
Assessing HPC Failure Detectors for MPI Jobs ∗

Kishor Kharbas1, Donghoon Kim1, Torsten Hoefler2 and Frank Mueller1

1North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu
2Nat’l Center for Supercomputing Applications, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

Reliability is one of the challenges faced by exascale

computing. Components are poised to fail during large-

scale executions given current mean time between failure

(MTBF) projections. To cope with failures, resilience meth-

ods have been proposed as explicit or transparent tech-

niques. For the latter techniques, this paper studies the

challenge of fault detection.

This work contributes a study on generic fault detection

capabilities at the MPI level and beyond. The objective is

to assess different detectors, which ultimately may or may

not be implemented within the application’s runtime layer.

A first approach utilizes a periodic liveness check while a

second method promotes sporadic checks upon communica-

tion activities. The contributions of this paper are two-fold:

(a) We provide generic interposing of MPI applications for

fault detection. (b) We experimentally compare periodic

and sporadic methods for liveness checking. We show that

the sporadic approach, even though it imposes lower band-

width requirements and utilizes lower frequency checking,

results in equal or worse application performance than a

periodic liveness test for larger number of nodes. We further

show that performing liveness checks in separation from

MPI applications results in lower overhead than interpo-

sitioning, as demonstrated by our prototypes. Hence, we

promote separate periodic fault detection as the superior

approach for fault detection.

1 Introduction

The current road map to exascale computing faces a

number of challenges, one of which is reliability. Given

the number of computing cores, projected to be as large as a

million, with ten of thousands of multi-socket nodes, com-

ponents are poised to fail during the execution of large jobs

due to a decreasing mean time between failures (MTBF)

[25, 31]. When faults become the norm rather than the ex-

ception, the underlying system needs to provide a resilience

∗This work was supported in part by NSF grants 1058779, 0958311,

0937908.

layer to tolerate faults. Proposed methods for resilience

range from transparent techniques, such as checkpointing

and computational redundancy, to explicit handling, such

as in probabilistic or fault-aware computing. The latter ap-

proach requires significant algorithmic changes and is thus

best suited for encapsulation into numerical libraries [15].

This paper focuses on the former techniques. It builds

on recently developed techniques such as checkpointing

(with restarts or rollbacks) or redundant computing in high-

performance computing [3, 6, 13, 21, 34] or API extensions

for checkpointing [15, 24]. A common challenge of trans-

parent resiliency lies in the detection of faults, which is also

a requirement for fault-awareness as proposed in MPI-3 [1].

Such detection is the focus of this paper.

Previous work suggested guidelines on the theoretical

methodology for designing fault detection services. How-

ever, a practical implementation still poses a challenge in

terms of completeness and accuracy because of the diversity

of parallel system environments in terms of both hardware

and software, which exposes a number of complications due

to potentially unreliable failure detectors [11].

The fault model of this work is that components are sub-

ject to fail-stop behavior. In other words, components either

work correctly or do not work at all. Transient or byzan-

tine failures are not considered. A component is an entire

compute node or a network connection / link between any

two nodes. In such a framework, we base fault detection

on timeout monitoring between endpoints. The focus of our

work is to study the impact of timeout monitoring on appli-

cation behavior such as to perturb application performance

as little as possible.

Contributions: In this paper, we implement a fault de-

tector (FD) to detect failures of an MPI application. The

objective is to assess different detectors, which ultimately

may or may not be implemented within the application’s

runtime layer. An FD can be included at various layers of

the software stack. First, we choose the MPI communica-

tion layer to implement the FD. We detect MPI communica-

tion failures and, at the same time, also utilize the MPI layer

as a means to implement detection. This approach has the



advantage that it does not require any failure detection sup-

port from the underlying software/hardware platform. Sec-

ond, we implement a separate FD as stand-alone processes

across nodes.

In this framework, we observe the effect of a failure, such

as lack of response for communication between any two

nodes due to node or network failures. We do not perform

root cause analysis, which is orthogonal to our work. We

assume that the system model provides temporal guarantees

on communication bounds (sometimes also combined with

computation bounds) called “partially synchronous” [30].

The FD utilizes a time-out based detection scheme, namely,

a ping-pong based implementation with the following prop-

erties:

• Transparency: The FD can be embedded in MPI appli-

cations without any additional modification or side-by-

side to MPI applications. For the former, the FD runs

independently with a unique communicator different

from an application program. When MPI applications

call MPI Init, the FD module is activated for each MPI

task (on each node) as an independent thread through

the MPI profiling interposing layer.

• Portability: MPI applications can be compiled without

the FD. Applications only need to be re-linked with

the profiling layer of MPI and the FT module. It is

not necessary for MPI applications to change in their

environment, design or source code. The FD works

for arbitrary MPI implementations and has been tested

with MPICH, Open MPI, and the LAM/MPI-family.

• Scalability: We compare two modes for our FD: it ei-

ther sends a check message sporadically whenever the

application has invoked a communication routine or it

performs periodic checks at configurable intervals.

The rationale behind sporadic and periodic liveness

probing is that the former can be designed as low-cost back-

ground control messages that are only triggered when an ap-

plication is causally dependent on other nodes. The latter,

in contrast, can be designed independently of any commu-

nication pattern but requires constant out-of-band checking

but is agnostic of application communication behavior.

Experimental results show that the FD satisfies the above

three properties. The results further indicate that the spo-

radic approach imposes lower bandwidth requirements of

the network for control messages and results in a lower fre-

quency of control messages per se. Nonetheless, the peri-

odic FD configuration is shown to result in equal or bet-

ter application performance overall compared to a sporadic

liveness test for larger number of nodes, which is a non-

obvious result and one of our contributions. We also ob-

serve that separation of the FD results in lower overheads as

opposed to integration into MPI application runtime layer.

Our resulting implementation can easily be combined with

reactive checkpoint/restart frameworks to trigger restarts af-

ter components have failed [2,5–10,12–14,17,17–20,22,23,

26, 27, 29, 32–36].

2 Design

In principle, an FD can be designed using a variety of

communication overlays to monitor liveness. A traditional

heartbeat algorithm imposes high communication overhead

in an all-to-all communication pattern with a message com-

plexity Θ(n2) and a time complexity of Ω(n). This over-

head can be high, and a single node does not need to inquire

about liveness of all other nodes in an MPI application.

A tree-based liveness check results in Θ(n) messages

with a Ω(log(n)) time complexity where the root node has

a collective view of liveness properties. However, mid-level

failures of the tree easily result in graph partitioning so that

entire subtrees may be considered dysfunctional due to the

topological mapping of the overlay tree onto a physical net-

work structure (e.g., a multi-dimensional torus).

We have designed two principle types of failure detection

mechanisms. First, we support a sporadic (or on-demand)

FD. Second, we have devised a periodic, ring-based FD.

The periodic FD can be integrated into MPI applications or

may function as a stand-alone liveness test separate from

MPI applications. These approaches differ in their liveness

probing periods and their network overlay structure.

On n processes, a ring structure results in Θ(n) messages

for liveness checking and imposes O(1) time (for parallel

liveness checks with immediate neighbors on the ring) or

up to O(n) time (for sequential checking that has to propa-

gate around the ring), yet liveness properties are only known

about immediate neighbors. For MPI applications, we argue

that local knowledge is sufficient to trigger reactive fault tol-

erance at a higher level. Hence, rings are chosen as one of

our designs for the FD due to their low complexity. Rings

are utilized for periodic checks. They are also chosen for

sporadic checks in the presence of collective communica-

tion.

A point-to-point (parallel) liveness check imposes O(1)
message and time overhead, and lifeless properties are only

known to immediate neighbors on the ring. We chose

a point-to-point check for sporadic liveness monitoring.

Here, the FD sends a control message only if an MPI ap-

plication calls an MPI point-to-point communication rou-

tine and the result is not received within a timeout period.

Hence, the control message overhead of this approach may

be zero when responses to application messages are re-

ceived prior to timeout expiration. In such a setting, the

overhead is localized to a node and amounts to request

queuing and request cancellation (in the best case).

2



2.1 Failure Detector Types

We have designed two principle types of failure detection

mechanisms. First, we support a sporadic (or on-demand)

FD. Second, we have devised a periodic, ring-based FD.

These approaches differ in their liveness probing periods

and their network overlay structure. Our objective is to

study overheads in the best case, i.e., in the absence of fail-

ures. Due to low jitter in dedicated HPC interconnects, it

is sufficient to study constant-interval based probes rather

than general-purpose networking techniques based on vari-

able round-trip time monitoring.

2.1.1 Periodic Ring-Based Failure Detection

In this approach, starting from initialization of the MPI en-

vironment, we form a ring-based network overlay structure

wherein the i-th node probes the (i + 1)-th node in the ring

(see Figure 1(b)). Thus, each node probes its neighbor in the

ring irrespective of whether there is any active application

communication between the two nodes or not. The prob-

ing is performed until the application terminates, and MPI

tasks are subject to an implicit barrier in MPI Finalize() to

gracefully terminate probing.

For MPI applications, we argue that local knowledge is

sufficient to trigger reactive fault tolerance at a higher level.

Repairing the ring topology in the presence of failures is

a well-studied area beyond the scope of this paper.

2.1.2 Sporadic/On-demand Failure Detection

In this approach, a node p probes a node q only if p and

q are engaged in an application-level point-to-point mes-

sage exchange. If p needs to wait beyond a timeout interval

for the communication to q to complete, a control message

from p to q is issued (see Figure 1(a)). This happens when

node p makes a blocking MPI call, such as MPI Recv() or

MPI Wait(). Similarly, if the application is engaged in col-

lective communication, such as MPI Bcast(), and the MPI

call does not return within a timeout interval, a ring-based

liveness check is triggered. If the liveness test is successful

but the application-level MPI call has not been completed,

the liveness check is periodically repeated.

The control message overhead of this approach may be

zero when responses to application messages are received

prior to timeout expiration. In such a setting, the overhead

is localized to a node and amounts to request queuing and

request cancellation (in the best case).

3 Implementation

Our implementation assumes that there are reliable up-

per bounds on processing speeds and message transmission

times. If a node fails to respond within a time-out interval,

the node is assumed to have failed under this model (fail-

stop model). The implementation builds on this assumption

when a node starts probing another node. Node pairs are

determined by a causal dependency implied from the appli-

cation communication pattern (for sporadic point-to-point

communication) or through network overlays (for sporadic

collectives and all periodic liveness checks). Probing is im-

plemented via ping-pong messages monitoring round trip

time (RTT) timeouts. Probing for failure detection can be

parametrized as follows: (a) INTER-PROBE: This inter-

val determines the frequency of probing, i.e., the time be-

tween successive probes by a node. Longer values may

cause late detection of failure while shorter intervals allow

for early detection but increase the overhead imposed by

control messages. (b) TIME-OUT: This interval determines

the granularity of failure detection but also impacts the cor-

rectness of the approach. If the interval is chosen too small,

a slow response may lead to false positives (detection of

failure even though the node is functional). Conversely, a

large interval may delay detection of failures. Determina-

tion of a “good” timeout interval is non-trivial, even if we

assume an upper bound on network and processing delay

(see above).

We have used the MPI profiling layer to implement

one version of the FD module. Wrappers have been writ-

ten for MPI functions. These wrappers take appropri-

ate FD actions before and after calling the PMPI ver-

sions of the corresponding communication function. When

the application calls MPI Init(), a duplicate communica-

tor, DUP MPI COMM WORLD, is created, which is sub-

sequently used to send control messages for failure detec-

tion. The software stack of the FD in conjunction with an

application is depicted in Figure 2. Application-level MPI

calls (depicted as Fortran calls) trigger a language-neutral

wrapper before calling the interposed MPI function. In the

PMPI wrapper, the native MPI function is called (prefixed

with PMPI ). The fault detector governs back-channel ex-

changes of control message over the duplicated commu-

nicator. Another version of the FD implements periodic

checks as stand-alone processes separate from an MPI ap-

plication.

³����������

é

���������	

é



��
�

é

����
����	

é

�	���
	��
������
é

���������	�

���������	

�

é

����
é

���������	�


������
�����

�����������

����������	

��������������������

��
����
�
���	

 !������
�	�

�"����#	�

����������	

�������������
����

�����$%�&'	

�

�

 !�(������
�	�

�"����#	�

���$%�&'

�����$)*	

���$)*��

��������

������������

�

������������	

�

���������������������

�

é

�

Figure 2. Application and FD Software Stacks

3



¾�

+�

,�

-�

.�

#� /�

0�������
���
�1�������������
�1��������2��

(a) Sporadic Fault Detection.

¾�

+�

,�

-�

.�

#� /�

0�������
���
�1�������������
�1���������3#� �

(b) Periodic Fault Detection.

Figure 1. Fault Detection Techniques

The fault detector is implemented as a pair of

threads, namely sender and receiver threads. We re-

quire that MPI was initialized to support multi-threading,

i.e., MPI Init thread() was called with, and returned

MPI THREAD MULTIPLE to ensure thread support. The

sender thread triggers an ALIVE message (ping) or waits

for an acknowledgment (ACK) message (pong) up to a

given timeout. The receiver thread receives ALIVE queries

over the new communicator from the sender thread and re-

sponds with an ACK message. The failure detection module

maintains a queue of events in sorted order of event times.

An event could be “sending out a new probe to some node

i” or “end of timeout interval for a probe sent to some node

i”. Upon such an event, the sender thread is activated and

performs the respective action.

The sporadic and periodic failure detection mechanisms

differ in the time when probing is started. The mecha-

nisms also differ in terms of the communication pairs. In

the periodic pattern (and collectives for the sporadic FD),

source/sink of application-level MPI communication are ig-

nored since back-channel communication is implemented

over a ring overlay. Hence, requests are sent to a neighbor

node i+1. For point-to-point sporadic FD, control messages

follow the source/sink (q/r) pairing that an application com-

munication call utilizes. This difference is shown in Figure

3. Notice that wildcard receives impose the same liveness

check as collectives since endpoints are not known if a time-

out is triggered before a wildcard receive is resolved. Figure

3 also illustrates that liveness checks are performed non-

stop in the periodic case while they only occur in the pres-

ence of application communication for the sporadic case,

even for collectives.

4 Performance Evaluation

We measured the overhead incurred by the FD module

for the set of NAS parallel benchmarks (NPB V3.3) with

­

����������

���456�

����������

���4
6�

�7��
������������� ������
��!������
�

������
��

�
�1���

���4�3#6�

����������

���456�

����������

���4
6�

�7��
������������� ������
��!������
�

������
��

�
�1���

���456�

������
��

�
�1���

���4
6�

�����
8�
�1��

����
����

Figure 3. Probes in Periodic and Sporadic
Probing

input classes C and D [4]. Using gettimeofday(), wall-clock

times of applications were measured between MPI Init()

and MPI Finalize() calls with and without failure detector

interpositioning or backgrounding. Tests were performed

by running each configuration five times and computing

the average overhead for different inter-probe intervals and

number of processes.

4.1 Experimental Platform

Experiments were conducted on a 108 node cluster with

Infiniband QDR. Each node is a 2-way shared-memory mul-

tiprocessor with two octo-core AMD Opteron 6128 pro-

cessors (16 cores per nodes). Each node runs CentOS 5.5

Linux x86 64. We used Open MPI 1.5.1 for evaluating the

performance of the FD.

4.2 Benchmark Results

Figures 4 and 5 depict the relative overheads of fault de-

tection for 128 processes (over 64 nodes) with periodic and

sporadic fault detection, respectively. We omit our results

for fewer processes as they show the same trends (with few

exceptions, which are discussed). Overheads of the FD ap-

proach for fault tolerance with inter-probe frequencies of

4



10
7.

4

11
5.

3

10
4.

7

11
0.

8

10
0.

0

10
4.

4

11
0.

3

11
5.

6

10
4.

7

11
2.

7

99
.9

10
4.

6

11
1.

0

11
6.

1

10
5.

6

11
2.

9

10
0.

1

10
6.

2

11
1.

1

11
7.

0

10
5.

2

11
2.

4

10
0.

0

10
5.

2

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

LU CG FT MG EP IS

E
xe

cu
ti

on
 ti

m
e 

no
rm

al
iz

ed
 to

 N
o-

F
D No FD FD - 10s FD - 5s FT - 3s FT - 1s

Figure 4. Overhead of Periodic Fault Detection for 128 Processes

11
4.

0

11
5.

0

10
6.

7

11
1.

1

10
0.

1

10
8.

0

11
6.

3

12
1.

2

10
4.

9

11
3.

7

10
0.

1

10
8.

7

11
5.

6 11
8.

2

10
6.

3 10
9.

9

10
0.

1

10
6.

4

11
5.

1 11
7.

8

10
5.

1

10
9.

6

10
0.

0

10
7.

4

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

LU CG FT MG EP IS

E
xe

cu
ti

on
 ti

m
e 

no
rm

al
iz

ed
 to

 N
o-

F
D No FD FD - 10s FD - 5s FT - 3s FT - 1s

Figure 5. Overhead of Sporadic Fault Detection for 128 Processes

1-10 second (“FD 1sec” to “FD 10 sec”) are plotted relative

to application execution without fault tolerance (“No FD”),

i.e., in the absence of the FD module (normalized to 100%).

We first observe that both the sporadic and periodic FD

have overheads ranging from less than 1% to 21% averag-

ing around 10%. We further observe that periodic either

matches or outperforms by 2-6% the sporadic approach.

This trend is also visible for smaller number of tasks (al-

though less pronounced) and can be explained as follows:

As overall communication is increasing, timeouts in the

sporadic mode happen more frequently, in particular for col-

lectives where communication results in contention (e.g.,

for all-to-all collectives). Sporadic control messages only

add to this application-induced contention. In contrast, the

periodic approach has the advantage that control messages

are evenly likely to occur across the entire application dura-

tion. This probabilistic spread frequently results in control

messages being issued during computation, i.e., when the

network interconnect is not utilized at all. This trend in-

creases with strong scaling (larger number of nodes).

We further conducted experiments with periodic live-

ness checking as a background activity in separate processes

across nodes that an MPI application is running on. These

experiments utilize a Gigabit Ethernet switch on the same

cluster. The results depicted in Figure 6 show absolutely no

overhead for NPB codes over 128 processes except for IS

with an overhead of 4.5%. Slight reductions in wall-clock

time for CG and FT can be attributed to instruction cache

benefits due to different code layout when the fault detector

is linked with NPB codes. We also conducted experiments

for background liveness checking using TCP over Infini-

band resulting in only insignificantly lower execution time

than these Ethernet experiments.

We also varied the number of MPI tasks per node and

found these results to remain consistent up to 15 tasks per

node. Only at 16 tasks per node did overheads spike to up

to 28-60% depending on the NPB code with a high variance

(see error bars) due to CPU-resource contention—both for

Infiniband (Figure 7) and Ethernet (omitted). This shows

that as long as a spare core is available for background ac-

tivity, the impact of out-of-band communication on applica-

tion performance is minimal. In HPC, applications tend to

exploit the available per-node memory but may only utilize

a subset of cores for high-end multi-core nodes due to lim-

ited memory bandwidth, which ensures that communication

does not become a bottleneck [28].

We also investigated the impact of our FD approaches

under Gigabit Ethernet embedded within the application as

a sporadic and period approach (result omitted). We found

that the performance of NPB codes is significantly higher

for Ethernet as execution becomes constrained by network

contention given the lower bandwidth available. Hence, the

overhead of FD was overshadowed by contention of appli-

cation messages and did not result in a noticeable overall

impact. However, we consider such a high contention sce-

nario not realistic for well-balanced, tuned HPC codes.

In addition to studying the overhead, we make the fol-

lowing observations based on application benchmark be-

havior from these results for sporadic liveness detection

(Figure 5).

5



101.9

99.5 99.4

100.3 100.3

104.5

101

103

105

107

109

im
e
 N

o
r
m

a
li

ze
d

 t
o

 N
o

-F
D

Without probing 15 procs/node

With Probing 15 procs/node+1 probing process over ethernet

99.5 99.4

95

97

99

LU 128 CG 128 FT 128 MG 128 EP 128 IS 128

E
x
ec

u
ti

o
n

 T
im

Figure 6. Overhead of Failure Detection as a Separate Process using Ethernet for 15 MPI tasks/node

116

127.9

160

127.9 127.88

120

130

140

150

160

170

180

 T
im

e 
N

o
rm

a
li

ze
d

 t
o
 N

o
-F

D

Without probing 16 procs/node

With Probing 16 procs/node+1 probing process per node

100.8 101.15 100

105.06

90

100

110

LU 64 CG 64 FT 64 LU 128 CG 128 FT 128 LU 256 CG 256 FT 256

E
x

ec
u

ti
o

n
 T

Figure 7. Overhead of Failure Detection as a Separate Process using Infiniband for 16 MPI tasks/node

The overhead of sporadic fault detection differs signif-

icantly for different benchmarks. Each MPI call from the

application imposes modifications of the internal control

message queues associated with the fault detection module,

which adds some processing overhead. Hence, benchmarks

with more frequent MPI calls suffer more overhead. For

example, the CG, LU and MG benchmarks incur a larger

number of total MPI calls and consequently incur higher

overheads.

The value of the inter-probe interval does not have much

significance in determining the overall overhead as most of

the calls are completed within the sporadic inter-probe in-

terval.

As the number of processes increases, so does the com-

munication to computation ratio. Hence, the FD overhead

increases as we increase the number of parallel processes.

This effect can be seen more clearly in the LU and MG

benchmarks where the average overhead of sporadic FD of

128 processes (Figure 5) is often larger than that for 64 and

32 processes.

Figure 4 shows the performance overhead of periodic

liveness probing for 128 processes. We make the follow-

ing observations based on application benchmark behavior

from these results for periodic liveness detection.

The overhead of periodic fault detection also varies be-

tween different applications. Benchmarks with more fre-

quent communication or larger messages suffer more over-

heads. For example, LU and CG are more communication

intensive and thus cause more network contention between

probe message traffic and application traffic, resulting in

higher overhead. On the opposite side, benchmarks like EP,

FT and IS are less communication intensive and result in

less overhead. In most cases, the overhead of the FD ap-

proach increases when we decrease the inter-probe interval.

6



As probing takes place from start to end, decrease in inter-

probe intervals generates a larger number of probes. This

increases the processor utilization as well as network band-

width demand, which results in increasing overheads. We

conducted additional experiments with different numbers of

processes and observed that the overhead of FD does not

vary as we increase the scale of parallelism.

Overall, the results show that periodic failure detection

performs better than sporadic for communication intensive

codes and that separation of the FD from MPI applications

reduces their perturbation.

5 Related Work

Chandra and Toueg classify eight classes of failure de-

tectors by specifying completeness and accuracy proper-

ties [11]. They further show how to reduce the eight fail-

ure detectors to four and discuss how to solve the consen-

sus problem for each class. This paper has influenced other

contemporary work as it raises the problem of false posi-

tives for asynchronous systems. In our work, we focus on

single-point failure detection. Consensus is an orthogonal

problem, and we simply assume that a stabilization after

multi-component failures eventually allows reactive fault

tolerance, such as restarts from a checkpoint, to occur in

a synchronous manner. Sastry et al. discuss the impact

of celerating environments due to heterogeneous systems

where absolute speeds (execution progress) could increase

or decrease [30]. Bichronal timers with the composition of

action clocks and real-time clocks are able to cope with cel-

erating environments. Our work, in contrast, only relies on

the clock of a local node. Genaud and Rottanapoka imple-

mented a fault detector in a P2P-MPI environment utilizing

a heartbeat approach [16]. They address failure information

sharing, reason about a consensus phase and acknowledge

overheads of fault detection due to their periodic heartbeat

approach. Our work, in contrast, results in much lower mes-

sage and time complexity. Consensus is orthogonal to our

work, as discussed before.

6 Conclusion

In summary, our work contributes generic capabilities

for fault detection/liveness monitoring of nodes and net-

work links both at the MPI level and stand alone as pro-

totypes. We designed and implemented two approaches to

this end. The first approach utilizes a periodic liveness test

and utilizes a ring-based network overlay for control mes-

sages. The second method promotes sporadic checks upon

communication activities and relies on point-to-point con-

trol messages along the same communication paths utilized

by the application, yet falls back to the ring-based overlay

for collectives. We provide a generic interposing of MPI

applications to realize fault detection for both cases plus

a stand-alone version for the periodic case. Experimental

results indicate that while the sporadic fault detector saves

on network bandwidth by generating probes only when an

MPI call is made, its messages are increasingly contend-

ing with application messages as the number of nodes in-

creases. In contrast, periodic fault detection statistically

avoids network contention as the number of processors in-

creases. Overall, the results show that periodic failure de-

tection performs better than sporadic for communication in-

tensive codes and that separation of the FD from MPI ap-

plications reduces their perturbation. Production-style fault

detections should thus become stand-alone programs (sim-

ilar to our prototype) that can communicate back faults to

the MPI runtime, which can then trigger reactive resilience

mechanisms.

References

[1] Mpi-3 draft (with fault tolerance extensions).
https://svn.mpi-forum.org/trac/mpi-forum-web/raw-
attachment/wiki/ft/run through stabilization/FTWG-
Process-FT-Draft-6.pdf.

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Mor-
eira. Adaptive incremental checkpointing for mas-
sively parallel systems. In ICS ’04: Proceedings of the
18th annual international conference on Supercom-
puting, pages 277–286, New York, NY, USA, 2004.
ACM.

[3] A. Agbaria and R. Friedman. Starfish: Fault-tolerant
dynamic mpi programs on clusters of workstations. In
Proc. of the 8th IEEE Intl. Symp. on High Perf. Distr.
Comp., 1999.

[4] D. H. Bailey et al. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[5] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Gra-
ham, and G. Bosilca. Analysis of the component archi-
tecture overhead in Open MPI. In EuropeanPVM/MPI
Users’ Group Meeting, Sorrento, Italy, September
2005.

[6] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-
V: Toward a scalable fault tolerant MPI for volatile
nodes. In Supercomputing, Nov. 2002.

[7] B. Bouteiller, F. Cappello, T. Herault, K. Krawezik,
P. Lemarinier, and M. Magniette. MPICH-V2: a fault
tolerant MPI for volatile nodes based on pessimistic
sender based message logging. In Supercomputing,
2003.

[8] S. Chakravorty, C. Mendes, and L. Kale. Proactive
fault tolerance in large systems. In HPCRI: 1st Work-
shop on High Performance Computing Reliability Is-
sues, in Proceedings of the 11th International Sym-
posium on High Performance Computer Architecture
(HPCA-11). IEEE Computer Society, 2005.

[9] S. Chakravorty, C. Mendes, and L. Kale. Proactive
fault tolerance in MPI applications via task migra-

7



tion. In International Conference on High Perfor-
mance Computing, 2006.

[10] S. Chakravorty, C. Mendes, and L. Kale. A fault toler-
ance protocol with fast fault recovery. In Intl. Par. and
Distrib. Proc. Symp., 2007.

[11] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43:225–267, March 1996.

[12] F. Douglis and J. K. Ousterhout. Transparent pro-
cess migration: Design alternatives and the sprite im-
plementation. Softw., Pract. Exper., 21(8):757–785,
1991.

[13] J. Duell. The design and implementation of berkeley
lab’s linux checkpoint/restart. Tr, Lawrence Berkeley
National Laboratory, 2000.

[14] E. N. Elnozahy and W. Zwaenepoel. Manetho: Trans-
parent roll back-recovery with low overhead, limited
rollback, and fast output commit. IEEE Trans. Com-
put., 41(5):526–531, 1992.

[15] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tol-
erant MPI, supporting dynamic applications in a dy-
namic world. In Euro PVM/MPI Meeting, volume
1908, pages 346–353, 2000.

[16] S. Genaud and C. Rattanapoka. Evaluation of replica-
tion and fault detection in p2p-mpi. In Intl. Par. and
Distrib. Proc. Symp., 2009.

[17] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini.
Transparent, incremental checkpointing at kernel
level: a foundation for fault tolerance for parallel com-
puters. In Supercomputing, 2005.

[18] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin. Space-
efficient page-level incremental checkpointing. In
SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, pages 1558–1562, New York,
NY, USA, 2005. ACM.

[19] S.-T. Hsu and R.-C. Chang. Continuous checkpoint-
ing: joining the checkpointing with virtual memory
paging. Softw. Pract. Exper., 27(9):1103–1120, 1997.

[20] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lums-
daine. The design and implementation of check-
point/restart process fault tolerance for Open MPI. In
12th IEEE Workshop on Dependable Parallel, Dis-
tributed and Network-Centric Systems, 03 2007.

[21] H. Jitsumoto, T. Endo, and S. Matsuoka. Abaris: An
adaptable fault detection/recovery component frame-
work for mpis. In Intl. Par. and Distrib. Proc. Symp.,
2007.

[22] J. Mehnert-Spahn, E. Feller, and M. Schoettner. Incre-
mental checkpointing for grids. In Linux Symposium,
July 2009.

[23] D. S. Milojicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou. Process migration.
ACM Computing Surveys (CSUR), 32(3):241–299,
2000.

[24] A. Moody, G. Bronevetsky, K. Mohror, and
B. de Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In Super-
computing, Nov. 2010.

[25] I. Philp. Software failures and the road to a petaflop
machine. In HPCRI: 1st Workshop on High Perfor-
mance Computing Reliability Issues. IEEE Computer
Society, 2005.

[26] M. L. Powell and B. P. Miller. Process migration in
DEMOS/MP. In Symposium on Operating Systems
Principles, pages 110–119, Oct. 1983.

[27] J. Ruscio, M. Heffner, and S. Varadarajan. Dejavu:
Transparent user-level checkpointing, migration, and
recovery for distributed systems. In Intl. Par. and Dis-
trib. Proc. Symp., 2007.

[28] J. Sancho, D. Kerbyson, and M. Lang. Characterizing
the impact of using spare-cores on application perfor-
mance. In Euro-Par Conference, pages 74–85, Sept.
2010.

[29] S. Sankaran, J. M. Squyres, B. Barrett, A. Lums-
daine, J. Duell, P. Hargrove, and E. Roman. The
LAM/MPI checkpoint/restart framework: System-
initiated checkpointing. In Proceedings, LACSI Sym-
posium, Oct. 2003.

[30] S. Sastry, S. M. Pike, and J. L. Welch. Crash fault
detection in celerating environments. In Intl. Par. and
Distrib. Proc. Symp., 2009.

[31] B. Schroeder and G. Gibson. A large-scale study
of failures in high-performance computing systems.
In Proceedings of the 2006 International Conference
on Dependable Systems and Networks (DSN-2006),
Philadelphia, PA, June 2006.

[32] G. Stellner. CoCheck: checkpointing and process
migration for MPI. In IEEE, editor, Proceedings of
IPPS ’96. The 10th International Parallel Processing
Symposium: Honolulu, HI, USA, 15–19 April 1996,
pages 526–531, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1996. IEEE Computer So-
ciety Press.

[33] J. Varma, C. Wang, F. Mueller, C. Engelmann, and
S. L. Scott. Scalable, fault-tolerant membership for
MPI tasks on hpc systems. In International Confer-
ence on Supercomputing, pages 219–228, June 2006.

[34] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A
job pause service under LAM/MPI+BLCR for trans-
parent fault tolerance. In Intl. Par. and Distrib. Proc.
Symp., Apr. 2007.

[35] C. Wang, F. Mueller, C. Engelmann, and S. Scott.
Proactive process-level live migration in hpc environ-
ments. In Supercomputing, 2008.

[36] S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive page-
level incremental checkpointing based on expected re-
covery time. In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 1472–
1476, New York, NY, USA, 2006. ACM.

8


