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Abstract—In the Fully Sharded Data Parallel (FSDP) training
pipeline, collective operations can be interleaved to maximize
the communication/computation overlap. In this scenario, out-
standing operations such as Allgather and Reduce-Scatter can
compete for the injection bandwidth and create pipeline bubbles.
To address this problem, we propose a novel bandwidth-optimal
Allgather collective algorithm that leverages hardware multicast.
We use multicast to build a constant-time reliable Broadcast
protocol, a building block for constructing an optimal Allgather
schedule. Our Allgather algorithm achieves 2× traffic reduction
on a 188-node testbed. To free the host side from running
the protocol, we employ SmartNIC offloading. We extract the
parallelism in our Allgather algorithm and map it to a SmartNIC
specialized for hiding the cost of data movement. We show that
our SmartNIC-offloaded collective progress engine can scale to
the next generation of 1.6 Tbit/s links.

Index Terms—Networking, AI accelerators, Clusters

I. INTRODUCTION

Distributed AI training can be understood as a networking
problem. For instance, FSDP, a recently proposed distributed
training system, addresses model size limitations by shard-
ing parameters, gradients, and optimizer states [1]–[4]. Data
parallel workers, running on compute accelerators like GPUs,
retrieve sharded weights using the Allgather operation and use
the Reduce-Scatter operation to reduce and shard gradients [5].
In FSDP pipeline, Allgather and Reduce-Scatter operations on
independent shards can be interleaved to maximize computa-
tion on GPUs with communication. This necessitates a robust
underlying collective stack capable of efficiently progressing
multiple in-flight collectives. Send bandwidth contention be-
tween operations can result in pipeline bubbles and decrease
system efficiency.

Collective algorithms supported by state-of-the-art stacks
rely on point-to-point (P2P) communication between pro-
cesses [6]–[10]. While conventional P2P-based Allgather
schemes (e.g., ring) achieve an optimal bound on schedule
time [6], [11], [12], they are not optimal in terms of total data
movement across the network. For Allgather, P2P communica-
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Fig. 1: A simplified overview of the bandwidth-optimal All-
gather algorithm represented as a composition of multicast-
based Broadcasts. Multicast traffic processing is handled by
the Datapath Accelerator. In the example above, the traffic
is evenly distributed across two parallel multicast trees. We
accommodate the discrepancy between data movement work
on the send and receive paths by assigning one send and two
receive path workers.

tion implies that in any algorithm schedule with P participants,
the same send buffer will be sent at least P − 1 times [13].
With respect to the FSDP algorithm, traffic reduction within
the Allgather schedule can increase the throughput of other
in-flight collectives, such as Reduce-Scatter.

To achieve this reduction, we propose a novel algorithm for
Allgather, which has the per-process send bandwidth require-
ment scaling linearly with the send buffer size. We achieve this
property by utilizing the hardware multicast feature. Specifi-
cally, we use hardware multicast to construct a constant-time
Broadcast protocol. This protocol is a fundamental building
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block to express a bandwidth-optimal Allgather algorithm,
which we realize as a composition of Broadcasts. With our
algorithm, links in a Fat-Tree topology will transfer any byte
of any participant’s send buffer only once.

While the multicast-based Allgather scheme seems intuitive,
the practical implementation of scalable multicast-based all-to-
all-like communication is challenging and remains unsolved:

1) The existing Remote Direct Memory Access (RDMA)
interconnects support multicast offloading with datagram-
based transports. Multicasting requires CPU involvement
for each sent and received datagram. With a 200-400
Gbit/s link, a 4 KiB datagram size, and a single CPU
core dedicated to the networking stack, the collective
progress engine needs to sustain processing millions of
datagrams per second simultaneously, progress other in-
flight collective operations that require computation (e.g.,
Reduce-Scatter), and maintain the 99% computation/com-
munication overlap [1], [14], [15].

2) The existing RDMA transports that support multicast are
unreliable [16]. The added reliability protocol must mini-
mally impact the rate of datagram processing.

We address these challenges with a two-component protocol
design: a highly parallel, fast-path layer that processes multi-
cast datagram sends and receives (see Figure 1) and a slow-
path reliability layer based on the conventional ring algorithm
and reliable one-sided RDMA operations. Since we design
our protocol to be deployed with general-purpose lossless
RDMA networks, the slow-path layer is triggered only in case
of rare fabric drops. The fast-path layer leverages streaming
processing in the data movement path of our protocol [17].
We distribute the traffic across multiple multicast trees (i.e.,
streams), each carrying an independent part of the send buffer.
The trees are processed in parallel by a multi-threaded progress
engine.

To address deployment scenarios where the CPU cycle bud-
get is scarce, we offload the progress engine to a SmartNIC.
We utilize the Datapath Accelerator (DPA) [18], which is
part of the ConnectX-7 NIC [19], as a SmartNIC offloading
substrate. The key feature of DPA is its multi-core energy-
efficient architecture with support for hardware multithreading.
DPA consists of 16 RISC-V cores with 16 hardware threads
per core. We efficiently leverage hardware multithreading to
hide the latency of the fast-path layer, which mainly involves
low-IPC data movement operations.

Our main contributions are:

1) Analysis of data movement bottleneck in point-to-point-
based collective stacks.

2) A novel Allgather algorithm based on hardware RDMA
multicast and its open-source implementation.

3) An end-to-end prototype for a SmartNIC-offloaded collec-
tive progress engine tailored for Tbit/s link speeds.

4) System design principles for offloading networking stacks
running on top of unreliable RDMA transports.

II. DISTRIBUTED TRAINING AS A NETWORKING PROBLEM

We focus on optimizing the collective stack as one of the
fundamental elements that impact the system’s scalability.

A. Injection bandwidth bottleneck

With conventional Distributed Data Parallel training [20]–
[22], the model size is limited by the size of GPU memory. The
Fully Sharded Data Parallel (FSDP) approach applied to the
model state (weights, gradients, and optimizer states) helps to
overcome this constraint [1], [4]. Data parallel workers invoke
the Allgather operation during the forward and backward prop-
agation to fetch sharded parameters and use the Reduce-Scatter
operation after the backward pass to synchronize gradients.

The FSDP pipeline extensively overlaps the compute
pipeline stages with collective communication between work-
ers so that they are always saturated with training data. To
achieve this, the pipeline leverages non-blocking collective
semantics. Further, in the absence of data dependencies,
Allgather and Reduce-Scatter operations can also progress
simultaneously. Thus, having bandwidth-efficient algorithms
for these collectives is a vital feature, as both operations can
compete for the network injection bandwidth.

The existing production-grade collective backends utilize
point-to-point (also known as unicast) primitives to express
the Allgather algorithm. For example, the NCCL library uses
the ring algorithm [6]. While point-to-point-based Allgather
yields the lower bound on the time of the collective operation,
the resulting communication schedule is not optimal regarding
total data movement across the network. Let’s assume there
are P participants in Allgather communication across a system
with a Fat-Tree topology [23]. Each participant posts a send
buffer of size N and a receive buffer of size N ·P bytes. The
linear Allgather algorithm requires P − 1 P2P connections
per node and N · (P − 1) bytes to send per process (i.e.,
each participant has to send the same data to (P − 1)
destinations) [13]. Ring, tree, and recursive Allgather schemes
help to reduce the number of connections per process to 1
or log(N) [11]. Yet, these algorithms do not improve data
movement work on the send path: each participant needs to
propagate the data to its neighbors/leaves.

Multicast complements a unicast primitive to offload to the
network the burden of distributing the same piece of data
(e.g., send buffer) across multiple destinations. The switches
propagate multicast traffic across the fabric endpoints that are
attached to the same multicast group. We can use multicast to
build a reliable bandwidth-optimal constant-time (for a fixed
buffer size) Broadcast algorithm. Further, we can compose
Broadcasts from multiple senders in a bandwidth-optimal
Allgather schedule. Figure 2 presents the theoretical traffic
reduction achieved with such an algorithm. With a 2× lower
network bandwidth usage, a multicast-based algorithm allows
us to provide more network bandwidth for other collectives
running on the system.

For example, in the next-generation FSDP deployments
our multicast-based Allgather could be complemented with
the in-network compute (INC) Reduce-Scatter algorithm (e.g.,
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Fig. 2: Theoretical cost model of bandwidth savings that can be
achieved with multicast-based Allgather algorithm compared
to classical point-to-point based approaches. The modeled
system is a 1024-node cluster connected with a Fat-Tree
topology using radix 32 switches.

SHARP). With P processes in the full-bandwidth fat-tree, the
expected speedup S with our approach when compared to the
standard combination of the ring Allgather and Reduce-Scatter
algorithms [24], is

S = 2− 2/P,

meaning that at scale, the runtime of Reduce-Scatter and
Allgather collectives concurrently initiated within the same set
of nodes can be reduced by up to half 1.

Insight 1: In general, any Allgather algorithm expressed
with unicast primitive implies that at least one process needs
to send Ω(N · (P − 1)) bytes. The multicast-based algorithm
that we present in Sections III and IV ensures that the send
buffer from any participant will be moved through any link in
the network with Fat-Tree topology once. We call collective
algorithms that have this property bandwidth-optimal.

Reduce-Scatter

Allgather

Training Node
𝑁(𝑃 − 1)

𝑁(𝑃 − 1)
𝑁(𝑃 − 1)
𝑁(𝑃 − 1)𝑁

𝑁(𝑃 − 1)
𝑁

𝑁(𝑃 − 1)
INC + Mcast Ring + Ring

NIC

Fig. 3: Data movement at the training node boundary.

Insight 2: The bandwidth requirement of conventional ring
Allgather and Reduce-Scatter algorithms is equal on the send
and receive paths (see Figure 3). Thus, bandwidth paths of
NIC are equally shared between these collectives. Instead, INC
Reduce-Scatter is bounded by the NIC’s send path bandwidth
(to propagate send buffers to the network spine/core), while
multicast-based Allgather has a bottleneck on the receive
path. In other words, bandwidth-optimal Reduce-Scatter and
Allgather algorithms don’t share network bottlenecks.

Challenge 1: Realizing bandwidth-optimal collective algo-
rithms would require redesigning existing point-to-point-based
protocol stack to leverage hardware multicast.

1See Appendix B for analytical derivations.

B. RDMA and hardware multicast

AI supercomputers widely leverage Remote Direct Memory
Access (RDMA) interconnects for high-bandwidth data move-
ment between memories of compute nodes [22], [25]–[28].
The InfiniBand specification [16], the most widely adopted
RDMA implementation, offers three transport layer service
models supported by the fabric endpoint called a Queue
Pair (QP): Unreliable Datagram (UD), Unreliable Connection
(UC), and Reliable Connection (RC). Multicast is standardized
only for UD transport.
• UD is the simplest transport in terms of NIC hardware

implementation. It offers the unreliable delivery service of
datagrams (in-order with drops) of Maximum Transmission
Unit (MTU) size (up to 4 KiB). The UD queue pair has
connection-less two-sided UDP-like semantics: datagrams
can be sent to and received from any remote queue pair. UD
can greatly improve scalability by maintaining a constant
number of cached contexts in a small NIC SRAM cache.
The corresponding UD QPs should be attached to a multicast
group to send and receive multicast datagrams.

• UC is another unreliable transport, but it supports arbitrary-
length two-sided messaging and one-sided RDMA write
messages. If one of the packets within the message is
dropped, the entire message is also dropped. We also con-
sider a possible extension of the next-generation RDMA
hardware to support multicast with the UC transport, thus
enabling multicast RDMA Writes.

• RC alleviates the need for software reliability and re-
transmission by offloading it to the hardware. This is a key
feature to provide arbitrary-length one-sided operations used
to implement the zero-copy rendezvous protocol, a funda-
mental building block for point-to-point-based collectives.
However, since the RC transport requires a per-connection
reliability state, it doesn’t support datagram multicasting.

Staging Mcast Allgather
Pros
- O(N) send path BW
- Applicable to UDP
Cons
- Needs SW reliability
- Need to hide staging latency

RC

UC UD

Hard
ware

 

re
lia

bilit
y

One-sided
operations
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transport
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- The simplest implementation
- Zero-copy
Cons
- At least one rank with 

Ω(N* (P-1)) send path BW

P2P-based Allgather

Zero-copy Mcast Allgather
Pros
- O(N) send path BW
- Zero-copy
Cons
- Needs SW reliability
- Vendor specific

Fig. 4: Trade-offs exist between the InfiniBand (IB) Verbs
transport layer semantics and Allgather algorithm design. We
present a practical multicast-based solution for Unreliable
Datagram (UD) and Unreliable Connected (UC) transports.

We highlight the trade-offs between the QP service model
and the resulting Allgather algorithm in Figure 4. For UD
transport, the multicast feature requires software involvement
on the per-datagram granularity to perform buffer segmenta-
tion and reassembly on the stack’s sender and receiver sides.
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Fig. 5: A single-threaded datagram-based datapath running on
a server-grade CPU is unable to sustain the 200 Gbit/s link
bandwidth, while the datapath offloaded to the single multi-
threaded DPA core scales to the peak throughput.

Multicast-enabled transports are also unreliable, and datagrams
can be dropped. Therefore, the progress path must also support
software reliability. In Figure 5, we assess the performance
of the UD-based segmentation-and-reassembly and reliability
protocols implemented in the production-grade point-to-point
RDMA middleware (UCX). The experiment was conducted
on a 2-node system equipped with server-grade 2.6 GHz
AMD Epyc CPUs and 200 Gbit/s NVIDIA ConnectX-7 NICs
(see Section VI for more details). We observe that a single
CPU core cannot reach the full link bandwidth. To cut out
the software overheads of the reliability protocol, we also
implement a custom progress engine where MTU-sized chunks
are delivered through the RC transport. The single-threaded
stack struggles to reach 200Gbit/s even without running the
software reliability layer.

Insight 3: With a lossless2 link layer (e.g., InfiniBand or
RoCEv2) and enough processing capacity on the receive side
(to avoid Receiver-not-Ready drops), most of the time a TCP-
like stack will be redundant. In Sections III and IV, we
exploit traffic parallelism in the data flow of Broadcast and
Allgather to realize the collective progress engine that can
scale the datagram processing across worker threads.

Challenge 2: The multi-threaded datagram processing will
impose a significant CPU cycle footprint. These overheads
must be avoided in application deployment scenarios where
the computation is done on the CPU cores, e.g., distributed
file systems [31], [32].

C. Datapath Accelerator

We solve the CPU bottleneck by offloading the collective
progress engine to the SmartNIC. We use Datapath Accelerator
(DPA) as a SmartNIC offloading substrate. DPA is available
in the latest generation of NVIDIA BlueField DPU, SuperNIC
and ConnectX products. We describe the key DPA capabilities
with respect to collective offloading.

The current DPA generation consists of 16 programmable
energy-efficient RISC-V cores with 1.5 MB of last-level cache

2Previous works [29], [30] report bit error rates for Ethernet and InfiniBand
links to be on the order of 10−12 and 10−15, correspondingly.

(LLC). The cores are clocked at 1.8 GHz and tailored to hide
the cost of low instruction per-cycle (IPC) data movement code
through hardware multi-threading. Each DPA core supports
16 hardware threads, resulting in 256 hardware execution
contexts.

The DPA cores are directly interfaced with the NIC DMA
engine and can be programmed using the DOCA FlexIO C API
from the application user space. Using the DOCA FlexIO low-
level API, the user defines a C kernel to be executed upon the
completion queue events generated. Within the DPA kernel,
the user can initiate data transfers using RDMA and Atomic
operations. Any of the remote and local memory regions (with
respect to the server where the NIC is installed) can be the
targets of these operations. The user associates completion
queues with the kernel so that the first completion event (e.g.,
send or receive operation completion) results in the execution
(activation) of the event handler kernel. The hardware thread
executes the activated kernel.

Insight 3: Most of the cycles spent in the buffer segmen-
tation and reassembly path of the collective progress engine
correspond to the posting of the RDMA operations (stores)
and polling for their completions (loads). In Section VI, we
show how the multi-threaded DPA architecture allows us to
hide data movement latency in our collective progress engine
and scale it to the current and next-generation link bandwidths.

III. CONSTANT-TIME RELIABLE BROADCAST PROTOCOL

In this section, we present the design of our protocol
for reliable constant-time broadcasting on top of unreliable
hardware multicast. The constant-time broadcasting protocol
allows us to build the bandwidth-optimal Allgather schedule.

The first component of our protocol is the multicast fast
path, which performs the segmentation and reassembly of the
user buffer as fast as possible. In the fast path, the throughput
is limited only by the rate at which the RDMA operations can
be posted by the CPU or the SmartNIC thread and processed
by the NIC DMA engine. Missed chunks are fetched using the
reliable path. The rationale behind this two-component design
is that in a lossless fabric drops are rare, and data will be
delivered to the receivers through the fast path.

We describe the fast-path protocol in the context of UD
transport. In the multicast path all the send and receive
processes are attached to the same multicast group.

A. Broadcast root: sender datapath

The root process performs the fragmentation of the send
buffer. It chunks up the user send buffer into MTU-sized
datagrams and posts RDMA multicast send operations. The
buffer fragmentation is zero-copy, so no intermediate copies
are involved in the send path. Each buffer chunk (datagram
payload) is associated with a packet sequence number (PSN)
that enumerates the chunk within the send buffer. PSN is
written into the 32-bit immediate data field of the posted
RDMA send request, so it can be delivered to the receive
side in the packet header.

4
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In the absence of packet drops and assuming that all
leaf participants pre-post receive buffers in advance (see
the receiver-not-ready discussion in the next subsection), the
datagrams posted by the root will be delivered to all leafs
without the need to involve the reliability layer.

B. Broadcast leaf: receiver datapath

The leaf processes perform the buffer re-assembly. The
corresponding datapath worker thread (e.g., running on the
SmartNIC as shown in Figure 6) polls the network completion
queue. During 1 , each chunk is stored in the packet buffer
resulting in a receive completion (CQE) generated by the NIC
DMA engine in 2 . Upon the completion being polled in 3
by the worker thread, the corresponding chunk is marked as
received. 4 constitutes a memory copy of this chunk from
the staging area to the user buffer. After all buffer chunks are
received, the completion is generated, and the receive buffer
can be released to the user in 5 .

Out-of-order traffic and packet drops: While the stan-
dardized UD semantics is in order, we expect that with a
wider adoption of adaptive routing in the next generation
networks, datagrams can be delivered to the receive side out-
of-order [16], [27], [29]. Thus, the user’s receive buffer cannot
be used to post the network receive requests and employ a
zero-copy approach on the receive side without keeping track
of the received packet order [33]. For example, if the i’th
chunk was dropped or re-ordered by the fabric, the i + 1’th
chunk will be matched to the i’th receive request. Assuming
that we posted the user’s receive buffer to the network, the
i+ 1’th chunk will be stored at the i’th location in the user’s
receive buffer, resulting in its corruption.

Existing point-to-point protocols address this problem with
the go-back-N or selective zero-copy fetches [33], [34]. After
detecting the out-of-order packet, the sender side is requested
to re-transmit the buffer. While this approach allows support
for zero-copy rendezvous over UD channel, the go-back-N
scheme with multicast will require the delivery of go-back

Fig. 7: Maximum Allgather bitmap and receive buffer sizes
are modeled as functions of PSN bits allocated in IB Verbs
32-bit CQE immediate value. We show device memory sizes
for the current generation of NVIDIA GPUs and DPA.

negative-acknowledgment (NACK) to the multicast root possi-
bly from multiple sources, thus resulting in N-to-1 incast. The
go-back-N scheme will also increase the software complexity
of the receive datapath (e.g., the receiver state machine will
include acknowledgement (ACK) and re-transmission recovery
logic) and will not apply to out-of-order datagram delivery.

Receive-side staging: We propose the staging-based solu-
tion, i.e., 4 in Figure 6. First, each chunk is received into the
staging memory area. The staging area is organized as a ring
buffer. Each received chunk is copied from the staging buffer
into the user’s receive buffer. We rely on the DMA engine
supporting non-blocking queuing to efficiently hide the latency
introduced by additional memory copy in the UD datapath
(e.g., 1 − 3µs PCIe latency in Step 4 in Figure 6), so that
packet receives from the network to the staging buffer can
be overlapped with DMA copy from the staging towards the
user buffer [35], [36]. Out-of-order delivery is also supported
by design as PSN written in the CQE allows determining the
offset of the chunk in the destination buffer.

C. Slow-path: synchronization and reliability layer

While we design our protocol to be deployed with the
lossless link layer, in practice, the receive side can observe
packet drops in two scenarios:
1) Receiver-not-Ready (RNR) drops occur when, by the time

of multicast packet arrival to the destination NIC, the
corresponding receive request was not posted yet. We
avoid this kind of drops using two mechanisms. We pre-
post the network receive queue with receive requests in
receive buffer and then perform the barrier synchronization
before the root starts broadcasting. To keep up with the re-
posing of receive requests we scale the number of datapath
workers on the receive side (see Section IV-C).

2) Fabric drops might occur because of packet corruption in
the link layer. To recover in this scenario, each Broadcast
leaf maintains the receive buffer bitmap and performs zero-
copy fetch of missed chunks during the recovery phase.

Bitmap: In our design, the receive datapath keeps track
of each received chunk in a bitmap. The bitmap location is
determined by the PSN stored within the receive completion
immediate data. We choose the bitmap as a reliability data
structure because it allows us to store information about drops
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in a compact way with minimal overhead on the receive
datapath throughput. In Figure 7, we analyze how many bits
in the completion immediate data must be allocated to address
the system memory while ensuring that the bitmap fits in the
LLC of the SmartNIC that we use for evaluation3.

Cutoff timer: When the leafs enter the multicast phase,
they start polling receive completions. To account for extreme
scenarios where some of the packets were dropped, the receive
thread sets the timeout equal to (N/Blink + α) seconds,
where N is the receive buffer size and Blink is the link
bandwidth. The parameter α is adjusted to account for RNR
synchronization time and networking noise.

Fetch layer: We use RC transport to create a fetch ring
across all processes. After the completion of the multicasting
phase, leafs scan the bitmap. Leafs that have experienced
fabric drops perform a customized version of the zero-copy
rendezvous protocol with their neighbors in the virtual ring.
For example, the process that misses a chunk will send a buffer
fetch request to its left neighbor in the ring. If the process’s
left neighbor has all the buffer chunks, it will send the ACK
packet back. After receiving the ACK, the process selectively
fetches missing chunks utilizing RDMA Read primitive. If
the process’s left neighbor also experienced drops, it will
recursively apply the fetch scheme until the leaf (Broadcast
root in the worst case) that has all the chunks is found.

3The remaining immediate value bits can be used to store implementation-
specific information, such as the collective ID.

Our reliability scheme features several advantages. We avoid
incasting the Broadcast root with ACK and fetch requests. We
can easily generalize the scheme for multicast-based Allgather:
in the worst-case scenario, it results in the ring Allgather that
yields the optimal bound on the receive-side bandwidth. In the
absence of packet drops, the processes need to perform only
the final handshake in the reliable ring.

Final handshake: When a leaf receives all chunks, it sends
the final packet to its neighbor in a ring. Sending a final packet
to the left process and receiving a final packet from the right
process constitutes the final handshake. After the handshake,
the receive buffer can be released to the application.

D. Memory footprint analysis

a) Connection contexts: In the fast path, a single multi-
cast UD QP sends and receives data from all remote sources.
The synchronization path is based on the ring algorithm and
requires 2 RC QPs per leaf.

b) Staging area: The size of the staging area is bounded
by the size of the QP receive queue and the rate at which
the worker thread can process packets. For the BlueField 3
SmartNIC used in our experiments, the maximum receive
queue size is 8192. With a 4 KiB MTU, the maximum staging
area size is 32 MiB. In our experiments with DPA we observe
that a practical size to sustain the 200 Gbit/s link is 4 MiB.
We allocate this memory within the 16 GB DDR5 memory of
the BlueField SmartNIC.

c) Bitmap: The bitmap is the only protocol state that
grows linearly with the receive buffer size. As shown in
Figure 7, the bitmap size that fits in the DPA LLC (1.5
MB) will allow addressing the Allgather receive buffer of
approximately 50 GB.

d) Multiple communicators: Assuming 64 KiB bitmap
(i.e., up to 16 GB Allgather receive buffer) and 16 KiB per-
communicator context size, more that 16 communicators will
fit in the DPA LLC.

IV. ALLGATHER AS A COMPOSITION OF BROADCASTS

The key to the scalability of our system is its modular
design. We use the Broadcast protocol described in the pre-
vious section as a building block to assemble the bandwidth-
optimal Allgather algorithm. Intuitively, the Allgather schedule
constitutes a round-robin scheduling of broadcasting processes
across all collective participants.
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Our Allgather algorithm must scale across the network
resources (e.g., NIC RDMA engines and switches) and the
protocol processing resources attached to the network end-
points (e.g., SmartNIC or CPU cores). We achieve this by
hierarchically extracting the parallelism in our protocol:
1) Multicast parallelism: We adjust the number of concur-

rently broadcasting processes that execute the protocol
described in the previous section. Figure 8 shows an
example of Allgather algorithm execution.

2) Flow direction parallelism: With multiple broadcasting
roots, the roots process traffic independently within dif-
ferent worker paths, as illustrated in Figure 9.

3) Packet parallelism: We replicate the multicast groups to
evenly distribute the packet processing across threads, with
each worker thread processing a smaller portion of the
broadcasted buffer.

A. Multicast parallelism: distributed scheduler

When all Allgather participants start multicasting at the
same time, this will result in heavy incast network congestion
towards multicast group endpoints. Additionally, the switch
implementation of multicast might require several multicast
sub-trees to be active at the same time to keep the egress
ports saturated with traffic. Thus, we need a mechanism to
control the aggregate multicast traffic volume. While being
lightweight, this mechanism must precisely manage the vol-
ume of traffic traversing the fabric at any given point in time.

Broadcast sequencer: To solve this problem, we split the
virtual ring of Allgather participants into M parallel Broadcast
chains (see Appendix A for formal definition). The processes
within chain will multicast the data one-by-one. We execute
this scheduling within all chains in parallel. We use the
synchronization layer to propagate the activation signal within
a chain. For example, once a process finishes multicasting, it
sends the activation signal to its neighbor in the chain. We
can choose the chain split based on the network topology. For
example, we can map chains to the server racks to limit the
outbound multicast traffic per each rack.

B. Flow direction parallelism: splitting send and receive paths

We split the send and receive datapaths between different
worker threads. With a multi-threaded design, we alleviate the
need to balance the core cycle budget between traffic injection
and reception. This is critical for the Allgather schedule
stages where the processes act as Broadcast roots and leafs
simultaneously.

We illustrate the synchronization flow in Figure 9. We
utilize atomic primitives for the control signaling between the
application thread and workers to ensure the portability of the
protocol across different SmartNIC and CPU architectures.

Request submission: The operation is initiated when the
application thread posts a new task. The task is added to
the queue that is shared between the worker and application
threads. After that, the receive path is signaled to start the
cutoff timer and poll the network queue for the new datagrams.

The application thread performs RNR synchronization with
other processes and signals to the send path.

Request progress: The sender worker executes the multicast
scheduler. When it’s turn in the schedule arrives, it starts
to inject multicast packets. Once the send worker finishes
multicasting, it signals to the application thread. On the receive
side, once all the packets are successfully received by the
receive worker, the final handshake is performed. In case
the cutoff timer expires, the receive worker also executes the
reliability recovery before the final handshake.

C. Packet parallelism: distributing buffer across workers

The advantage of a multicast-based Allgather is that as
the number of participants increases, the per-process send
bandwidth requirement remains constant and equals the size of
the send buffer. However, the receive bandwidth requirement
scales with the number of participants. For example, suppose
there are 16 processes, each sending an 8 MiB buffer. The
receive path will need to handle a total of 120 MiB, resulting in
15× more work. Therefore, it’s crucial to focus on optimizing
the scalability of the Allgather receive side.

Multicast subgroups: We evenly distribute the traffic across
multiple multicast groups, referred to as subgroups. Each
worker thread polls the completion queue associated with one
or more multicast subgroups. Mapping contiguous send buffer
blocks to subgroup QPs allows us to maintain a thread-local
bitmap on the receive side and limit inter-thread synchroniza-
tion to thread activation and tear-down.

With this design, we can scale the number of workers on the
send side independently from the receive side. For example,
consider a scenario with 16 participating processes, 4 multicast
subgroups, and an 8 MiB send buffer. On the send path, each
participant serves contiguous 2 MiB buffer blocks across 4
QPs. On the receive path, each QP will handle 30 MiB. To
address this discrepancy between sender and receiver, we can
allocate 1 send worker serving all 4 send QPs, and 4 receive
workers mapped one-by-one to the QPs.

V. IMPLEMENTATION

The goal of our implementation is to support two types
of systems: current-generation machines leveraging standard
CPU-driven RDMA offloading, and next-generation deploy-
ments based on programmable SmartNICs. We open-source
the code for the community:

https://github.com/spcl/muliticast-based-allgather/

A. CPU-driven implementation in the UCC library

We implement our multicast protocol as a backend for
the open-source Unified Collective Communication (UCC)
library. The UCC library is natively supported by OpenMPI
and PyTorch runtimes. Our multicast-based UCC backend
comprises ≈3500 lines of C code. Our backend supports two
collective operations: Broadcast and Allgather. The modular
architecture of our multicast-based Broadcast protocol allows
us to use the same data and reliability path kernels for both
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collectives. The only difference is around 20 lines of code
related to the Allgather multicasting scheduler.

We describe the key optimization techniques that helped us
achieve a scalable implementation of our protocol.

Initialization phase: We use C11 atomics to implement
a lock-free task queue and non-blocking signaling between
the main application thread and workers. To optimize the
collective initialization phase, we cache the user buffer mem-
ory registrations, use a memory pool for the work requests,
and also employ the recursive-doubling barrier in the RNR
synchronization step.

Progress engine: We employ RDMA-specific optimization
techniques to reduce overheads on the send and receive worker
datapaths [37], [38]. Send workers batch multicast requests
to reduce the number of NIC DMA engine doorbell updates.
Only the completion of the last send request in the batch is
reported through the completion queue, reducing the number
of reported completions. On the receive side, we pre-post the
network receive queue with receives in the staging buffer and
cache all staging receive work requests for fast re-posting.

B. Offloading the protocol datapath to DPA

We offload the collective progress engine using NVIDIA
DPA to address scenarios where host CPU cycles are scarce
and must be dedicated to the application (e.g., compute stages
of the training pipeline run on the CPU).

We focus on the receive-side offloading because this is the
main bottleneck on the data flow path in Allgather: the receive
side needs to process data from all senders, keep track of
reliability state, and copy chunks from the staging area in
the BlueField memory to the user buffer. The corresponding
instruction path consists predominantly of data movement
tasks, such as reading completions, re-posting RDMA re-
ceives, updates to the bitmap, etc. This makes DPA the perfect
choice for our goals, as we can hide the latency of the low-IPC
code by running parallel workers on energy-efficient multi-
threaded cores (see Figure 6).

We utilize the event-driven programming model supported
by the DOCA FlexIO API [39]. As the semantics of interaction
with the NIC RDMA engine in the DOCA FlexIO API is sim-
ilar to the host-side Verbs API, the receive-side optimizations
that we apply in our UCC backend directly translate to the
DPA kernel code. The DPA-offloaded progress engine works
as follows:

1) The DPA thread context is initialized after the host-side
application registers memory using the standard IB Verbs
API and copies the buffer metadata (e.g., pointers and
memory keys) to the DPA thread memory.

2) The completion of the first chunk reception, which cor-
responds to the pre-posted RDMA receive, activates the
hardware DPA thread that starts executing the receive
datapath kernel.

3) The kernel polls the completions for subsequent pack-
ets. For each received chunk, the kernel sets the bit in
the bitmap. The kernel issues an RDMA write operation

through the loopback queue to copy the chunk staging area
to the user receive buffer.

4) Once all chunks are received, the last worker notifies the
application thread about the completion of the operation by
setting a flag in the host memory. After that, the receive
buffer can be consumed by the application.

To further minimize the software involvement we prototype
the second version of receive datapath that is based on UC
multicast (we present the kernel code in Appendix C), a
possible extension for the next-generation RDMA networks.
As the UC transport supports arbitrary-length RDMA write
messages, the staging on the receive side, which is necessary
for UD, becomes redundant.

C. Support for multiple communicators

In our setup, each new communicator is mapped to a set of
threads. A single thread serves a group of parallel multicast
trees, with each tree associated with a bitmap. Our UCC pro-
totype implements a round-robin mapping of communicator
progress threads to the cores. With enough communicators,
the progress threads will eventually oversubscribe CPU cores,
leading to a noticeable slowdown due to context switching. We
anticipate that context switching overheads can be avoided by
supporting software traffic arbitration. In this approach, each
progress thread subscribes to multiple communicator contexts
and serves traffic from them on a per-datagram basis.

The same approach can be applied to DPA offloading. In
Section VI-C, we demonstrate that 16 DPA threads (out of
256) per communicator are sufficient to sustain a datagram
arrival rate at 200 Gbit/s, indicating that DPA has enough
compute capacity to also sustain software arbitration.

VI. EVALUATION

We study the following questions:
1) Does our multicast-based algorithm provide network band-

width usage savings and throughput improvements com-
pared to classical point-to-point-based collectives?

2) What is the raw performance of the SmartNIC-offloaded
Allgather datapath?

3) Does SmartNIC-based offloading help overcome the CPU
bottleneck in the protocol progress path?

A. Evaluated systems

We follow scientific benchmarking guidelines when report-
ing the experimental results [40].

UCC testbed: We evaluate our UCC multicast backend on
a 188-node testbed based on a fat-tree topology composed of
18 Mellanox SX6036 switches. The hosts are equipped with
ConnectX-3 56 Gbit/s NICs, 10-core 2.20 GHz Intel Xeon
CPU E5-2660v2, 32 GB of DDR3 DRAM, and run CentOS
7.3. We use OpenMPI v5.0.2 and compile it with UCX v1.16
and UCC v1.3.x collective backend support. We use OSU
benchmarks v7.3 for benchmarking. We patch the benchmark
to log the per-iteration times of the collectives across all MPI
ranks. We compile the stack using GCC v11.4.0.
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Fig. 10: Protocol critical path break-down.

Fig. 11: The per-process receive throughput at 188 nodes.

DPA testbed: For experiments with SmartNIC acceleration,
we use two servers connected back-to-back with the latest
generation of BlueField 3 DPU. Our experiments use one of
two 200 Gbit/s ports, as the server motherboard supports only
PCIe 4.0. We use the 16-core DPA engine integrated with
the BF-3 RDMA engine. DPA is interfaced with 16 GB of
DDR5 DRAM managed by the BlueField ARM subsystem.
Each DPA core supports 16 hardware threads. The host is
provisioned with a 24-core 2.6 GHz AMD Epyc 7413 CPU,
256 GB DDR4 RAM, and runs Ubuntu 22.04. We use the
compilation toolchain supplied with DOCA SDK v2.2.0.

With these testbeds we address address different research
goals. With the UCC testbed, we assess the scalability of
our multicast-based algorithms. With the DPA testbed, we
show that the receive datapath, a fundamental bottleneck for
our Allgather algorithm, can be efficiently parallelized and
offloaded to the SmartNIC.

B. Performance of multicast-based Algorithms

We focus on intra-node communication and investigate the
collective stack performance with 1 process per node (PPN).
We allocate 1 worker thread per send and receive datapaths.

Fig. 12: Multicast-based algorithms achieve up to 2× traffic
reduction across 18 SX6036 switches, when compared to P2P-
based Broadcast and Allgather algorithms.

As baseline algorithms, we choose the bandwidth-optimized
collective algorithms implemented in the UCC library using
the P2P UCX backend [8], [41]. We perform 100 warm-
up iterations that are excluded from reported measurements.
We report per-rank performance across 1000 iterations for
throughput experiments with send message size below 4096
bytes and 100 iterations for larger messages. For Broadcast, we
report measurements only on leaf ranks. We use one actively
multicasting root within the Allgather schedule.

a) Protocol scalability: We designed the protocol for
maximum communication/computation overlap. We investi-
gate the synchronization overheads in our protocol (i.e., RNR
barrier at the initialization stage and the final handshake) in
Figure 10. As the message size and number of participants
grow, the non-blocking multicast datapath starts to dominate.
Starting from 16 nodes, 99% of CPU time in the Allgather
progress path is spent in the data movement performed by
send/receive worker threads. This suggests that our approach
will be the most efficient at large system scales, as the protocol
time will be dominated by the multicast.

b) Throughput at scale: Figure 11 shows the perfor-
mance of our algorithms at the full system scale of 188 nodes.
Our Broadcast algorithm outperforms k-nomial and binary tree
P2P schemes by up to 1.3× and 4.75×, respectively. For 128
— 256 KiB Allgather, typical for FSDP training [6], [9], [42],
the multicast approach achieves the same throughput as the
ring algorithm. Such alignment is expected as the throughput
of both algorithms is bounded by the receive buffer size [11].

c) Performance variability: As the message size grows,
we also notice significantly smaller throughput variability in
multicast-based collectives than in P2P algorithms. For large
send buffers, the latency of RNR synchronization becomes
negligible (see Figure 10), and the communication is domi-
nated by the single-root multicasting.

d) Traffic savings: The goal of our algorithms is to
minimize the data movement across the network. By doing
so, we can free the injection bandwidth for other in-flight
operations. We assess the traffic reduction in Figure 12. We
collect performance counters across all switch ports of our
Fat-Tree testbed when running the Broadcast and Allgather
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Fig. 13: The throughput scaling with 8 MiB receive buffer size
and 4 KiB chunk size as the number of DPA threads increases.

collectives. We run 10 iterations with 64 KiB send message
size for each measurement to ensure that counters do not
overflow across iterations. With multicast-based Allgather, we
achieve 1.5× to 2× data movement savings when compared to
the P2P algorithms. This experiment confirms our theoretical
insights from Section II that multicast-based algorithms can
minimize the data movement across the network.

C. SmartNIC offloading

We study the performance scalability of our multi-threaded
Allgather receive progress engine offloaded to the DPA.

a) Experimental setup: In Figure 10 we assessed the
protocol efficiency across the testbed scale. We notice that
with small scale/message sizes, latency in the RNR and
Final synchronization dominates the CPU cycles, becoming
negligible only at larger scale. In the DPA experiments, we
assume the scenario where our protocol is deployed at a large
scale, and Allgather progress engine time is predominantly
spent in the datagram reception, which we offload to the DPA.

We reproduce a scenario where the receive datapath (DPA
server) acts as a leaf node in the schedule of our Allgather
algorithm. The leaf is fully saturated with datagrams coming
from the x86 client machine that simulates the broadcasting
roots. To imitate the traffic distribution across multicast trees,
we create multiple QP connections between the client and
the server. Each receive DPA worker processes the traffic
from one connection (multicast tree). We co-locate receive
threads on DPA in a compact way so that first, we occupy 16
hardware threads of core 1, then core 2, etc. By doing so we
exercise the ability of DPA to sustain the load when all worker
threads share the same core resource. UD-based datapath uses
BlueField 3 DRAM banks for staging area allocation.

b) Baseline datapath: Our baseline setup is intended
to simulate conventional CPU-based datagram processing.
Similarly to UC-based DPA datapath, the baseline receiver
performs a logical zero-copy re-assembly of received packets.
With such a baseline, we can estimate a practical lower bound
on the performance of single-threaded CPU-based buffer pro-
cessing with per-datagram granularity.

c) Single thread performance: In Table I, we investi-
gate the single-threaded receive datapath performance metrics.

Receive datapath Throughput, GiB/s Instructions/CQE Cycles/CQE IPC

UC 11.9 66 598 0.11

UD 5.2 113 1084 0.1

TABLE I: Average DPA single-thread performance metrics
with 8 MiB receive buffer and 4 KiB chunk size.

Fig. 14: The DPA throughput scaling with 4 KiB chunk size.

With 1/256 of DPA capacity, the datapaths achieve 1/2 (UC)
and 1/5 (UD) of peak theoretical throughput (200 Gbit/s).
The equally low IPC metric for both datapaths suggests
that the processing is bottlenecked by high-latency load/store
operations (RDMA operations re-posting and bitmap updates).

d) Receive side scaling: We scale the number of DPA
threads to hide the latency of single-thread processing. In
Figures 13 and 14, each thread is mapped to an independent
connection and processes different blocks of the receive buffer.
UC datapath reaches the full throughput with 4 threads,
whereas a UD-based receiver that has ≈ 2× higher critical-
path latency needs from 8 to 16 threads. Notably, with the
number of hardware threads that fit into only 1 DPA core (1/16
of total DPA capacity), both datapaths reach the practical link
throughput and outperform single CPU core by 25%.

e) Improvements of UC-based multicast: UC transport
supports arbitrary length RDMA Write messages. With UC
multicast we can further minimize the software involvement
on the receive side, the multi-packet messages will arrive with

Fig. 15: Throughput of UC transport with 8 MiB send buffer
and multi-packet chunk sizes.
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Fig. 16: Sustained chunk processing rate with the DPA-
offloaded collective receive datapath. The number of hardware
threads is scaled up to half of the total DPA compute capacity.

the less frequency when compared to per-datagram processing.
In Figure 15, we investigate the impact of the chunk size on the
processing of an 8 MiB buffer. With the larger chunk size, DPA
can sustain a line rate with fewer threads. Multi-packet UC
multicast combined with our scheduling in Allgather protocol
will result in a low software-overhead solution.

VII. APPLICABILITY

a) Scaling to next-generation Tbit/s links: Ethernet link
speeds are projected to reach Tbit/s speeds by 2025 [29],
[43]. In Section VI, we show that a single DPA core running
UD-based Allgather can sustain 200 Gbit/s bandwidth while
utilizing 1/16’th of the full DPA compute capacity. We are
now studying the scalability of Allgather’s receive datapath for
future link bandwidths. Assuming N× higher link bandwidth
and 100% link utilization, MTU-sized packets will arrive at the
receive side at ≈ N× higher rate. To investigate the datapath
potential to sustain higher rates, we decrease the chunk size
in the fragmentation protocol to 64 Bytes to match the chunk
arrival rate of a 1600 Gbit/s network with 4096 KiB MTU-
sized packets. Figure 16 shows the sustained chunk processing
rate for UD and UC using different numbers of DPA threads.
With 128 threads (i.e., half of DPA cores), our approach
sustains 1600 Gbit/s already on current-generation DPAs.

b) Protocol deployment scope: The 2× traffic reduction
achieved with our multicast-based Allgather algorithm makes
it a promising solution for next-generation systems leveraging
FSDP training. As discussed in Section II, collective opera-
tions competing with Allgather for network injection band-
width (e.g., Reduce-Scatter) can achieve lower completion
times. Our constant-time Broadcast algorithm, used in con-
junction with SmartNIC-based offloading and fabric Quality-
of-Service management mechanisms (e.g., Virtual Lanes [44]),
would perfectly fit the applications imposing stringent require-
ments on the completion time of network communication, such
as distributed file system replication [31], [32].

c) DPA offloading for other workloads: Our DPA-based
solution is entirely software-defined. The Allgather and Broad-
cast kernels we developed can be expressed with any Verbs-
like API that exposes NIC RDMA engine capabilities to
the user. In this context, our UD-based datapath offloading

methodology that, by design, supports out-of-order packet
arrival can be applied to RoCEv2/UDP traffic. We believe that
other software-defined protocols featuring traffic parallelism
and requiring reliable data transmission, such as QUIC [45],
and storage I/O [46], [47], can ideally fit DPA offloading.

d) Economics of SmartNIC offloading: The single-
threaded CPU-based baseline in Figures 5, 13 shows that one
CPU core can sustain datagrams receiving at only ≈ 1/2 to
2/3 of a 200 Gbit/s link. Thus, the progress engine core count
footprint will at least double with twice higher link bandwidth.
For example, to saturate four 1.6 Tbit/s links with 4 KiB
datagrams in both directions, we will need at least 64 CPU
cores (1 core per 100 Gbit/s). In Figure 16, we demonstrate
that the DPA generation we utilize in this work already has
enough compute power to drive such a link. Let’s consider
the NVIDIA SuperPOD node based on the 2× 54-core Xeon
8570 CPU and 4× ConnectX-7 400 Gbit/s NICs supporting
DPA offloading. When compared to the CPUs, the NICs total
cost and energy consumption are ≈ 2.5× lower and ≈ 7×
lower, correspondingly.

In this light, DPA offloading and on-path SmartNIC offload-
ing in general (as opposed to the off-path Linux-based SoC
offloading deployed for cloud infrastructure) can be a cost-
efficient alternative to classical CPU-driven systems in:
1) HPC machines specialized for energy-efficient FSDP train-

ing. Cheap CPUs with low core counts drive training con-
trol path, while compute and traffic processing kernels are
offloaded to energy-efficient GPUs and on-path SmartNICs.

2) General-purpose cloud HPC deployments where the expen-
sive host resources (CPU cores, host-side interconnect) are
shared across applications, e.g., storage and training.

VIII. RELATED WORK

To the best of our knowledge, our work is the first to propose
a multicast-based Allgather algorithm and provide its open-
source end-to-end implementation. Previous algorithmic ap-
proaches leveraging hardware multicast have primarily focused
on Broadcast and reduction collectives.

The SHARP protocol relies on hardware multicast to per-
form in-network reduction [48]. Hoefler et al. [49] introduced
a constant-time Broadcast protocol for small messages. In
Section III, we analyzed the reliability layer designs proposed
in works [34], [50]. The HCOLL library [51] leverages multi-
cast for the Broadcast collective, although it is closed-source.
Related paper [30] suggests that the reliability protocol is built
around a process tree with a sliding window between parent
and child nodes. Our approach to reliability is orthogonal
and does not require ACK’ing in the datapath. After RNR
synchronization between participants, we rely on the multi-
threaded receive path that provides enough processing capacity
to sustain the line rate and minimize the probability of RNR
drops. In case drops happen, we rely on selective fetching in
the reliable ring. Receive side scaling was extensively studied
by Belay and Prekas [14], [52], [53].

The event-driven DPA programming model resembles ideas
originating in active messaging [41], [54], triggered operations
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in Portals 4 [55], [56], and the CORE-Direct feature [57].
Existing implementations of these features are CPU-driven and
do not support SmartNIC offloading.

Several works by the MVAPICH team focus on achieving
non-blocking Alltoall collective progress [58], [59]. These
works focus on offloading a conventional single-threaded
MPI progress engine to off-path general-purpose BlueField
ARM cores. In contrast, our work takes a further step in
understanding collective runtime co-design that exploits the
DPA architecture, a part of the ConnectX complex tailored
for highly parallel traffic processing.

IX. CONCLUSIONS

In our work, we introduced novel bandwidth-optimal
multicast-based Broadcast and Allgather algorithms that re-
duce data movement across the network by 1.5× and 2×,
respectively. We presented their open-source end-to-end im-
plementation for standard RDMA interconnects. Further-
more, we demonstrated that the Datapath Accelerator is a
suitable SmartNIC substrate for parallel collective progress
engine offloading. We believe that our bandwidth-optimal
collective algorithms, coupled with DPA-based offloading,
present a promising solution for the next generation of
large-scale AI supercomputers with Tbit/s network links.
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APPENDIX A
DISTRIBUTED BROADCAST SEQUENCER

We formally define the multicast scheduling algorithm as
follows. Let P be the total number of processes participating
in Allgather. Let M be the size of a broadcasting group G,
so that P mod M = 0. We enumerate all processes from 0
to P − 1. We introduce the chain length as R = P/M , which
equals the number of steps in the schedule. Assuming that the
schedule steps are enumerated from 0, at step i, the active
group Gi contains the processes:

Gi = {Pi, PR+i, P2R+i, ..., P(M−1)R+i}

APPENDIX B
TIME REDUCTION WITH MULTICAST-BASED ALLGATHER

AND INC REDUCE-SCATTER

We denote a tuple of concurrent Allgather (AG) and
Reduce-Scatter (RS) collectives across P processes as
{AG,RS}P . Both operations share the same network re-
sources with full-duplex NICs and non-blocking fabric. We
denote bandwidth towards a single NIC direction as Bnic.
N represents the send buffer size of a single AG rank,

which is equal to the receive buffer size of a single RS rank.
Concurrently, each AG needs to receive N(P −1) bytes from
the network, which is equal to the RS send buffer.

We assume that the latency of the first and last packets in the
collective schedule is negligible (i.e., N is sufficiently large).
Thus, the time T of the collective operation is dominated by
the transmission time of messages.

We compare two configurations for {AG,RS}:
1) {AGring, RSring}: both collectives are implemented using

the ring algorithm [11], [24].
2) {AGmc, RSinc}: AG is implemented using the multicast-

based algorithm described in Sections III, IV, and RS is
implemented with the in-network compute algorithm (e.g.,
using SHARP v3 [48]).

In the {AGring, RSring} configuration, send/receive Bnic

is shared equally:

B
AGring

send = BAGring
recv = BRSring

recv = B
RSring

send =
1

2
Bnic. (1)

For the {AGmc, RSinc} setup, the Bnic sharing is described
as follows:{

BAGmc

send = BRSinc
recv = N

N∗(P−1)+NBnic =
1
P Bnic

BAGmc
recv = BRSinc

send = (1− 1
P )Bnic

. (2)

The speedup S of {AGmc, RSinc}P over
{AGring, RSring}P can be calculated as:

S =
T {AGring,RSring}P

T {AGmc,RSinc}P
=

N(P−1)
1
2Bnic

N(P−1)

(1− 1
P )Bnic

= 2 − 2

P
. (3)
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APPENDIX C
DPA-OFFLOADED RECEIVE DATA PATH

1 static inline void dpa_tput_server_eh(struct dpa_export_data *export_data)
2 {
3 /* Get DPA thread context */
4 struct dpa_tput_ctx *serv_ctx = (struct dpa_tput_ctx *)export_data->app_ctx;
5 uint64_t worker_id = __atomic_fetch_add(&serv_ctx->worker_id, 1, __ATOMIC_RELAXED);
6 flexio_uintptr_t qp_dbr_daddr = export_data->qp_transfer[worker_id].qp_dbr_daddr;
7 uint64_t to_process = serv_ctx->to_process;
8 uint64_t *recvbuf_bitmap = serv_ctx->recvbuf_bitmaps[worker_id];
9 uint32_t last_recvd_chunk_id = 0 - 1; // wrap it up to max uint64_t val

10 uint32_t to_fetch = 0;
11 uint32_t recvd_chunk_id;
12 uint64_t finish_place;
13 uint32_t sq_pi;
14 uint32_t cqes_consumed;
15 uint32_t swqe_idx;
16 flexio_uintptr_t host_counter_daddr;
17 union flexio_dev_sqe_seg *swqe;
18 struct flexio_dev_thread_ctx *dtctx;
19 dpa_cq_ctx_t cq_ctx;
20 flexio_dev_get_thread_ctx(&dtctx);
21 /* Prepare CQ metadata for polling */
22 cq_ctx_init(&cq_ctx,
23 export_data->cq_transfer[worker_id].cq_num,
24 export_data->cq_transfer[worker_id].log_cq_depth,
25 export_data->cq_transfer[worker_id].ci_idx,
26 export_data->cq_transfer[worker_id].cq_ring_daddr,
27 export_data->cq_transfer[worker_id].cq_dbr_daddr,
28 export_data->cq_transfer[worker_id].hw_owner_bit);
29 /* Datapath loop */
30 while (to_process) {
31 if (flexio_dev_cqe_get_owner(cq_ctx.cqe) != cq_ctx.cq_hw_owner_bit) {
32 if (flexio_dev_cqe_get_opcode(cq_ctx.cqe) != DPA_CQE_RESPONDER_WRITE_W_IMM) {
33 return;
34 }
35 recvd_chunk_id = cqe_get_imm_data(cq_ctx.cqe);
36 step_cq(&cq_ctx);
37 rq_db_ring(qp_dbr_daddr, 1);
38 bitmap_set_bit(recvbuf_bitmap, recvd_chunk_id);
39 if (recvd_chunk_id - 1 != last_recvd_chunk_id)
40 to_fetch++;
41 last_recvd_chunk_id = recvd_chunk_id;
42 to_process--;
43 }
44 }
45 /* Update cached queue state */
46 sq_pi = be32_to_cpu(*((uint32_t *)qp_dbr_daddr + 1));
47 swqe_idx = get_wqe_idx(export_data->qp_transfer[worker_id].log_qp_sq_depth, sq_pi);
48 swqe = (union flexio_dev_sqe_seg *)(export_data->qp_transfer[worker_id].qp_sq_daddr) + swqe_idx * 4;
49 export_data->cq_transfer[worker_id].ci_idx += serv_ctx->to_process + 1;
50 export_data->cq_transfer[worker_id].hw_owner_bit = cq_ctx.cq_hw_owner_bit;
51 /* Notify host, e.g., the receive buffer can be released */
52 finish_place = __atomic_fetch_add(&serv_ctx->finisher_id, 1, __ATOMIC_RELAXED);
53 if (finish_place == (serv_ctx->n_workers - 1)) {
54 flexio_dev_window_config(dtctx, export_data->window_id, serv_ctx->counter_lkey);
55 flexio_dev_window_ptr_acquire(dtctx, serv_ctx->counter_ptr, &host_counter_daddr);
56 *(uint64_t *)host_counter_daddr = DPA_WORK_COMPLETED_MAGICNUM + serv_ctx->iter;
57 __dpa_thread_window_writeback();
58 }
59 /* Re-schedule DPA thread */
60 flexio_dev_cq_arm(dtctx, cq_ctx.cq_idx, cq_ctx.cq_number);
61 flexio_dev_thread_reschedule();
62 }

Listing 1: The simplified DPA C kernel for the UC-based receive datapath worker. The code leverages DOCA FlexIO API.
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