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Abstract

Nonblocking collective communication operations are

currently being considered for inclusion into the MPI stan-

dard and are an area of active research. The benefits of such

operations are documented by several recent publications,

but so far, research concentrates on InfiniBand clusters.

This paper describes an implementation of nonblocking

collectives for clusters with the Scalable Coherent Interface

(SCI) interconnect. We use synthetic and application kernel

benchmarks to show that with nonblocking functions for

collective communication performance enhancements can be

achieved on SCI systems. Our results indicate that for the

implementation of these nonblocking collectives data trans-

fer methods other than those usually used for the blocking

version should be considered to realize such improvements.

1. Introduction

The Scalable Coherent Interface (SCI) [1] is an intercon-

nect technology for clusters which is currently distributed

as “Dolphin Express D” by Dolphin Interconnect Solutions.

A part of a cluster node’s physical memory can be mapped

into the global SCI address space and can be accessed from

a remote node via CPU load and store operations to mapped

memory. While in this so called “PIO mode” a data transfer

stalls the sender’s CPU, CPU offload can be achieved by

using the DMA engine on the Dolphin Express D cards.

Dolphin Express D networks are composed of ringlets

(essentially a 1d torus) that can be combined to build tori of

higher dimensions (2d and 3d are supported). Especially for

collective communication with large messages, it is impor-

tant to avoid contention of the SCI links. Therefore, we have

implemented algorithms that are tailored for torus networks

and take the network topology into account (Section 3).

1.1. Nonblocking Collective Communication

Nonblocking collective operations [2] offer an interface

that enables the application programmer to start and com-

plete a collective communication operation independently.

A nonblocking interface to all Message Passing Interface

(MPI [3]) collectives is discussed in the MPI Forum for

inclusion in the MPI 3 standard. Implementations typi-

cally divide the operation in an initialization call (e.g.,

MPI Ibcast()), which only starts the communication but

does not depend on other processes, and a blocking (e.g.,

MPI Wait()) or nonblocking (e.g., MPI Test()) test for com-

pletion of the operation. This scheme enables overlapping

communication with computation if some computation can

be performed while the communication is running.

Such an optimization has been discussed for parallel ap-

plications [4]. A particular example with a three-dimensional

Poisson equation showed a performance improvement of

34% by applying nonblocking collective operations [5]. The

runtime of a strong-scaling medical image reconstruction

algorithm [6] could be improved up to 8%.

However, a nonblocking interface does not mean that

the operations are actually performed asynchronously in

the background. Asynchronous execution of collective op-

erations is a complex task that requires careful hardware-

dependent optimization. Such an optimization for InfiniBand

networks is described in [7].

Our work extends this line of research towards another

interesting HPC network which allows to choose between

Programmed I/O (PIO) and Direct Memory Access (DMA)

for the host-to-host communication: The Scalable Coherent

Interface (SCI). We wanted to investigate whether this very

different network, as compared to InfiniBand, also offers

comparable performance improvements via the usage of

nonblocking collectives and how such operations should best

be implemented on SCI networks.



1.2. Related Work

Several research groups begin the implementation of opti-

mized nonblocking collective operations. The baseline is set

with LibNBC [2] which only requires MPI to run. However,

its algorithms are generic, without special hardware opti-

mizations. LibNBC fully relies on the MPI library’s asyn-

chronous progression. An optimized version of the library

was implemented for InfiniBand [7] and shows significant

better performance for the communication time as well

as asynchronous progression. IBM’s Component Collective

Messaging Interface (CCMI [8]) also implements optimized

nonblocking collective operations for different architectures.

Several research groups have investigated blocking col-

lective communication operations on SCI clusters. [9] de-

scribes the combination of DMA and PIO in pipelining

algorithms for Broadcast, Reduce, and Allreduce. We used

the ideas presented in [10] to tailor our algorithms for torus

networks. [11], [12], [13] describe an SCI optimized MPI

implementation, including algorithms and benchmark results

for collective operations. To the best of our knowledge, the

implementation of nonblocking collective operations on SCI

networks has not been analyzed before.

2. Implementation

On our test cluster equipped with current-generation SCI

hardware (see Section 4), a CPU store of 4Byte to a remote

memory location stalls the CPU for 200 ns if the I/O pipeline

is fully saturated. On idle, it just stalls the processor for the

duration of that single instruction. It takes between 1.3 and

1.4µs for this data to arrive on the remote node and we

have measured a maximum throughput of 325MiB/s with

PIO transfers.

Using the DMA engine adds a constant overhead to each

data transfer for setting up the DMA queue and requires

an additional local data transfer at the receiver’s side. In

our measurements, DMA transfers achieved a maximum

throughput of 195MiB/s and an 8Byte transfer (the min-

imum possible size) took 34.5µs. Although using the DMA

engine seems to be a natural choice when implementing

nonblocking collectives to achieve overlap between cal-

culation and communication, the performance difference

between PIO and DMA motivates the investigation of all

implementation alternatives.

In fact, NMPI, an MPICH2-based MPI implementation for

SCI clusters, uses polling (PIO) to detect incoming messages

and does not utilize the DMA engine, even for nonblocking

point-to-point operations. This eliminates the possibility

of overlap completely [14]. Polling may be avoided by

exploiting remote interrupts, which are triggered by a small-

latency remote write that notifies the blocked receiver. The

“SuperSockets” kernel module from Dolphin, which we

used for benchmarking together with Open MPI’s TCP Byte

Transport Layer (BTL), does not use DMA, but PIO and

remote interrupts to provide low-latency, high-throughput

STREAM sockets over SCI [15].

2.1. The SCI Collectives Library

Figure 1. Architecture of the SCI Collectives Library

As a tool to evaluate our implementations, we used the

SCI Collectives library (SCIColl) [16]. Fig. 1 shows its

position between higher-level software, coupled via adapter

modules, and the lower-level SISCI (Software Infrastructure

for SCI) [17] interface to the SCI interconnect. Among other

functionality, SISCI provides operations to import and export

memory regions for PIO and to setup DMA transfers.

So far, we had already implemented several blocking

collective operations and adapter modules for Open MPI and

NMPI to give these MPI implementation access to these

optimized functions. The adapter modules also provide a

registration interface for point-to-point operations, such that

the SCI Collectives library can use these functions from

the MPI libraries. We added nonblocking collectives to the

SCIColl core plus a new adapter module for the LibNBC

interface to be able to use the benchmarks described in

Section 4.

2.2. Implementation Considerations

We evaluated several alternatives in order to find the op-

timal implementation for nonblocking collective operations

over SCI networks. This also allows us to compare our

implementation decisions to those that have been made while

implementing nonblocking collective operations on Infini-

Band networks, a technology that is significantly different

to SCI.

As the main purpose of nonblocking communication oper-

ations is the overlapping of computation and communication,

using a communication co-processor to offload the CPU

seems a natural choice when implementing nonblocking

collectives. This choice is certainly being made on Infini-

Band networks, but given the shortcomings of the DMA

engines on our SCI cards, as described in Section 2, the



question was whether PIO transfers were preferable in

this case even if this eliminates the possibility of overlap.

Apart from overlap, parallel applications may benefit from

a reduction of blocking wait times that occur because of

process skew and network jitter. Minimizing these wait times

with nonblocking collectives is independent of the transfer

method.

Another open question was the use of parallel threads

to achieve asynchronous progress, without a DMA engine.

There are several things to say against a multi-threaded

implementation of nonblocking collective operations [2], but

we wanted to try this out nonetheless.

As a result of these considerations we implemented the

following types of nonblocking collective operations in

SCIColl:

• single-threaded with DMA transfers that needs manual

progress

• single-threaded with PIO transfers that needs manual

progress

• additional communication thread with DMA transfers

• additional communication thread with PIO transfers

3. Collective Operations

So far, we have nonblocking block and vector variants

of Gather and Alltoall available in the first version of the

SCIColl Library. The rationale for choosing these commu-

nication patterns first was the availability of application

kernel benchmarks that use these in a nonblocking manner

(Section 4.2). We will explain our implementation choices

in the following.

3.1. Gather

We have implemented four gather algorithms: Binary

Tree, Binomial Tree, Flat Tree (essentially all processes

sending to the root process at the same time, without any

coordination), and Sequential Transmission, which is like

Flat Tree, but the messages are sequentialized by the root

processes sending a signal to the other processes to trigger

the data send operation.

Our gather algorithms communicate in a way that is aware

of the torus topology of the SCI network. The basic idea is

the association of the processes to virtual ranks that reflect

the processes’ order in a Hamiltonian Path [10] through the

2d torus as shown in Fig. 2 (a). Because the SCI links

are unidirectional, sending, for example, from node 0 to

node 2 and from node 1 to node 3 concurrently may cause

contention of the link from node 1 to node 2 in the case

of large messages. Our Binomial Tree gather algorithm as

shown in 2 (b) communicates in a way that avoids sending

two messages over the same link during any step. We ignore

other traffic, such as acknowledgment packets here, but this

is feasible for large messages as the data packets are much

longer than packets of any other type in this case.

For the vector variant we implemented a Flat Tree and

Sequential Transmission only. The Sequential Transmission

has been implemented as a DMA and a PIO variant. All

other variants are PIO-only implementations. As nonblock-

ing variants, we support all blocking variants in an additional

communication thread and the Sequential Transmission with

an additional progress functionality in a single thread.
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Figure 2. Avoiding Link Contention in a 4x4 SCI Torus

3.2. Alltoall

For the Alltoall communication scheme, we considered

four approaches: The algorithm developed by Bruck et al.

[18], a Pairwise Exchange in N − 1 steps if N is an even

number of processes [19], a Ring algorithm with recursive

doubling in which a Hamiltonian Path is used to established

the order of the processes in the ring [11], [19], and a Flat



Tree function that just posts all send and receive operations

and waits for completion.

All four variants are available as blocking functions and

as nonblocking functions using an additional communication

thread. Out of these, the Pairwise Exchange algorithm has

been implemented with DMA as a single-threaded, non-

blocking function. The same holds true for the vector variant,

except that we do not have functions using the Bruck or Ring

algorithms available here.

4. Benchmark Results

Benchmark results were obtained at the Chair for Op-

erating System’s PD Cluster, consisting of 16 nodes in a

4x4 2d SCI torus, each equipped with a single Pentium

D (dual core) processor running at 2.8GHz, 2GiB RAM

and a D352 SCI card from Dolphin. The nodes are also

attached to an InfiniBand Switch (x4, DDR) via Mellanox

MHGS18-XT HCAs. We used Open MPI 1.2.8, NMPI 1.3.1,

and NBCBench 1.0.

4.1. Synthetic Benchmark Results

First, we discuss some microbenchmarks in order to

assess the minimal communication overhead of the different

implementations. In Figure 3, we compare the overheads of:

• LibNBC/NMPI/SCI LibNBC over NMPI (SISCI),

• LibNBC/Open MPI/SCI Open MPI’s TCP BTL over

SuperSockets,

• SCIColl/SCI the SCIColl library over SCI (SISCI),

• LibNBC/Open MPI/IB Open MPI’s openib BTL over

InfiniBand

We used NBCBench to gather these overhead results.

NBCBench starts a nonblocking operation, and tries to over-

lap the communication with computation. Figure 3 shows

the remaining overheads (nonoverlappable communication

parts) for Gather and Alltoall. We see that NMPI and

the SuperSockets implementation allow very little or no

overlap. The SCIColl library shows significant performance

improvements by optimizing the overlap of communication

and computation. To achieve this, it uses the Sequential

Transmission Algorithm for Gather and the Pairwise Ex-

change Algorithm for Alltoall with DMA transfers. Both

were executed in a single thread and progressed every 2048

bytes. In comparison to the faster InfiniBand, we see that

the SCIColl library enables higher overlap than LibNBC

with Open MPI. However, we also see in the experiments

experiments, that the InfiniBand-optimized LibNBC per-

forms better than any SCI configuration. This is mostly

due to the higher bandwidth and highly optimized DMA

implementation of the InfiniBand network. In the following,

we analyze the different SCI configurations with several

application kernel benchmarks in the next section.
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Figure 3. Communication Overhead measured with
NBCBench

We would expect a constant overhead for SCIColl with

growing message-sizes as the DMA setup costs are constant

for all message sizes. Since we test for progress every 2048

bytes we add an overhead that grows with the message size.

4.2. Application Benchmark Results

We used three application kernel benchmarks to show the

feasibility of using nonblocking collective operations on SCI

networks: a Conjugate Gradient Solver (CG) [5], a parallel

Compression benchmark (PC) [2], and a three-dimensional

Fast Fourier Transform kernel (FFT) [20]. In the CG bench-

mark, each process overlaps computation with the exchange

of halo zones with its six neighboring processes in a three-

dimensional grid. This Communication is performed with a

blocking or nonblocking Alltoallv operation. PC compresses

data in parallel and gathers the results with a blocking or

nonblocking Gatherv operation (pipelined). The FFT kernel



performs a parallel matrix transpose with a blocking or

nonblocking Alltoall operation. A three-dimensional FFT

is split into three one-dimensional FFTs and the data re-

distribution for the z transformation is overlapped with the

transformation in the other two dimensions which do not

require communication among processes.
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Figure 4. Comparison of different Algorithms with Ap-

plication Kernel Benchmarks

These benchmarks compare blocking MPI collectives with

nonblocking LibNBC collectives. Fig. 4 shows the results

for 32 processes, comparing the different algorithms we

implemented. Unless marked with “manual” (for “manual

progression”), the nonblocking algorithms are just like their

blocking counterparts, but executed in an additional commu-

nication thread. The following findings can be drawn from

Fig. 4:

• Moving the collective communication to an additional

thread almost always increased the application perfor-

mance, although with 32 application processes and PIO

transfers, this led to having more active threads than

processor cores.

• As the algorithms stayed the same, moving them into

a separate communication thread should preserve the

relative performance among them. But there are a few

exceptions to this rule.

• For all three collective operations measured, the single-

threaded implementation, i.e., one that requires manual

progress, using the DMA engine turned out to be the

best choice for the SCIColl library in the nonblocking

case, whereas for the blocking versions, PIO based

implementations performed best. That means that us-

ing the DMA engine should be considered seriously

when implementing nonblocking collectives on SCI

networks, although it is usually not used for blocking

collectives.

Please note that we had some issues with the SCI card’s

DMA engine that occasionally caused the FFT and CG runs

to last extremely long, the results shown here are best case

results.

Fig. 5 compares the SCIColl library with Open MPI

(communicating via TCP over SuperSockets) and NMPI. For

our implementation, only the results for the best-performing

algorithms are shown. Neither Open MPI nor NMPI com-

municates with DMA here. For all three benchmarks and

all three communication libraries, the benefits of using

nonblocking collectives are clearly visible. This is especially

true for the CG and FFT (using Alltoall(v)) results for

Open MPI, we attribute this to the combination of PIO

and remote interrupts inside of SuperSockets. The results

for the SCIColl library in Fig. 5 (b) differ from those in

Fig. 4 (b) because they are from runs with different system

software versions. We still need to investigate the reason

for the comparably good results of Open MPI in the PC

benchmark (using Gather).

5. Conclusion and Outlook

We show that parallel applications may benefit from the

use of nonblocking collective communication operations on

SCI clusters. We evaluated different implementation alterna-

tives for such operations. Although usually, including the im-

plementation of blocking collective operations, Programmed
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Figure 5. Application Kernel Benchmark Results over
SCI

I/O is used for data transfer over current-generation SCI

hardware, because it provides significantly lower latency and

higher throughput, compared to DMA transfers, according to

our benchmark results, DMA is preferable for nonblocking

collectives because it acts as a communication co-processor.

Our implementation may provide a blueprint for future

nonblocking collective communication functions in NMPI

in case the MPI standard includes such functions in the

future. From a research perspective, we plan to support

the new DX interconnect from Dolphin [21] with our SCI

Collectives library. The DX technology provides significant

improvements in terms of latency, throughput and DMA

support, compared to SCI.
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