281665

[21] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T. Shpeisman, N. Vasilache, and O.

Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain specific computation. In 2021 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization (CGO). IEEE, Seoul, Korea (South), 2–14. https://doi.org/10.

1109/CGO51591.2021.9370308

[22] Alexander McCaskey and Thien Nguyen. 2021. A MLIR Dialect for Quantum Assembly Languages. (2021).

arXiv:quant-ph/2101.11365.

[23] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner. 2020. Enabling accuracy-aware quantum com-

pilers using symbolic resource estimation. Proc. ACM Program. Lang. 4, OOPSLA, Article 130 (Nov. 2020), 26 pages.

https://doi.org/10.1145/3428198

[24] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. 2018. Automated optimization of large

quantum circuits with continuous parameters. NPJ Quantum Information 4, 1 (2018), 1–12. https://doi.org/10.1038/

s41534-018-0072-4

[25] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary

Edition. Cambridge University Press, UK. https://doi.org/10.1017/CBO9780511976667

[26] Adam Paetznick and Krysta M. Svore. 2014. Repeat-until-success: Non-deterministic decomposition of single-qubit

unitaries. Quantum Info. Comput. 14, 15-16 (Nov. 2014), 1277–1301. https://dl.acm.org/doi/10.5555/2685179.2685181

[27] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A core language for quantum circuits. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). Association for

Computing Machinery, New York, NY, USA, 846–858. https://doi.org/10.1145/3009837.3009894

[28] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.

22331/q-2018-08-06-79

[29] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. 2017. Elucidating reaction

mechanisms on quantum computers. Proceedings of the National Academy of Sciences 114, 29 (2017), 7555–7560.

https://doi.org/10.1073/pnas.1619152114

[30] Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2016. A Practical Quantum Instruction Set Architecture.

(2016). arXiv:quant-ph/1608.03355.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir
http://arxiv.org/abs/quant-ph/1905.09749
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/3428201
https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1103/PhysRevA.93.032318
https://www.cs.princeton.edu/research/techreps/TR-934-12
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
http://arxiv.org/abs/quant-ph/2101.11365
https://doi.org/10.1145/3428198
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1017/CBO9780511976667
https://dl.acm.org/doi/10.5555/2685179.2685181
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1073/pnas.1619152114
http://arxiv.org/abs/quant-ph/1608.03355

14:32 D. Ittah et al.

[31] Damian S. Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: An open source software framework for

quantum computing. Quantum 2 (Jan. 2018), 49. https://doi.org/10.22331/q-2018-01-31-49

[32] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov,

Mariia Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling scalable quantum computing and develop-

ment with a high-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018 (RWDSL2018).

Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3183895.

3183901

[33] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus Reiher, Martin Roetteler, and Matthias

Troyer. 2020. Quantum computing enhanced computational catalysis. (2020). arXiv:quant-ph/2007.14460.

Received April 2021; revised July 2021; accepted August 2021

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 14. Publication date: June 2022.

https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
http://arxiv.org/abs/quant-ph/2007.14460

