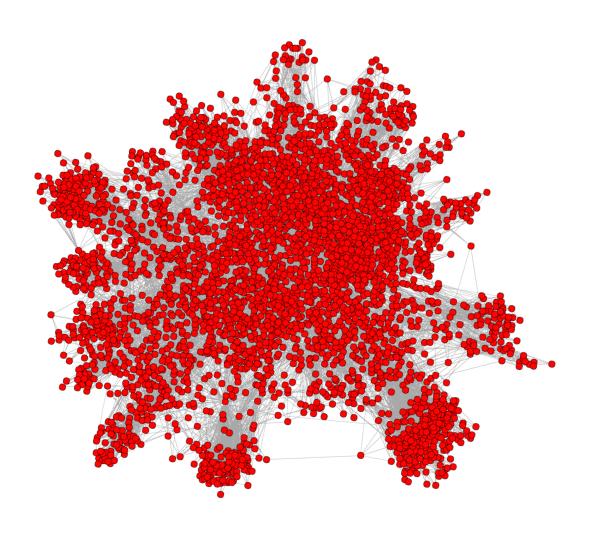
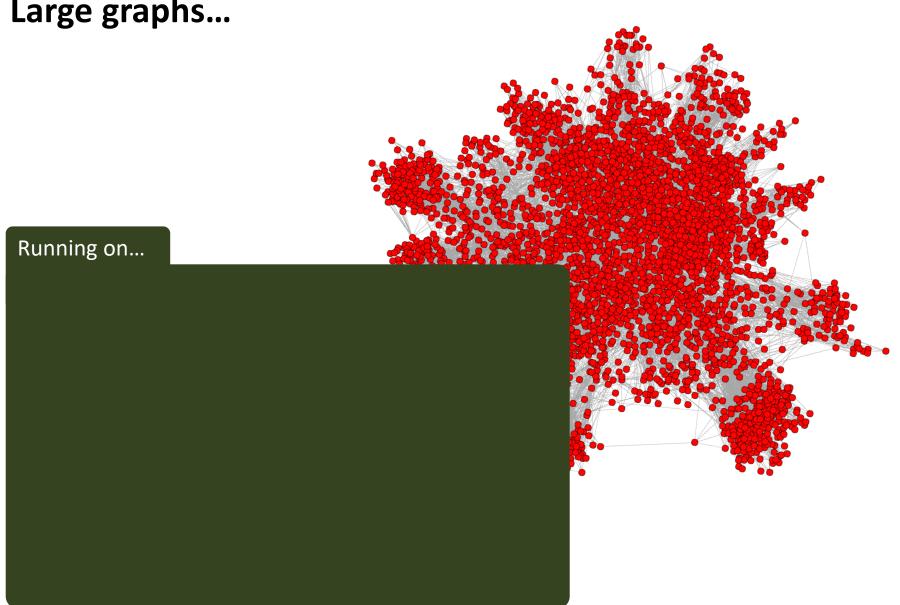


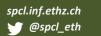
Log(Graph): A Near-Optimal High-Performance Graph Representation

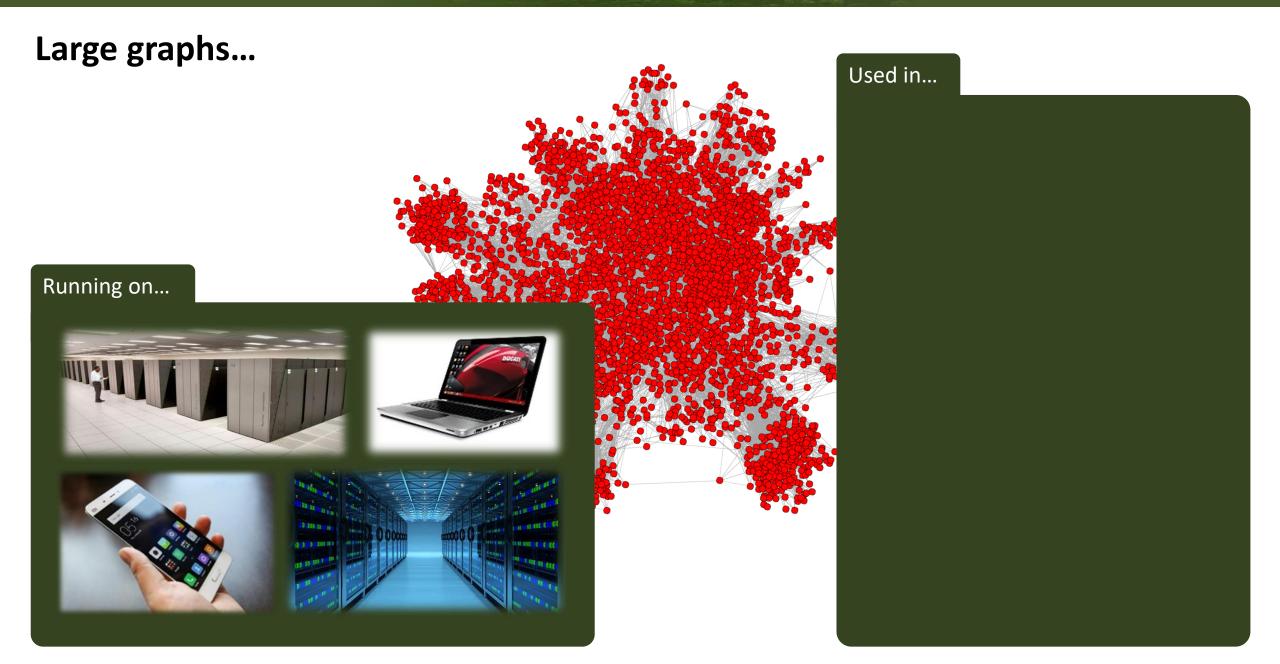
Large graphs...

Large graphs...

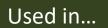




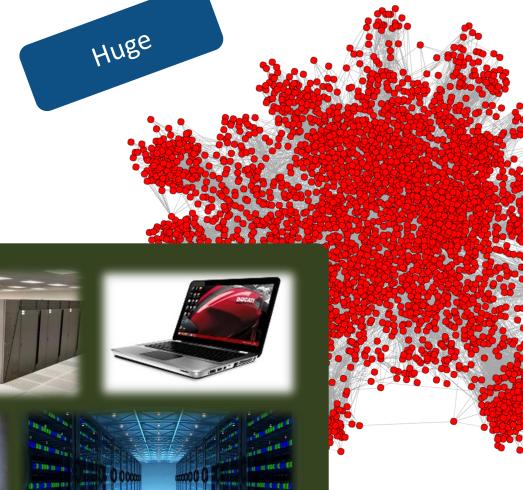




Large graphs...

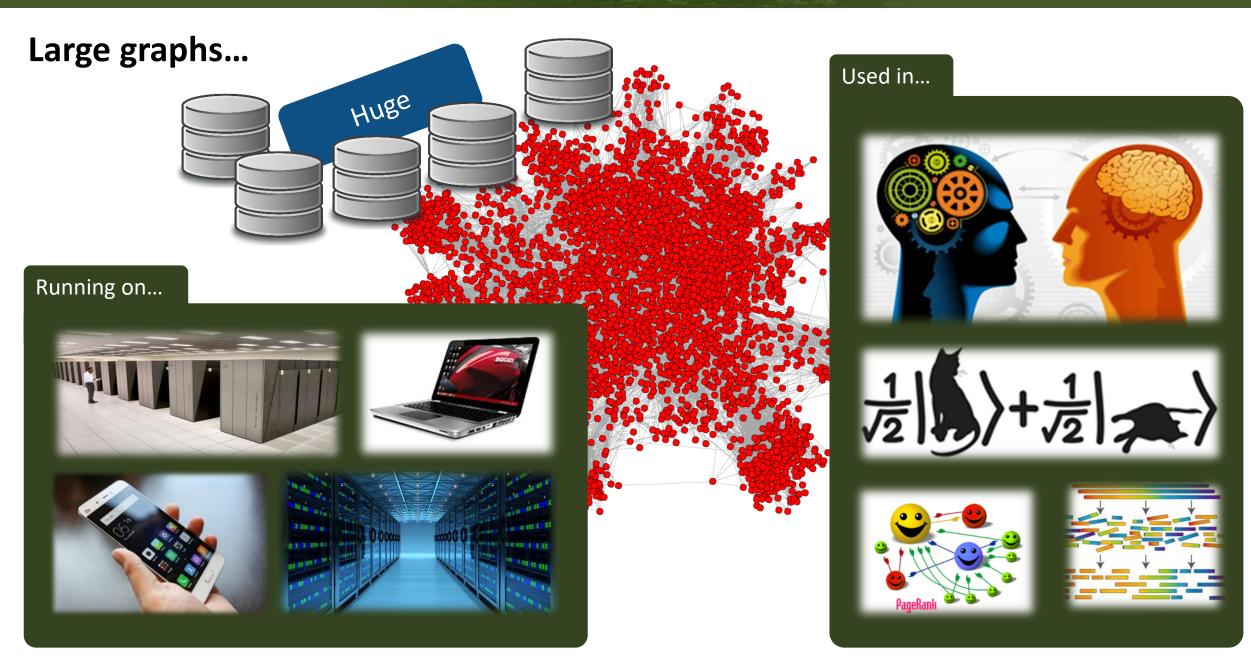


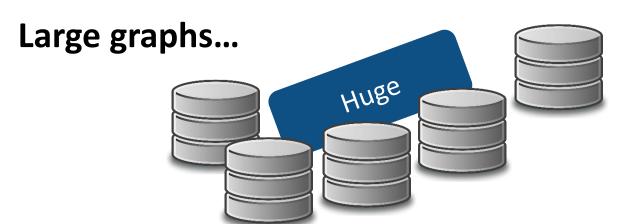
Running on...



Used in...









KONECT graph datasets

en	<u>vvikipedia edits (eff)</u>		30,737,442 372,391,272
TW	Twitter (WWW)		41,652,230 1,468,365,182
TF	<u>Twitter (MPI)</u>		52,579,682 1,963,263,821
FR	<u>Friendster</u>		68,349,466 2,586,147,869
UL	<u>UK domain (2007)</u>	U = C; • =	105,153,952 3,301,876,564

KONECT graph datasets

Graph500 Benchmark

Top Ten from June 2018 BFS

RANK \$	MACHINE 🗢 V	rendor \$	INSTALLATION \$ L	OCATION \$	COUNTRY	♦ YEAR ♦	NUMBER OF NODES	OF CORES	SCALE	GTEPS ‡
1	K computer	Fujitsu	RIKEN Advanced Institute for Computational Science (AICS)	Kobe Hyogo	Japan	2011	82944	663552	40	38621.4
2	Sunway TaihuLight	NRCPC	National Supercomputing Center in Wuxi	Wuxi	China	2015	40768	10599680	40	23755.7
3	DOE/NNSA/LLNL Sequoia	IBM	Lawrence Livermore National Laboratory	Livermore CA	N USA	2012	98304	1572864	41	23751
4	DOE/SC/Argonne National Laboratory Mira	IBM	Argonne National Laboratory	Chicago IL	USA	2012	49152	786432	40	14982

en	<u>vvikipedia edits (eff)</u>		30,737,442 372,391,272
TW	Twitter (WWW)	O D = C; X;	41,652,230 1,468,365,182
TF	Twitter (MPI)		52,579,682 1,963,263,821
FR	<u>Friendster</u>		68,349,466 2,586,147,869
UL	<u>UK domain (2007)</u>	U = C; • =	105,153,952 3,301,876,564

KONECT graph datasets

Graph500 Benchmark

Webgraph datasets

	We	bgraph da	tasets		G	RAF	
Graph	¢	Crawl date •	Nodes \$	Arcs \$		_ 50	00
<u>uk-2014</u>		2014	787 801 471	47614527250			
eu-2015		2015	1070557254	91 792 261 600	on 🕏	COUNTRY	♦ YEAR
gsh-2015		2015	988490691	33877399152	Lhunga	lanan	20
uk-2014-host		2014	4769354	50829923	-e Hyogo	Japan	20
eu-2015-host		2015	11264052	386915963			
gsh-2015-hos	<u>st</u>	2015	68 660 142	1 802 747 600	, i	China	20
<u>uk-2014-tpd</u>		2014	1766010	18244650	Ì	Cilila	20
<u>eu-2015-tpd</u>		2015	6650532	170145510			
gsh-2015-tpd	l	2015	30809122	602119716	rmore C	A USA	20
clueweb12		2012	978408098	42 574 107 469	ago IL	USA	20
<u>uk-2002</u>		2002	18520486	298113762	2012	03/1	20

+							
)	ON \$ CO	UNTRY \$ Y	EAR 🗘 O	F 💠	NUMBER OF \$	SCALE \$	GTEPS ≑
- 1	e Hyogo	Japan	2011	82944	663552	40	38621.4
3							
)	Ķi	China	2015	40768	10599680	40	23755.7
5	rmore CA	USA	2012	98304	1572864	41	23751
9	ago IL	USA	2012	49152	786432	40	14982

en	<u>vvikipedia edits (eii)</u>		30,737,442 372,391,272
TW	Twitter (WWW)	D = C X	41,652,230 1,468,365,182
TF	<u>Twitter (MPI)</u>		52,579,682 1,963,263,821
FR	<u>Friendster</u>		68,349,466 2,586,147,869
UL	<u>UK domain (2007)</u>	U — [] • =	105,153,952 3,301,876,564

Web data commons datasets

Granularity	#Nodes	#Arcs
Page	3,563 million	128,736 million
Host	101 million	2,043 million
Pay-Level-Domain	43 million	623 million

KONECT graph datasets

Graph500 Benchmark

Webgraph datasets

Graph \$	Crawl date \$	Nodes \$	Arcs \$		_ 50	00				
<u>uk-2014</u>	2014	787801471	47614527250				NUMBER	NUMBER		
<u>eu-2015</u>	2015	1070557254	91 792 261 600	ON \$	COUNTRY	♦ YEAR ♦		♦ OF CORES	SCALE	GTEPS \$
gsh-2015	2015	988490691	33 877 399 152	a libraga	lanan	2011			40	20624.4
uk-2014-host	2014	4769354	50829923	e Hyogo	Japan	2011	829 <mark>4</mark> 4	663552	40	38621.4
<u>eu-2015-host</u>	2015	11 264 052	386915963							
gsh-2015-host	2015	68 660 142	1 802 747 600	ci.	China	2015	40768	10599680) 40	23755.7
<u>uk-2014-tpd</u>	2014	1766010	18244650		Cililo	2013	10700	10333000	, ,,,	23733.7
<u>eu-2015-tpd</u>	2015	6650532	170145510							
<u>gsh-2015-tpd</u>	2015	30809122	602119716	rmore C	A USA	2012	98304	1572864	41	23751
clueweb12	2012	978408098	42 574 107 469	ago IL	USA	2012	49152	786432	40	14982
<u>uk-2002</u>	2002	18520486	298113762	-8-12	22,1	20.2	73132	. 50 152		

GRAPH)

Web data commons datasets

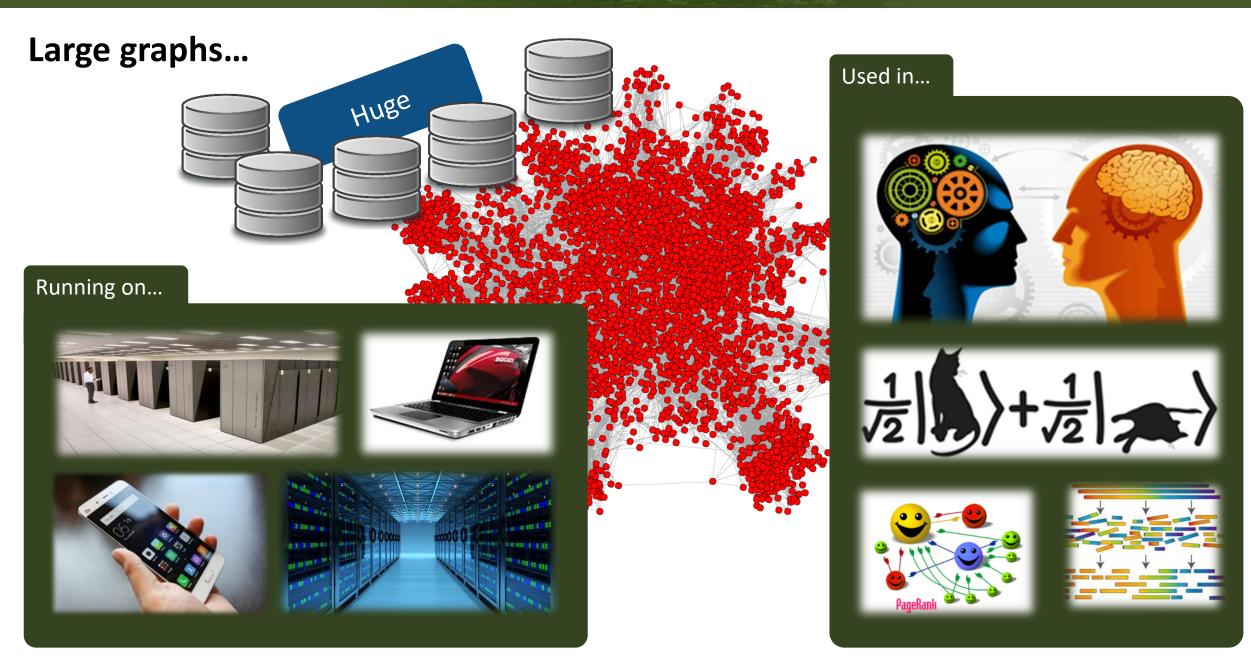
Granularity	#Nodes	#Arcs		
Page	3,563 million	128,736 million		
Host	101 million	2,043 million		
Pay-Level-Domain	43 million	623 million		

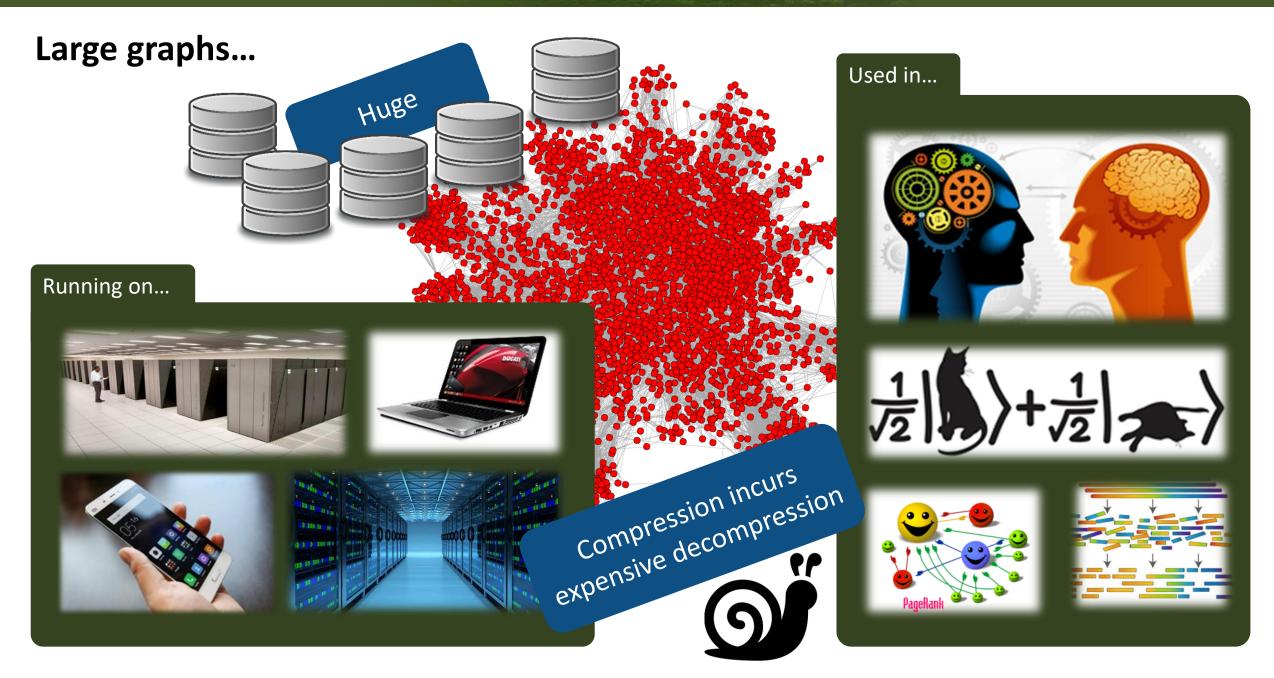
KONECT graph datasets

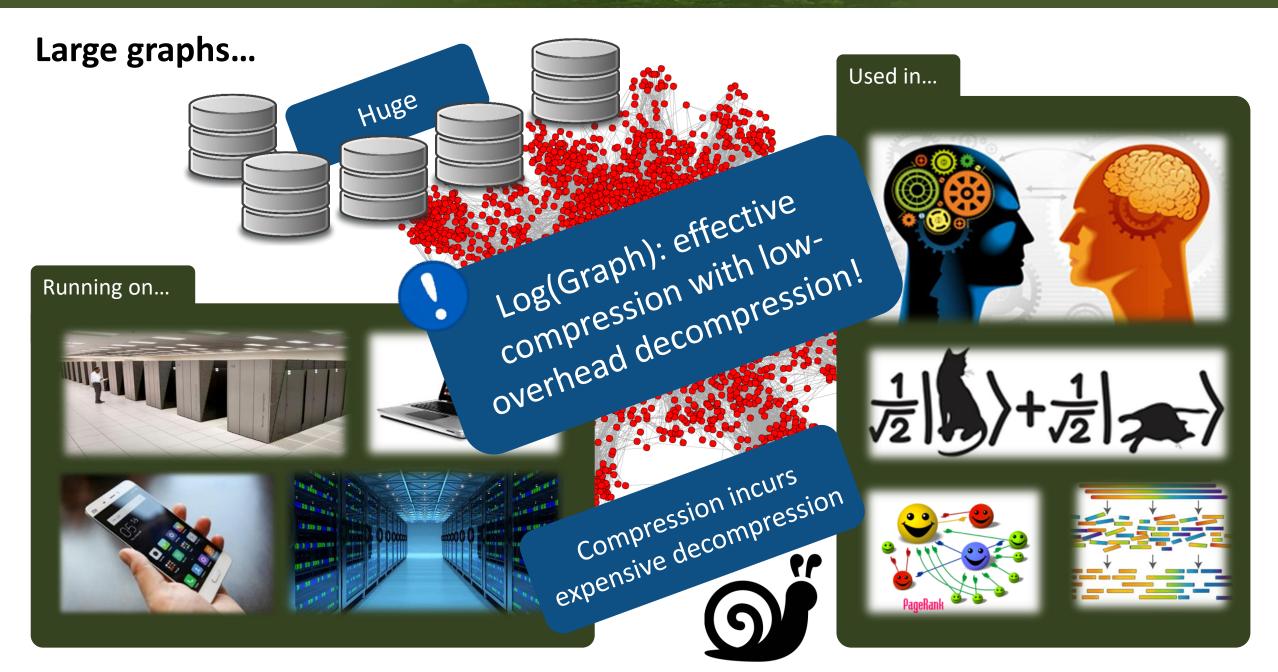
Graph500 Benchmark

Webgraph datasets

Graph \$	Crawl date \$	Nodes \$	Arcs ¢		_ 50					
<u>uk-2014</u>	2014	787801471	47614527250				NUMBER	NUMBER		
eu-2015	2015	1070557254	91 792 261 600	ON \$	COUNTRY	♦ YEAR ♦		♦ OF ♦	SCALE	◆ GTEPS ◆
gsh-2015	2015	988490691	33877399152	a Uluaga	lanan	2014			40	20624 4
uk-2014-host	2014	4769354	50829923	e Hyogo	Japan	2011	82944	663552	40	38621.4
<u>eu-2015-host</u>	2015	11 264 052	386915963							
gsh-2015-host	2015	68 660 142	1 802 747 600	ci	China	2015	40768	10599680	40	23755.7
<u>uk-2014-tpd</u>	2014	1766010	18244650		Crima	2013	10700	10333000	10	2373317
<u>eu-2015-tpd</u>	2015	6650532	170145510							
<u>gsh-2015-tpd</u>	2015	30809122	602119716	rmore C	A USA	2012	98304	1572864	41	23751
clueweb12	2012	978408098	42 574 107 469	ago IL	USA	2012	49152	786432	40	14982
<u>uk-2002</u>	2002	18520486	298113762	-00.12	52.1	2012		700122		11332







The storage lower bound

Which one? ©

The storage lower bound

Which one? ©

$$S = \{x_1, x_2, x_3, \dots\} \quad \begin{array}{l} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \end{array}$$

Counting bounds.

They are logarithmic

(one needs at least log|S|

bits to store an object

from an arbitrary set S)

Key idea

$$S = \{x_1, x_2, x_3, \dots\} \quad \begin{array}{l} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \\ \end{array}$$

Which one?

Counting bounds.

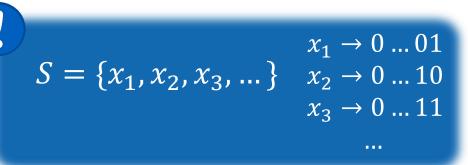
They are logarithmic

(one needs at least log|S|

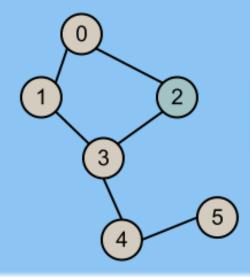
bits to store an object

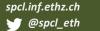
from an arbitrary set S)

Key idea



Encode different parts of a graph representation using (logarithmic) storage lower bounds





Which one?

Counting bounds.

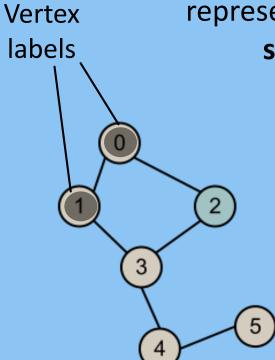
They are logarithmic

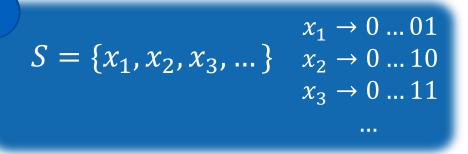
(one needs at least log|S|

bits to store an object

from an arbitrary set S)

Key idea





Encode different parts of a graph representation using (logarithmic) storage lower bounds

Which one? ©

Counting bounds.

They are logarithmic

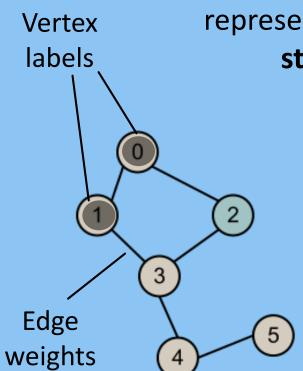
(one needs at least log|S|

bits to store an object

from an arbitrary set S)

%

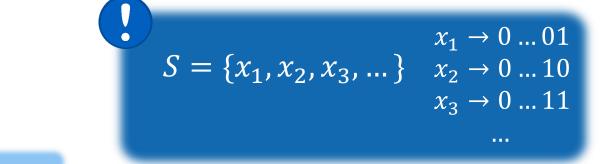
Key idea

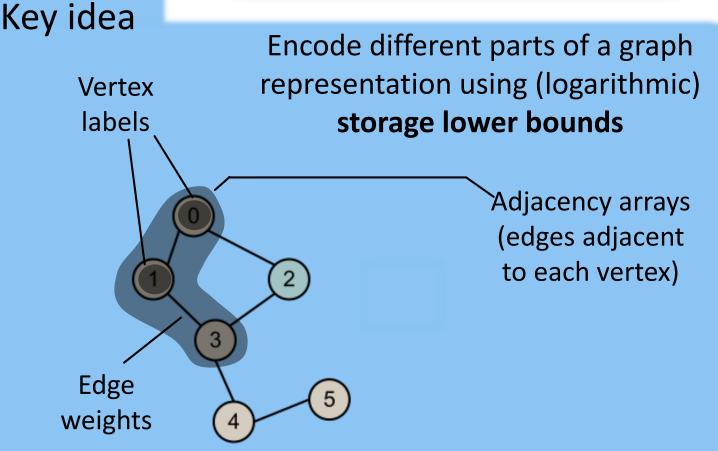


 $S = \{x_1, x_2, x_3, ...\}$ $x_1 \to 0 ... 01$ $x_2 \to 0 ... 10$ $x_3 \to 0 ... 11$...

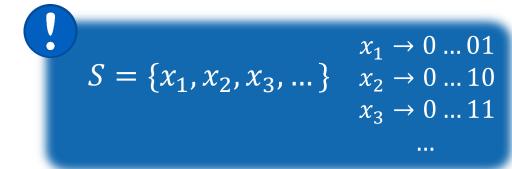
Encode different parts of a graph representation using (logarithmic) storage lower bounds

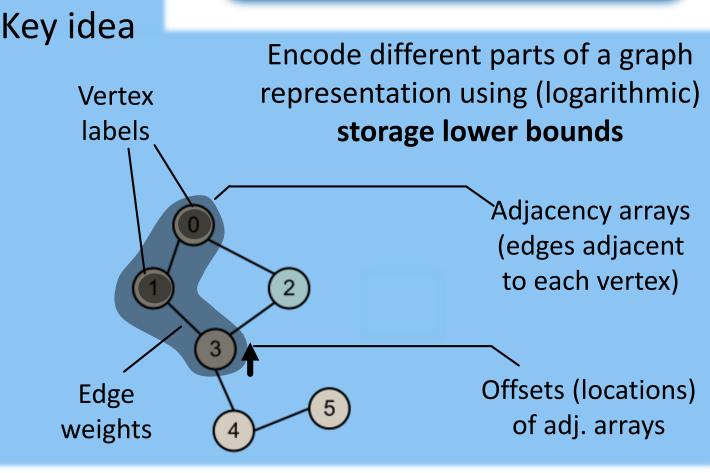
Which one? ©





Which one?

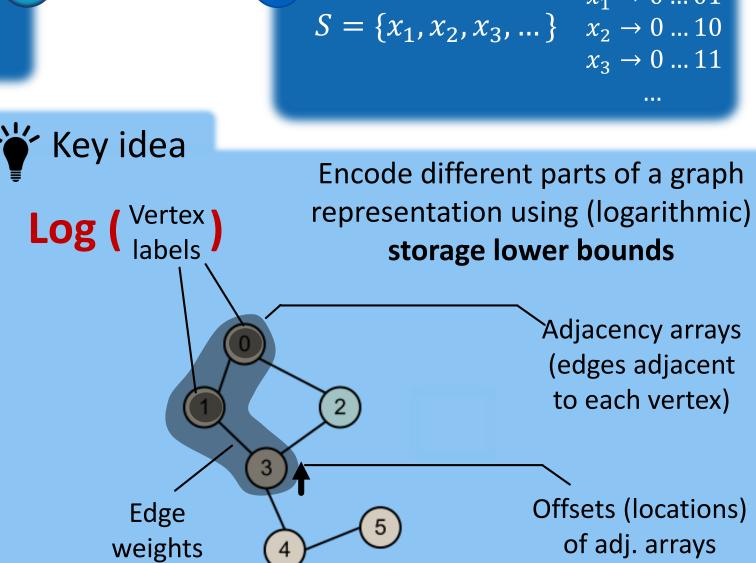




 $x_1 \rightarrow 0 \dots 01$

What is **the lowest storage** we can (hope to) use to store a graph?

Which one?

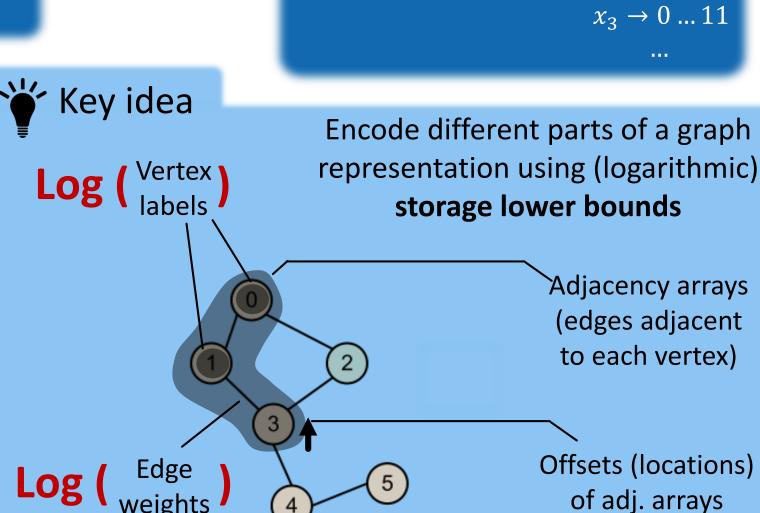


 $S = \{x_1, x_2, x_3, \dots\}$ $x_2 \to 0 \dots 10$

 $x_1 \rightarrow 0 \dots 01$

What is **the lowest storage** we can (hope to) use to store a graph?

Which one? ©

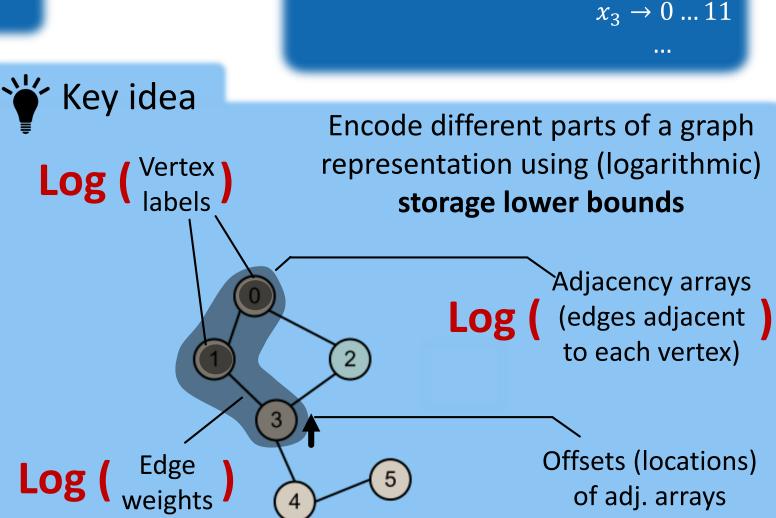


 $S = \{x_1, x_2, x_3, \dots\}$ $x_2 \to 0 \dots 10$

 $x_1 \rightarrow 0 \dots 01$

What is **the lowest storage** we can (hope to) use to store a graph?

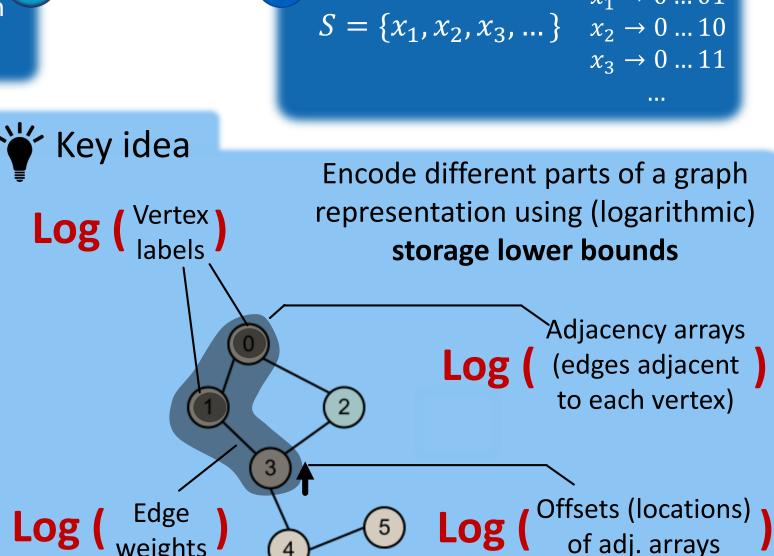
Which one?



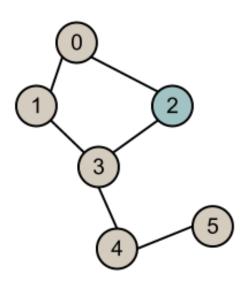
 $x_1 \rightarrow 0 \dots 01$

What is **the lowest storage** we can (hope to) use to store a graph?

Which one?

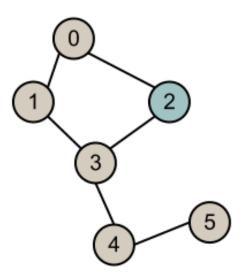


ADJACENCY ARRAY GRAPH REPRESENTATION

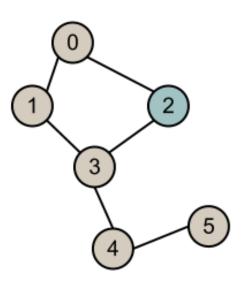


ADJACENCY ARRAY GRAPH REPRESENTATION

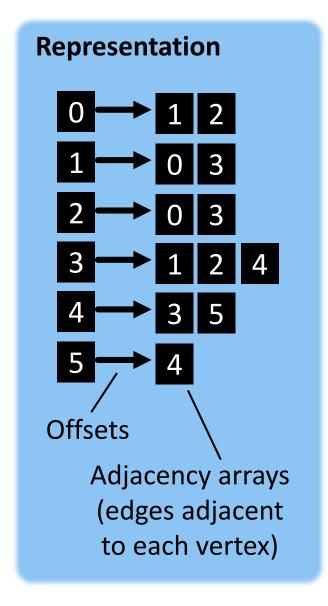
Representation

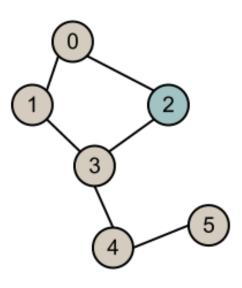


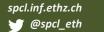
Representation

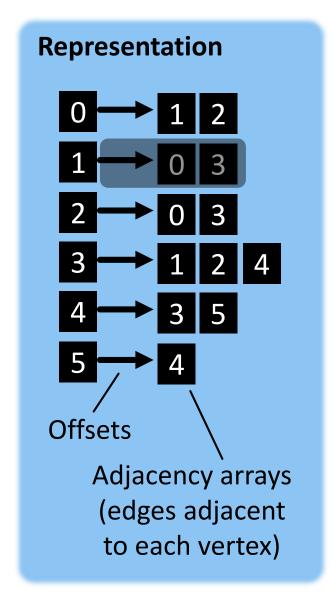


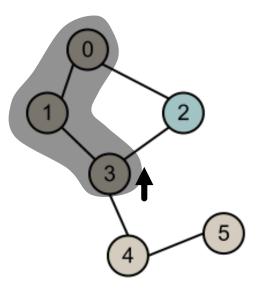


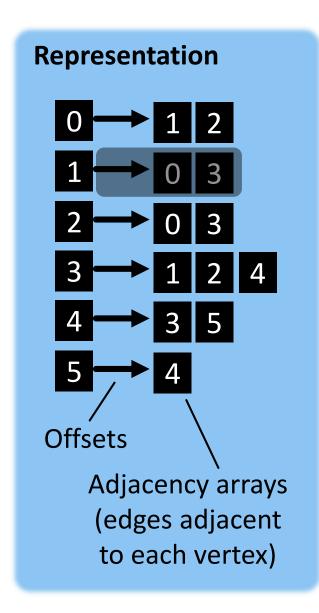




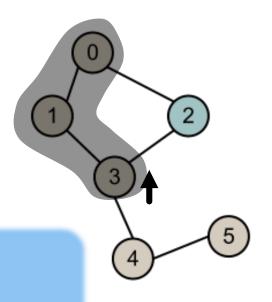


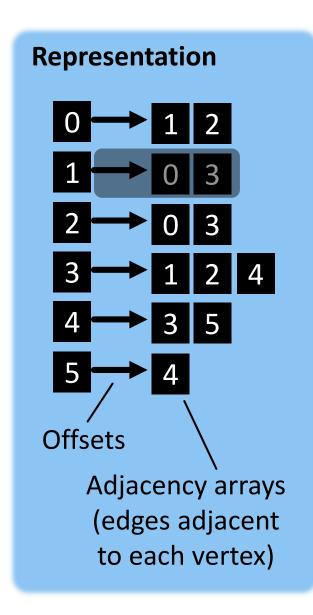


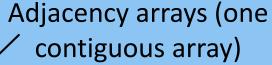


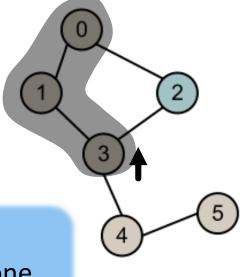


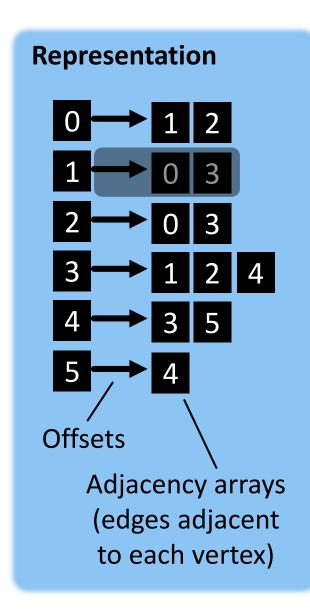
Physical realization

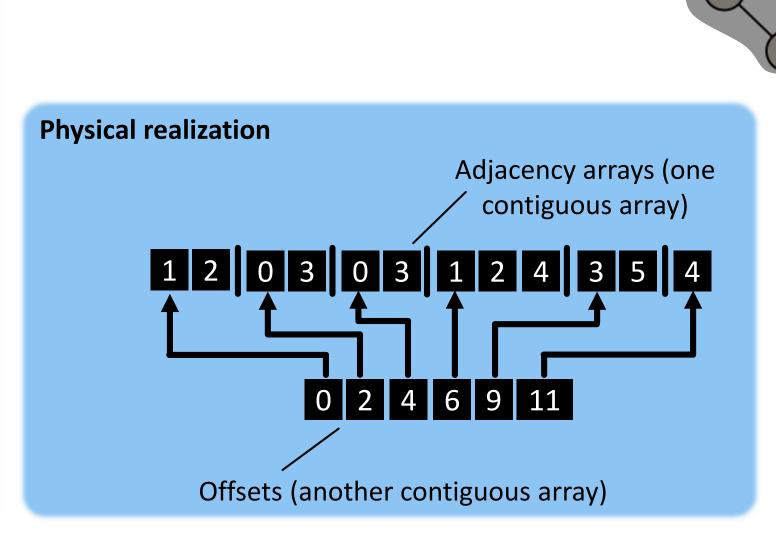


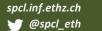


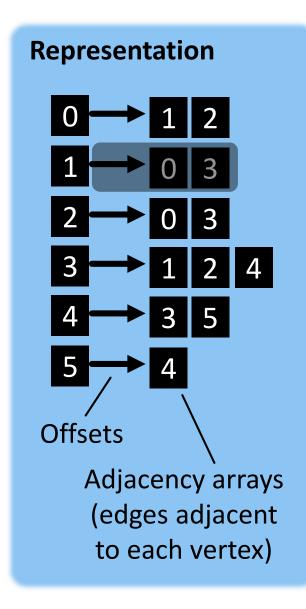


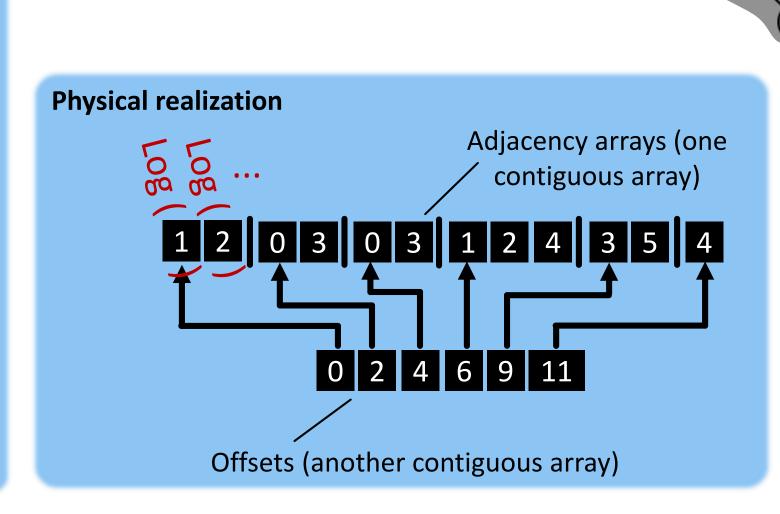


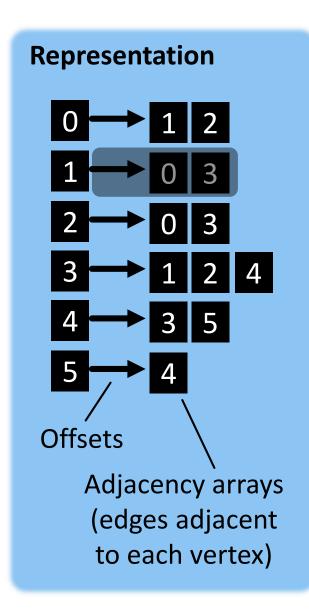


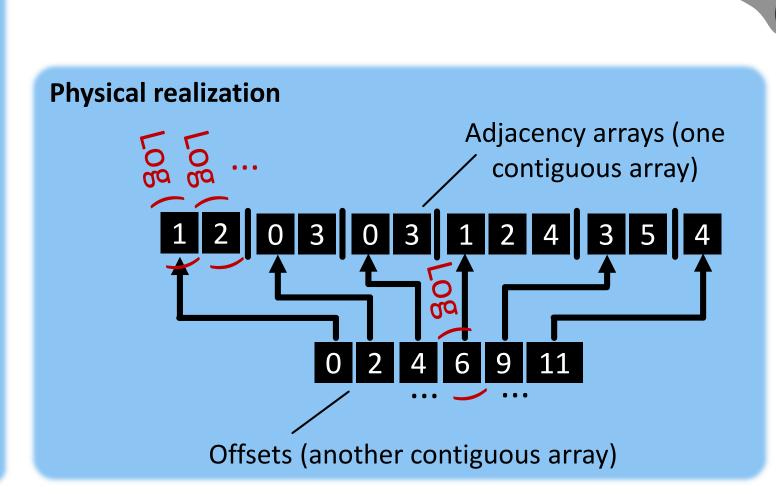


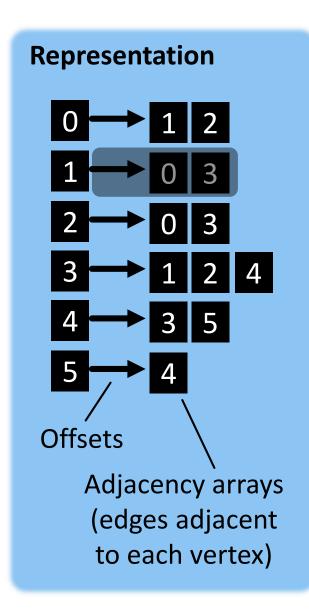


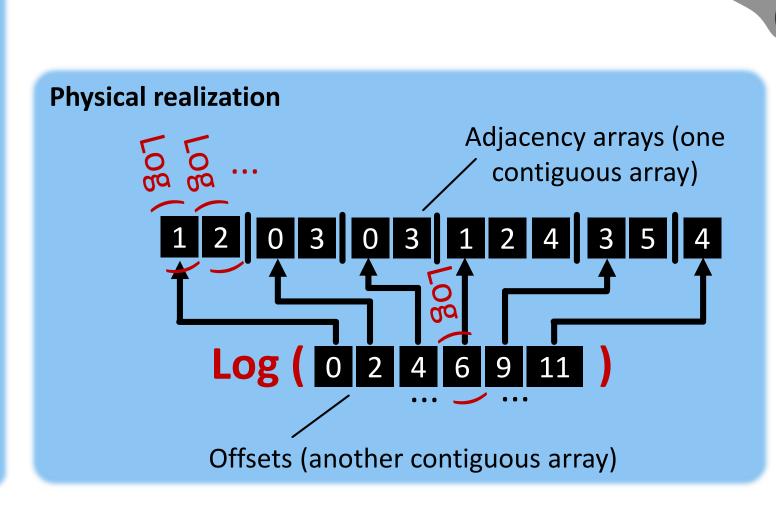


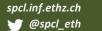


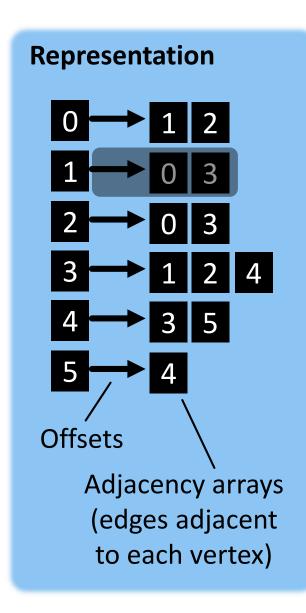


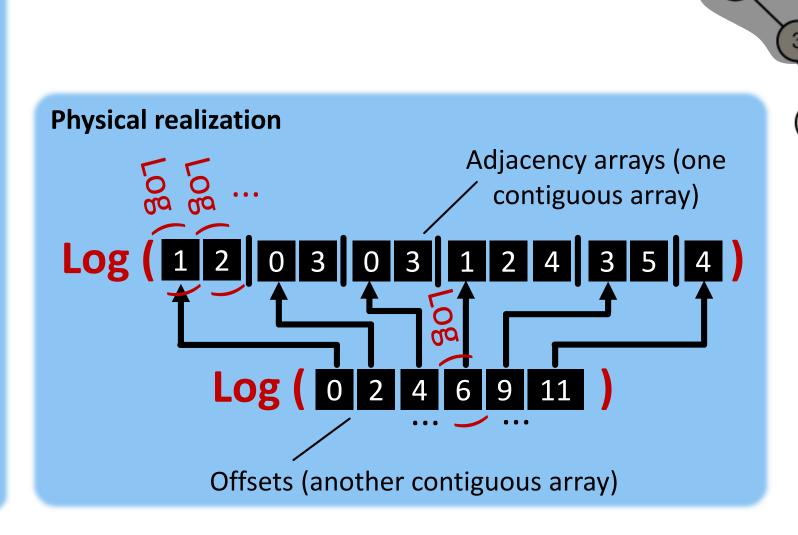


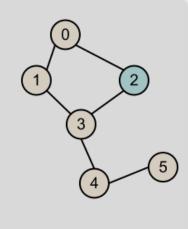


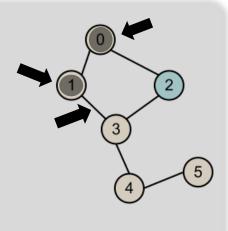












Symbols

n:#vertices,

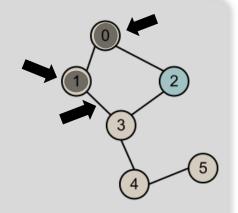
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (global)

Symbols

n:#vertices,

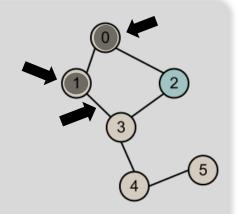
m:#edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (global)

 $\lceil \log n \rceil$

Symbols

n: #vertices,

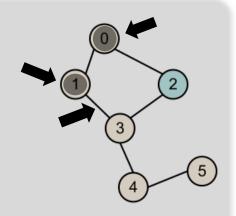
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



This is it?

Not really ©

Symbols

n: #vertices,

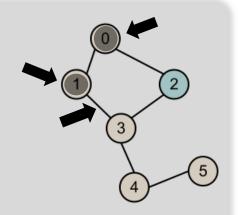
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



This is it?

Not really ©

Symbols

n: #vertices,

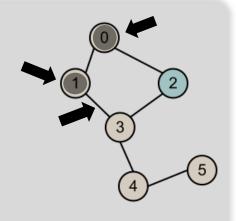
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

Lower bounds (global) $[\log n]$

This is it?

Not really ©

Symbols

n: #vertices,

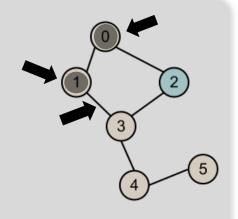
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

This is it?

Not really ©

Symbols

n: #vertices,

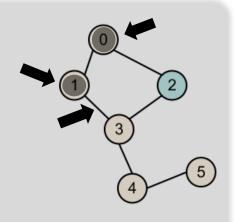
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$

This is it?

Not really ©

Symbols

n:#vertices,

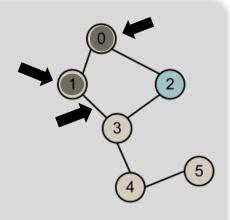
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$

This is it?

Not really

Symbols

n: #vertices,

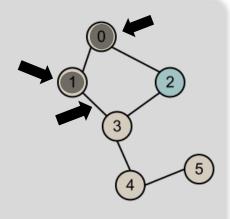
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

This is it?

Not really ©

Symbols

n: #vertices,

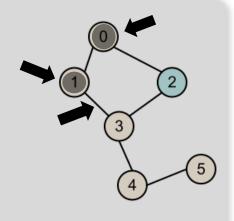
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

This is it?

Not really ©

Symbols

n: #vertices,

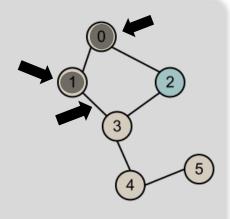
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$

This is it?

Not really ©

Symbols

n:#vertices,

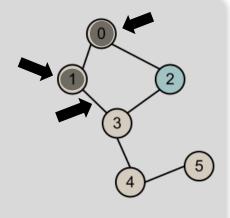
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

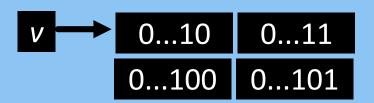
 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$



This is it?

Not really ©

Symbols

: #vertices,

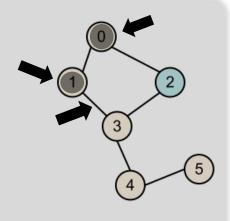
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

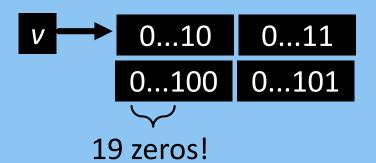
 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$



This is it?

Not really ©

Symbols

i : #vertices,

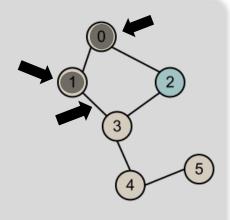
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v

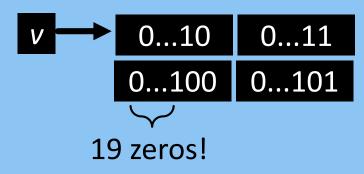


Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$



Thus, use the local bound $\lceil \log \widehat{N_v} \rceil$

Symbols

n : #vertices,

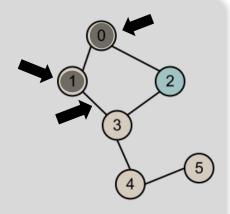
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

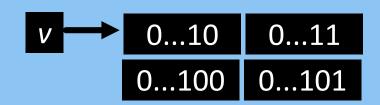
vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$



Symbols

n: #vertices,

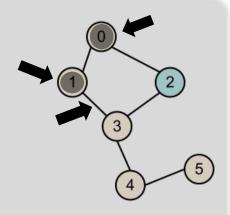
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

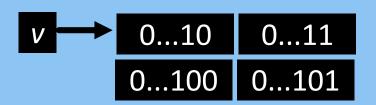
vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$



Symbols

n: #vertices,

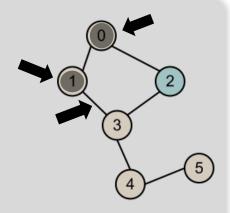
m: #edges,

 d_v : degree of vertex v,

 N_{v} : neighbors (adj. array) of

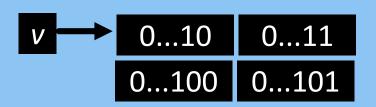
vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:



Symbols

n: #vertices,

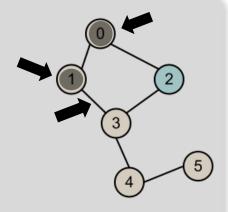
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

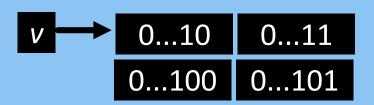
vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:



Symbols

n: #vertices,

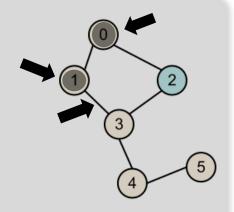
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

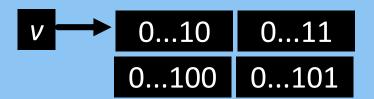
 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:

$$\left[\log 2^{20}\right] = 20$$



Symbols

n: #vertices,

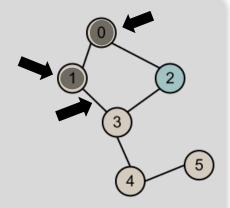
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

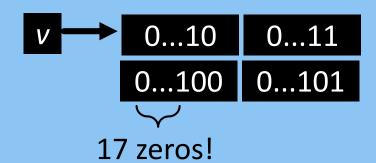
 $\widehat{N_v}$: maximum among N_v



Lower bounds (local): problem

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:

$$\left[\log 2^{20}\right] = 20$$



Symbols

n:#vertices,

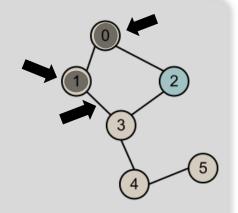
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



...Use Integer Linear Programming (ILP)!

Symbols

n: #vertices,

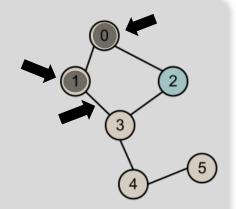
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



...Use Integer Linear Programming (ILP)!

Symbols

n: #vertices,

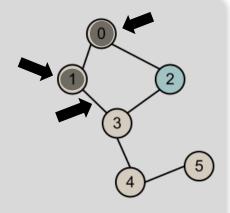
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Symbols

n: #vertices,

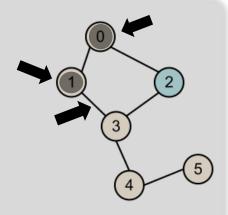
m: #edges,

 d_v : degree of vertex v,

 N_n : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

Symbols

n: #vertices,

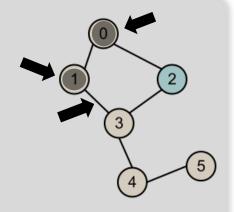
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M

Symbols

n : #vertices,

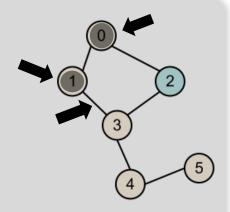
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M

Symbols

n: #vertices,

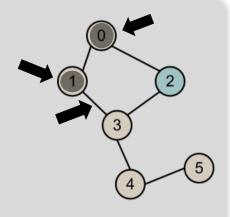
m:#edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M

Symbols

n: #vertices,

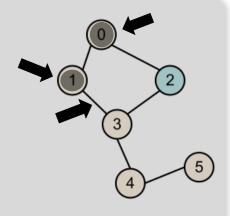
m:#edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

(simultaneously for all other neighborhoods)

$$\leq 100$$
?

Symbols

n: #vertices,

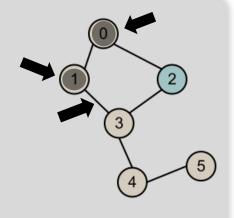
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

(simultaneously for all other neighborhoods)

Heuristics:
$$\min \sum_{v \in V} \widehat{N_v} \frac{1}{d_v}$$

$$\leq 100?$$

Symbols

n : #vertices,

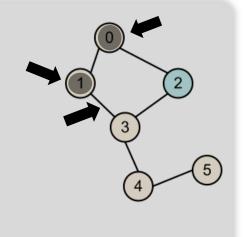
n:#edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

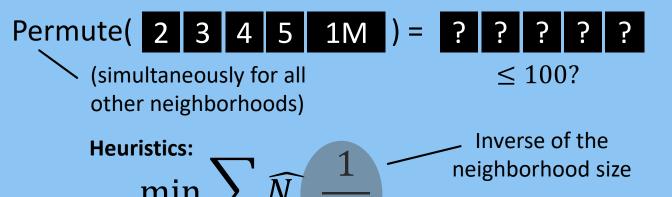
vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible



Symbols

n : #vertices,

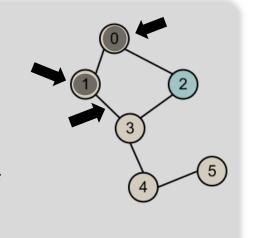
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{\mathbb{N}_v}$: maximum among N_v

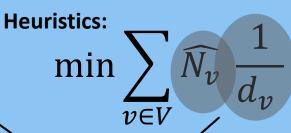


Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

Intuition:
maximum
labels in new
neighborhoods
will be smaller

(simultaneously for all other neighborhoods)



 ≤ 100 ?

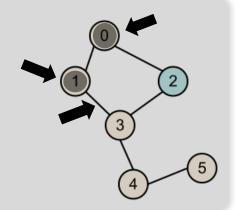
Inverse of the neighborhood size

Symbols

 \widehat{W} : max edge weight,

n: #vertices,

 p, α, β : constants



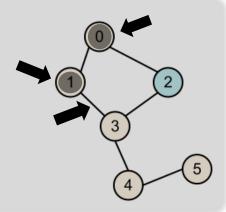
Power-law graphs

Symbols

 \widehat{W} : max edge weight,

n : #vertices,

 p, α, β : constants



Random uniform graphs



Formal analyses

Power-law graphs

The probability that a vertex has degree *d* is:

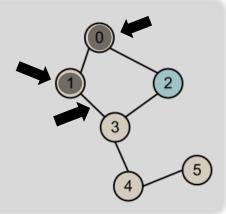
 αd^{β}

Symbols

 \widehat{W} : max edge weight,

n:#vertices,

 p, α, β : constants



Random uniform graphs

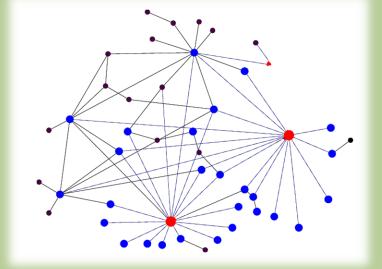
1 Log (Vertex), Log (Edge Weights)

Formal analyses

Power-law graphs

The probability that a vertex has degree *d* is:

 αd^{β}

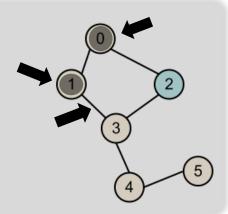


Symbols

: max edge weight,

: #vertices,

 p, α, β : constants



Random uniform graphs

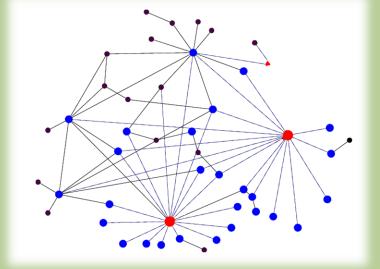


Formal analyses

Power-law graphs

The probability that a vertex has degree *d* is:

 αd^{β}

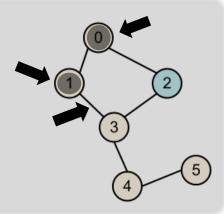


Symbols

: max edge weight,

: #vertices,

 p, α, β : constants



Random uniform graphs

The probability that a vertex has degree d is:

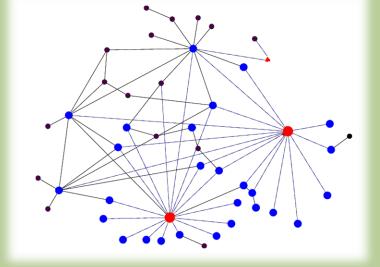
pd

1 Log (Vertex), Log (Edge weights)

Formal analyses

Power-law graphs

The probability that a vertex has degree *d* is:

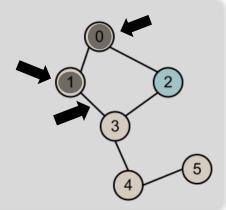


Symbols

: max edge weight,

: #vertices,

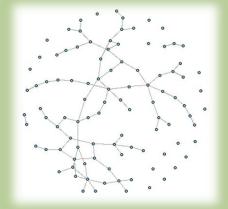
 p, α, β : constants



Random uniform graphs

The probability that a vertex has degree d is:

pd



1 Log (Vertex), Log (Edge Weights)

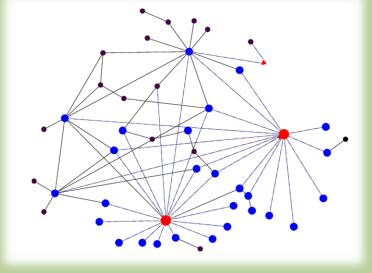
Formal analyses

Power-law graphs

The probability that a vertex has degree d is:

 αd^{β}

Expected size of the adjacency array



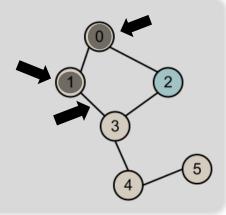
$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left(\left(\frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

Symbols

: max edge weight,

: #vertices,

 p, α, β : constants

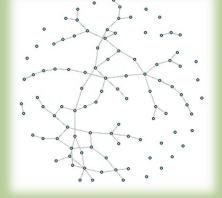


Random uniform graphs

The probability that a vertex has degree d is:

pd

Expected size of the adjacency array



$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$

Formal analyses: more

(check the paper ©)

1 Log (Vertex), Log (Edge weights)

₩ Formal analyses: more (check the paper ©)

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = 2m \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$|\mathcal{A}| = \sum_{v \in V} \left(d_v \left(\left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right) + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left(\left(\frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$|\log \widehat{N}_v|$$

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left(\left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

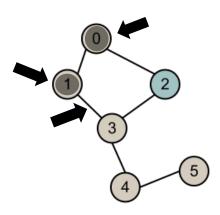
$$E[|\mathcal{A}|]$$

$$|\mathcal{A}| = \sum_{v \in V} \left(d_v \left(\left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

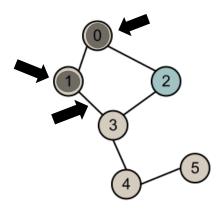
$$|\mathcal{A}| = \sum_{v \in V} \left(d_v \left(\left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left(\left(\frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

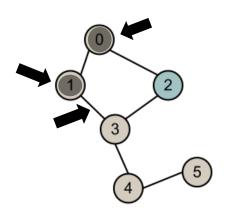
- 1 Log (Vertex), Log (Edge weights)
- **K** Key methods



- 1 Log (Vertex), Log (Edge) weights)
- **K** Key methods

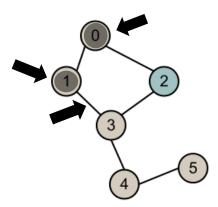


- 1 Log (Vertex), Log (Edge weights)
- **K**ey methods



```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v}(v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```


- 1 Log (Vertex), Log (Edge weights)
- **K** Key methods



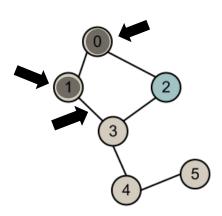
Return *i*-th neighbor of vertex *v*

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```


- 1 Log (Vertex), Log (Edge weights)
- **K**ey methods

Return *i*-th neighbor of vertex *v*

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



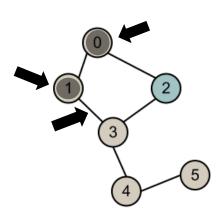
Pointer to the offset array

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```


- 1 Log (Vertex), Log (Edge weights)
- **Key methods**

Return *i*-th neighbor of vertex *v*

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



Pointer to the offset array

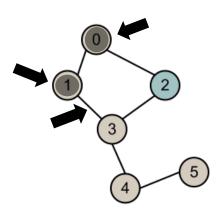
Pointer to the adjacency array

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```


- 1 Log (Vertex), Log (Edge weights)
- **K**ey methods

Return *i*-th neighbor of vertex *v*

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



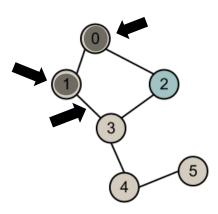
Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v}(v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```


- 1 Log (Vertex), Log (Edge Weights)
- **K** Key methods



```
Return i-th neighbor of vertex v
```

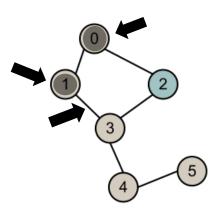
Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$

- 1 Log (Vertex), Log (Edge Weights)
- **K** Key methods



Return *i*-th neighbor of vertex *v*

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

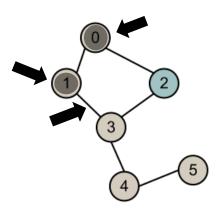
 $s = \lceil \log n \rceil$

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N<sub>i,v</sub>(v_ID v, int32_t i, ini64_t * O, int64_t * A, int8_t s){
3   int64_t exactBitOffset = s * (O[v] + i);
4   int8_t * address = (int8_t *) A + (exactBitOffset >> 3);
5   int64_t distance = exactBitOffset & 7;
6   int64_t value = ((int64_t *) (address))[0];
7   return _bextr_u64(value, distance, s); }
```

Get the closest byte alignment

- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods

Operation to help extract an arbitrary sequence of bits



Return *i*-th neighbor of vertex *v*

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

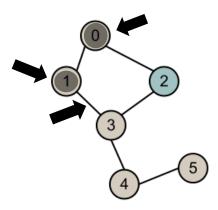
Pointer to the adjacency array

 $s = \lceil \log n \rceil$

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t v, int64_t v, int8_t v, int8_t
```

Get the closest byte alignment

- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods



Return *i*-th neighbor of vertex *v*

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$

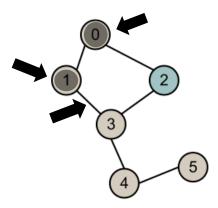
```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
Get the distance from the byte alignment
```

Get the closest byte alignment

Access the derived 64-bit value

- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods

Operation to help extract an arbitrary sequence of bits



Return *i*-th neighbor of vertex *v*

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N<sub>i,v</sub>(v_ID v, int32_t i, int64_t* O, int64_t* A, int8_t s){
3   int64_t exactBitOffset = s * (O[v] + i);
4   int8_t* address = (int8_t*) A + (exactBitOffset >> 3);
5   int64_t distance = exactBitOffset & 7;
6   int64_t value = ((int64_t*) (address))[0];
7   return _bextr_u64(value, distance, s); }
Get the distance from the byte alignment
```

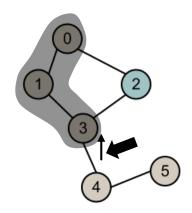
Get the closest byte alignment

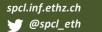
Shift the derived 64-bit value by d bits and mask it with BEXTR

Access the derived 64-bit value

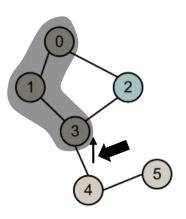


Use a **bit vector** instead of an array of offsets...



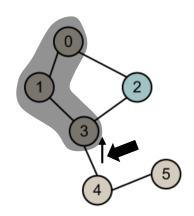


Use a **bit vector** instead of an array of offsets...

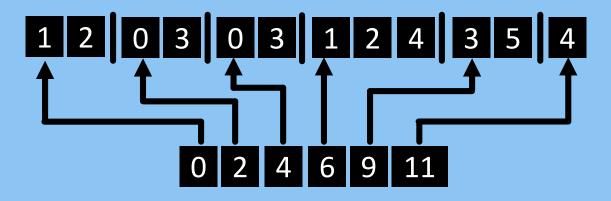


Bit vectors instead of offset arrays

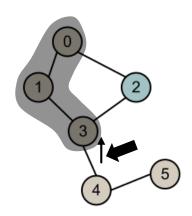
Use a **bit vector** instead of an array of offsets...



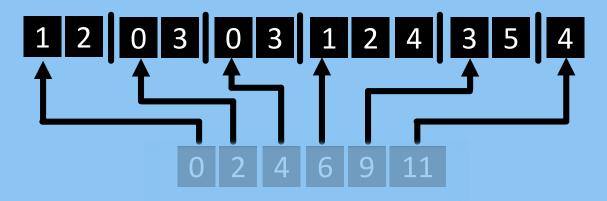
Bit vectors instead of offset arrays



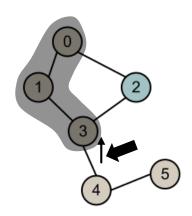
Use a **bit vector** instead of an array of offsets...



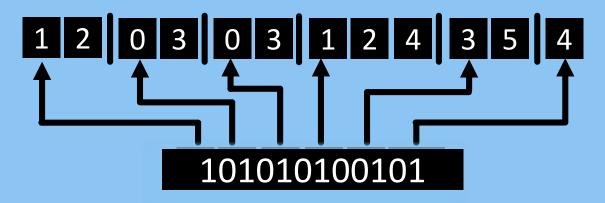
Bit vectors instead of offset arrays



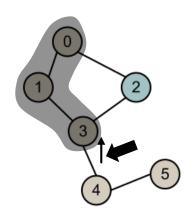
Use a **bit vector** instead of an array of offsets...



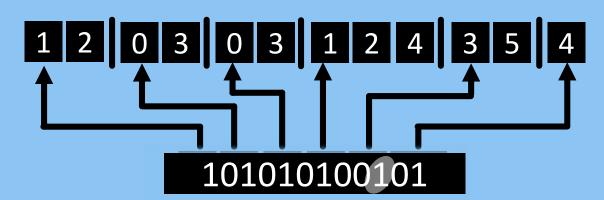
Bit vectors instead of offset arrays



Use a **bit vector** instead of an array of offsets...

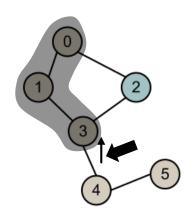


Bit vectors instead of offset arrays

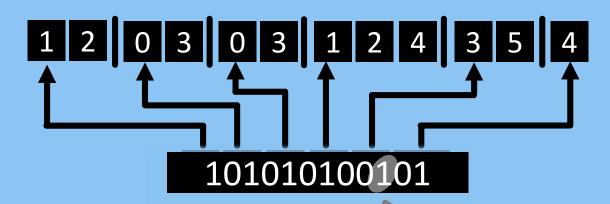


i-th set bit has a position *x* → the adjacency array of a vertex *i* starts at a word *x*

Use a **bit vector** instead of an array of offsets...



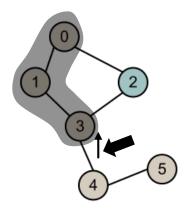
Bit vectors instead of offset arrays



How many 1s are set before a given i-th bit?

i-th set bit has a position *x* → the adjacency array of a vertex *i* starts at a word *x*

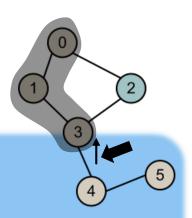
...Encode the resulting bit vectors as succinct bit vectors [1]

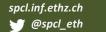


1 2 5

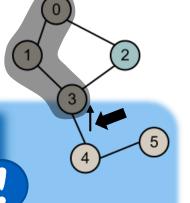
Succinct bit vectors

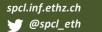
They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.





They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.





Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

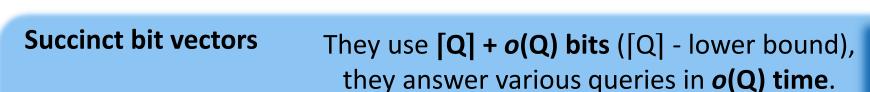
= small + fast (hopefully)

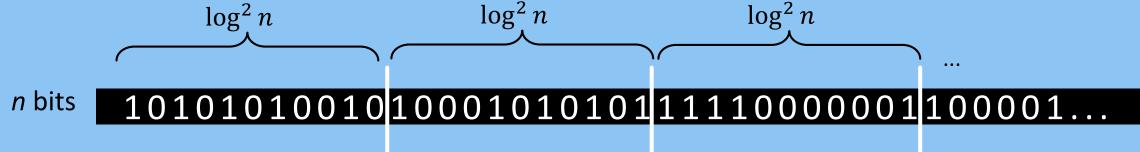
n bits

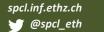
They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

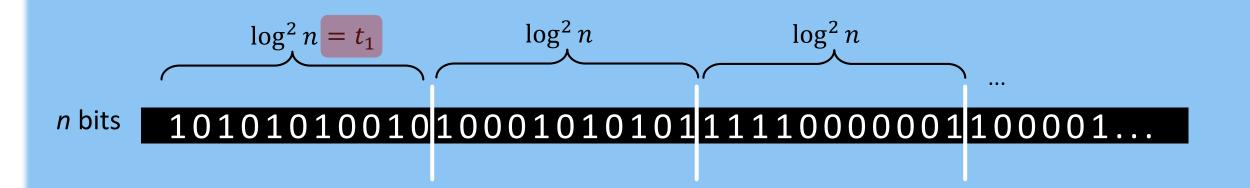
n bits



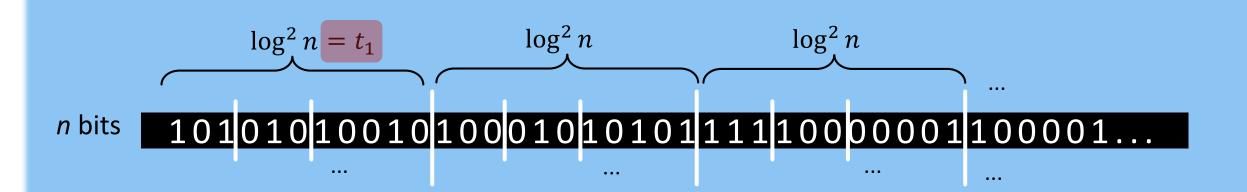




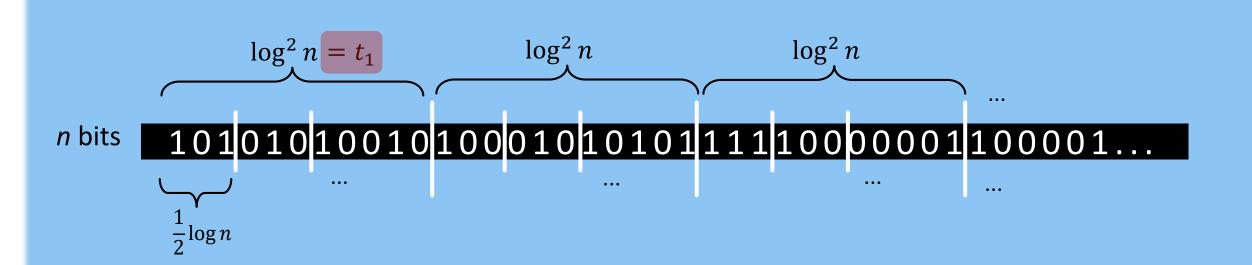
They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

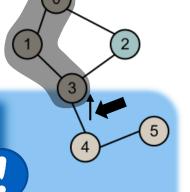


They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.



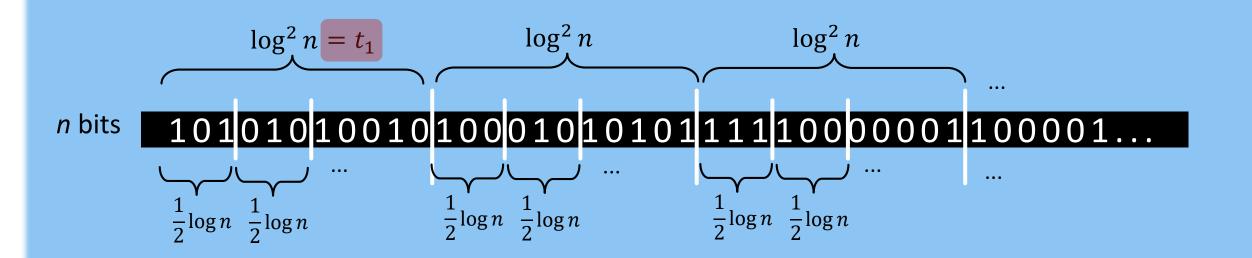
They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.





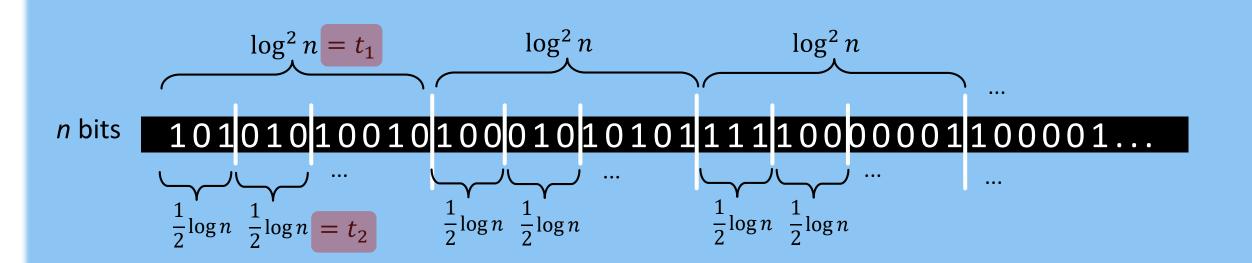
Succinct bit vectors

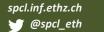
They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.



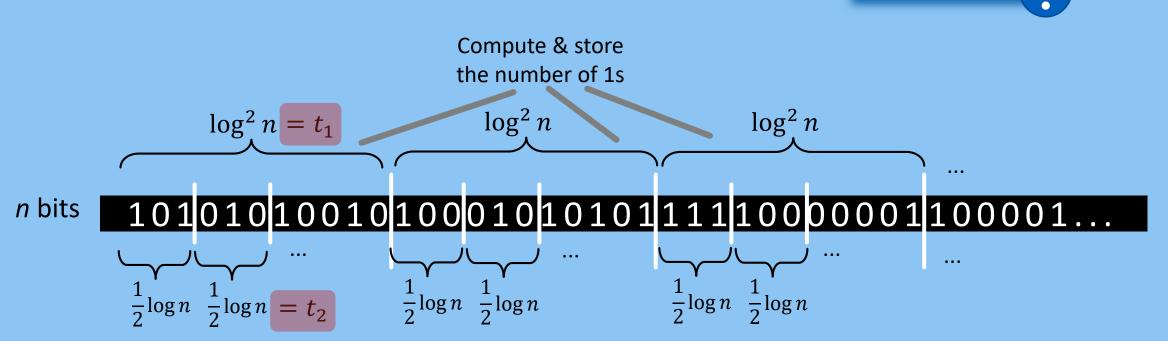


They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.



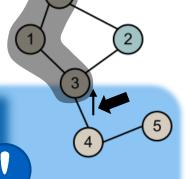


They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.



n bits

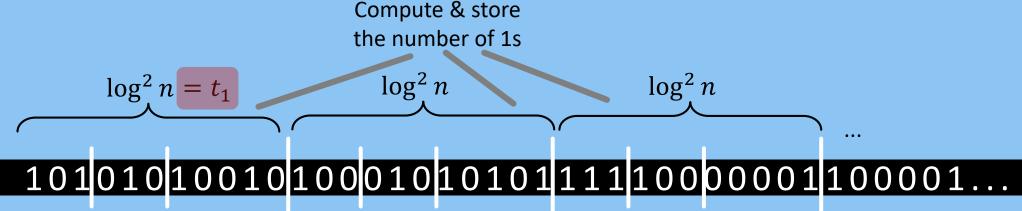
...Encode the resulting bit vectors as succinct bit vectors [1]



Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)



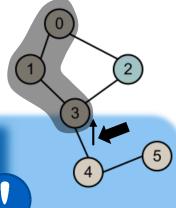
 $\frac{1}{2}\log n = t_2$

 $\frac{1}{2}\log n \quad \frac{1}{2}\log n$

 $\frac{1}{2}\log n \quad \frac{1}{2}\log n$

Compute & store the number of 1s

[1] G. J. Jacobson. Succinct Static Data Structures. 1988



Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

Compute & store the number of 1s
$$= O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = o(n)$$
 $\log^2 n$

n bits

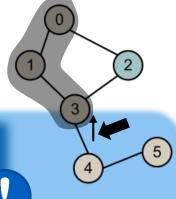
10101010101000101010111110000001100001...

$$\frac{1}{2}\log n = t_2$$

Compute & store the number of 1s

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

 $\log^2 n = t_1$



Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

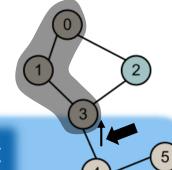
= small + fast (hopefully)

Compute & store the number of 1s =
$$O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = o(n)$$
 $\log^2 n = t_1$ $\log^2 n$

n bits

$$\frac{1}{2}\log n = t_2 \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n$$

Compute & store the number of 1s
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$



Succinct bit vectors

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

Compute & store the number of 1s
$$= O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = O(n)$$

n bits

10101010101000101010111110000001100001...

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n = t_2$$

 $\log^2 n = t_1$

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

Compute & store the number of 1s
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$

= small + fast

...Encode the resulting bit vectors as succinct bit vectors [1]

1 2 3 4 5

Succinct bit vectors

Total storage:

$$n + o(n) + o(n) + \cdots$$
$$= n + o(n)$$

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

Compute & store the number of 1s O(Q) time. (hopefully)

$$\log^2 n$$

 $\log^2 n$

n bits

101010101010000101010111110000001100001...

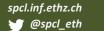
$$\frac{1}{2}\log n \quad \frac{1}{2}\log n = t_2$$

 $\log^2 n = t_1$

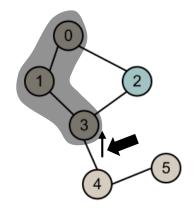
$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

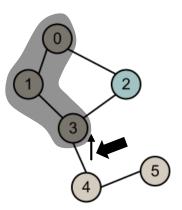
Compute & store the number of 1s
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$

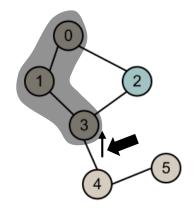


...Encode the resulting bit vectors as succinct bit vectors



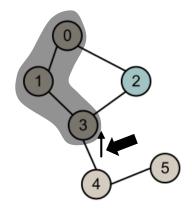
...Encode the resulting bit vectors as succinct bit vectors





Formal analyses

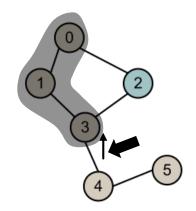
0	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	<i>O</i> (1)
Interleaved [44]		$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	<i>O</i> (1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$



Formal analyses

Check the paper for details ©

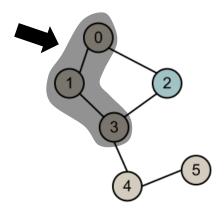
O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	l	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

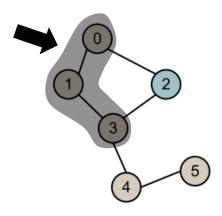


Π	_		
m .	Formal	ana	lyses

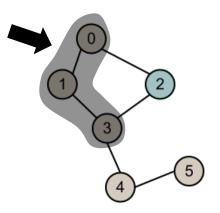
Check the paper for details ©

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	l ni		21Mm	0/1
Interleaved [44]	We	will show th	nat some a	are $g \frac{Wm}{B}$
Entropy based [3	in pr	actice both s	mall and f	$g\frac{Wm}{B}$
Sparse [76]	III Pi	actice both s	IIIaii aiiu i	asti
B-tree based [1]	bvBT	$O\left(\frac{m}{B}\right)$	$pprox 1.1 \cdot rac{-i \cdot v \cdot m}{B}$	$O(\log n)$
Gap-compressed	[1] bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2V}{B}$	$\frac{Wm}{Bn}$ $O(\log n)$

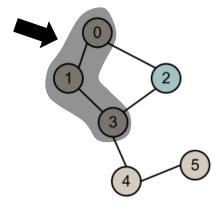




Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

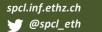


Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)



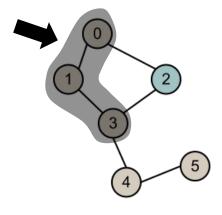
More schemes that assume specific classes of graphs

• • •



Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)



More schemes that assume specific classes of graphs

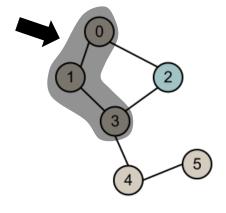
• • •

!

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives



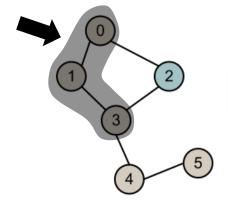
More schemes that assume specific classes of graphs

. . .

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives



More schemes that assume specific classes of graphs

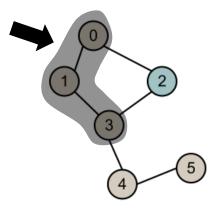
• • •

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives

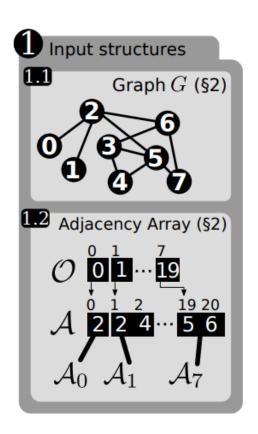
(2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)

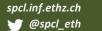


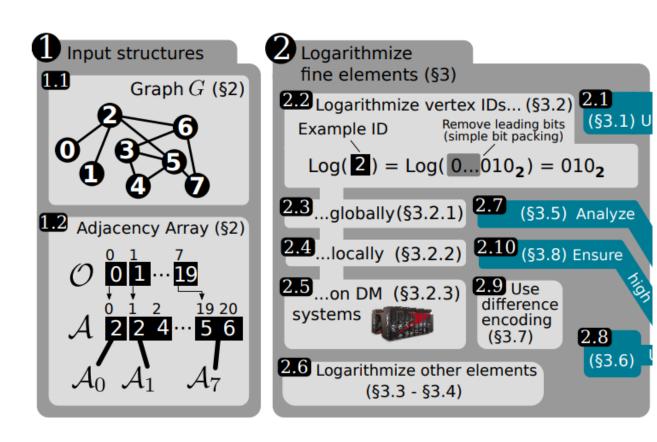
More schemes that assume specific classes of graphs

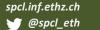
• • •

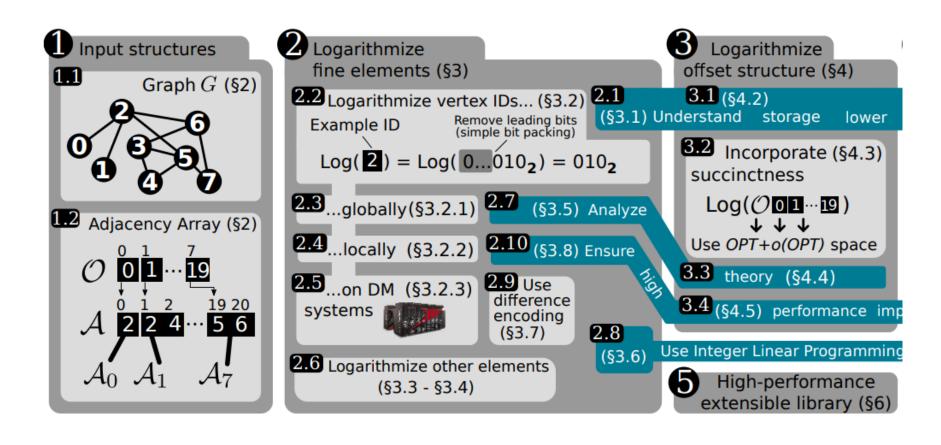
OVERVIEW OF FULL LOG(GRAPH) DESIGN

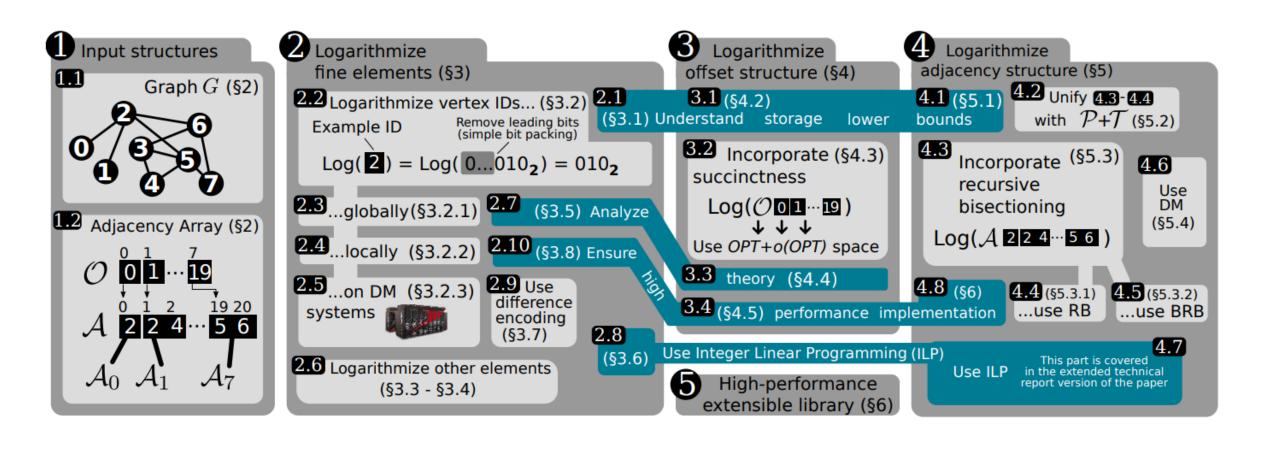


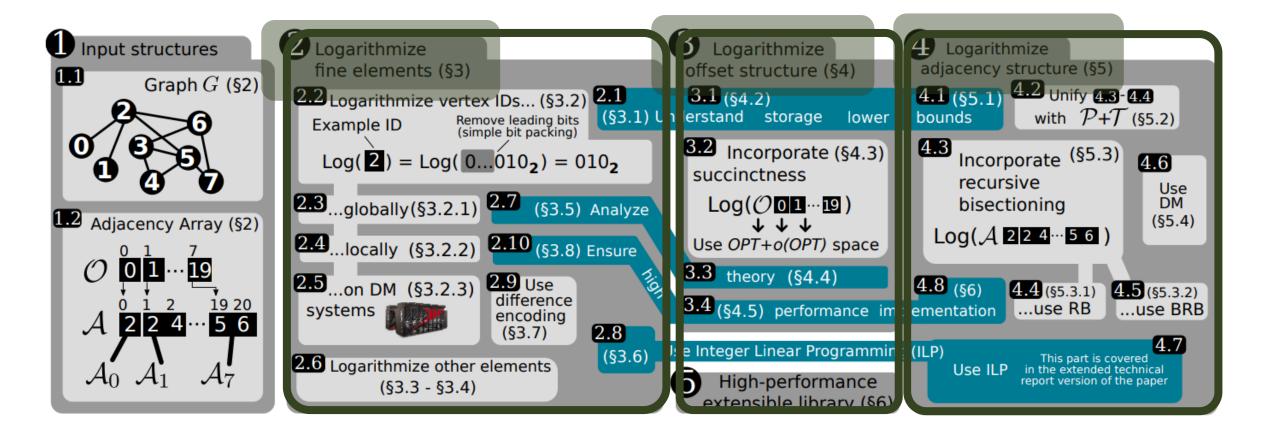


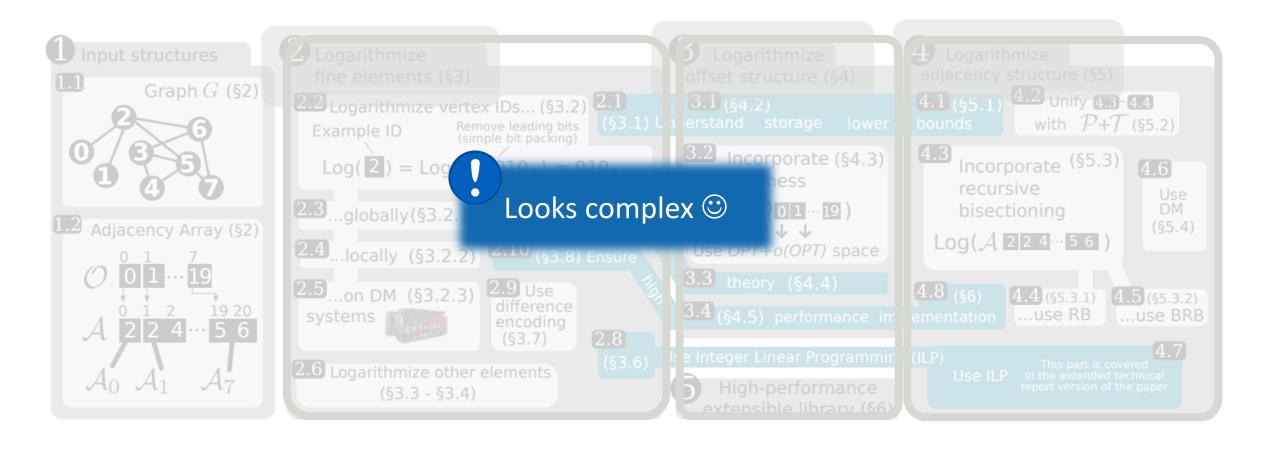


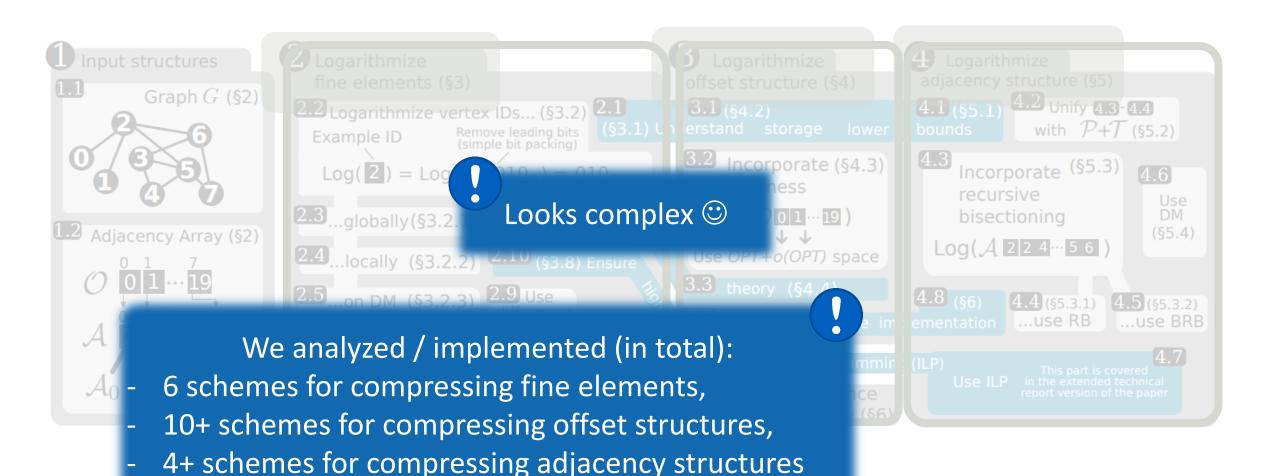


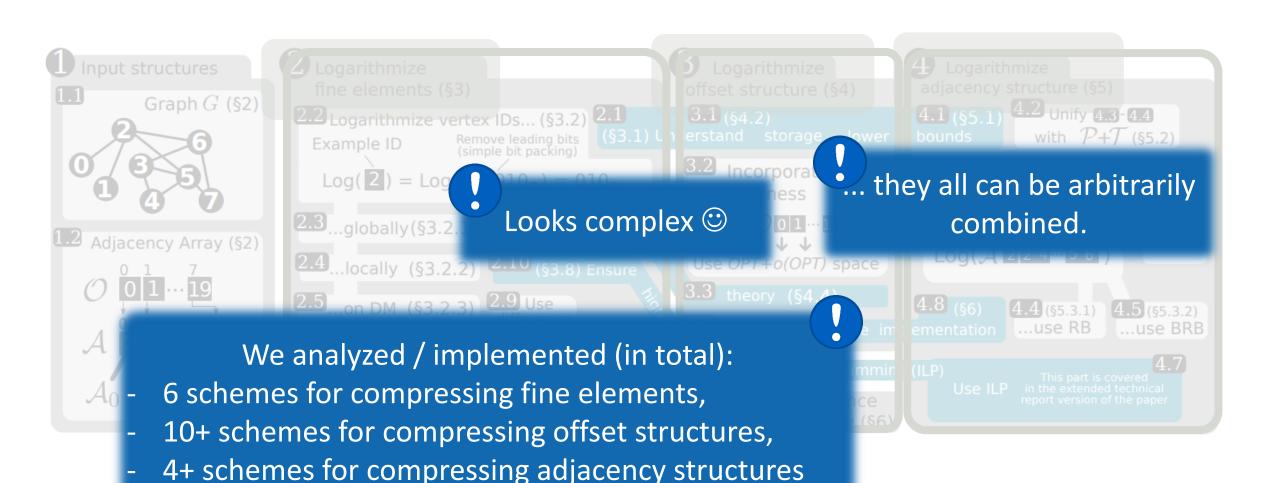


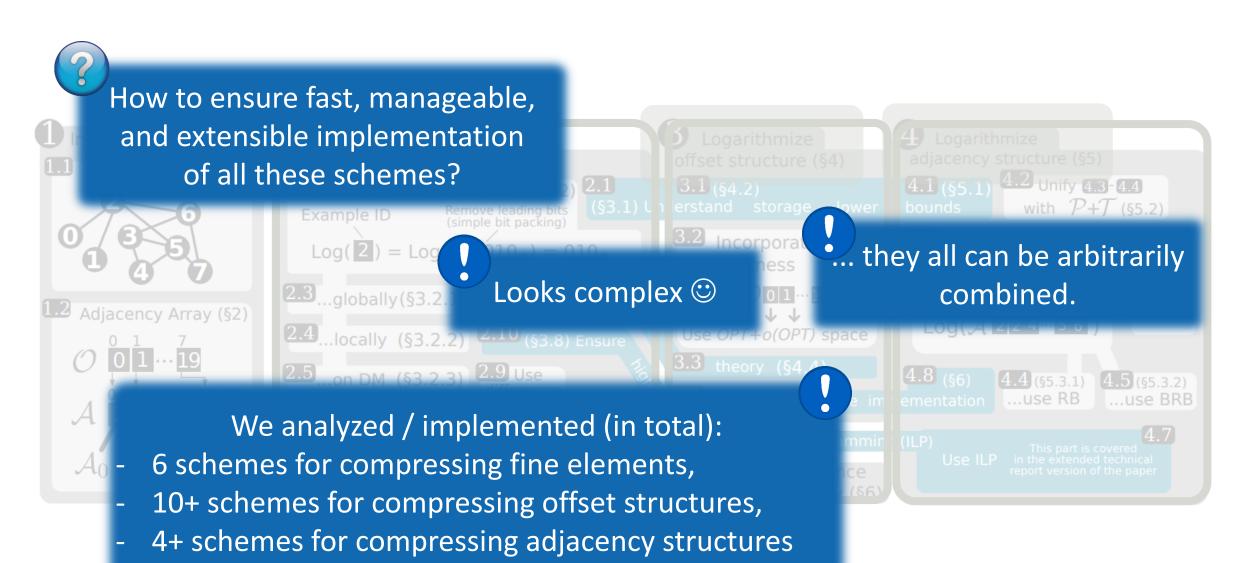












with $\mathcal{P}+\mathcal{T}$ (§5.2)

OVERVIEW OF FULL LOG(GRAPH) DESIGN

How to ensure fast, manageable, and extensible implementation of all these schemes?

We use C++ templates to develop
a library that facilitates implementation,
benchmarking, analysis, and extending
the discussed schemes

Example ID

Remove leading bits (\$3.1) to least a complex (\$3.2)

Log(2) = Log

Looks complex ©

... they all can be arbitrarily combined.

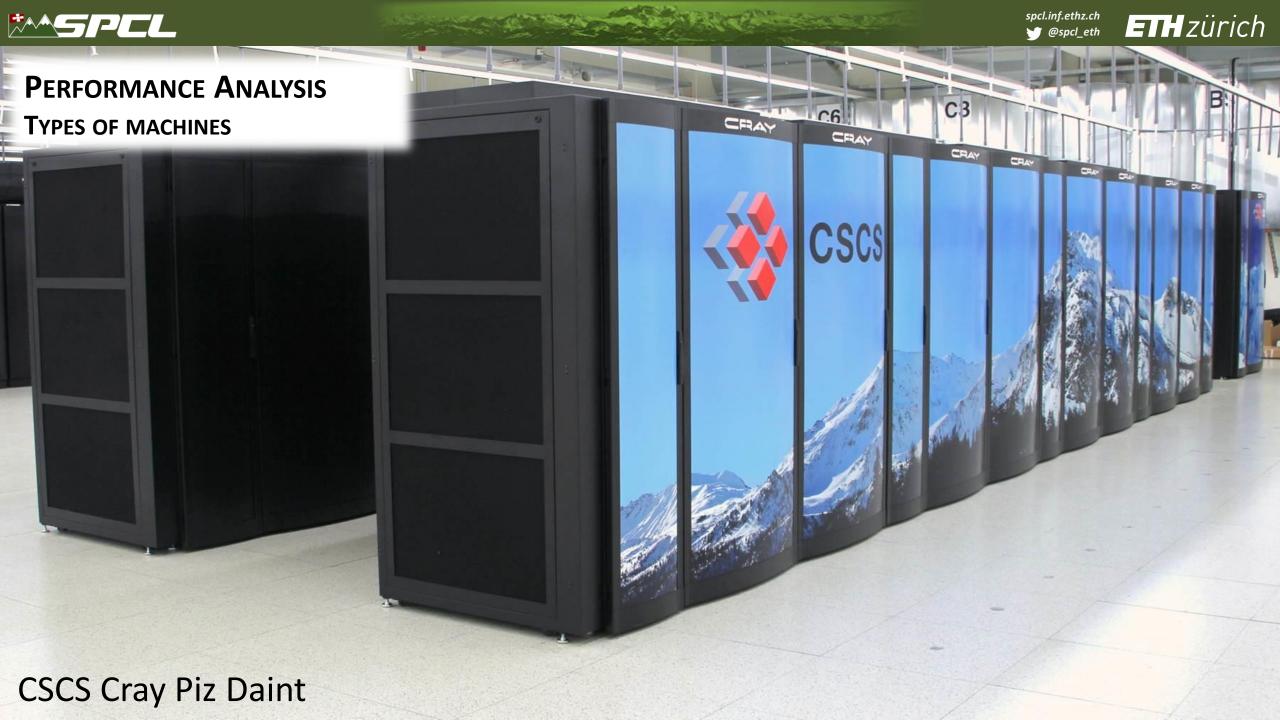
```
2.4...locally (§3.2.2) 2.10 (§3.8) Ensure
2.5...on DM (§3.2.3) 2.9 Use

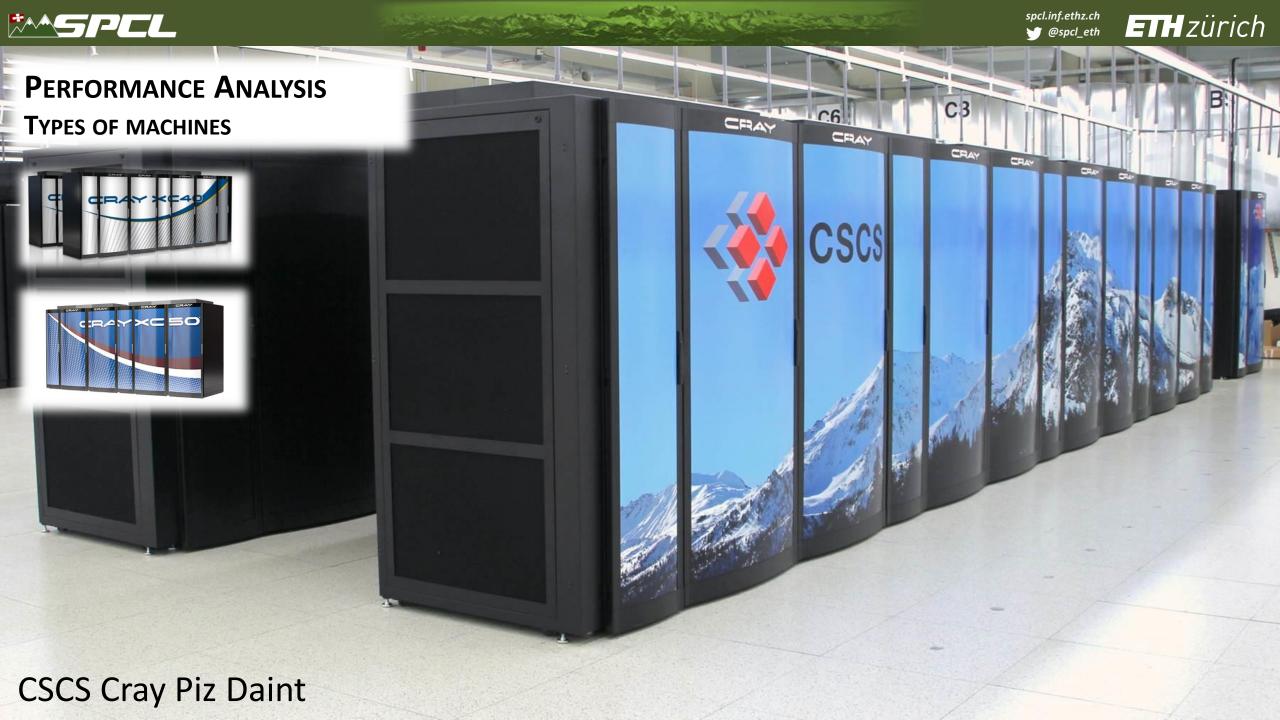
We analyzed / implemented (in total):
```

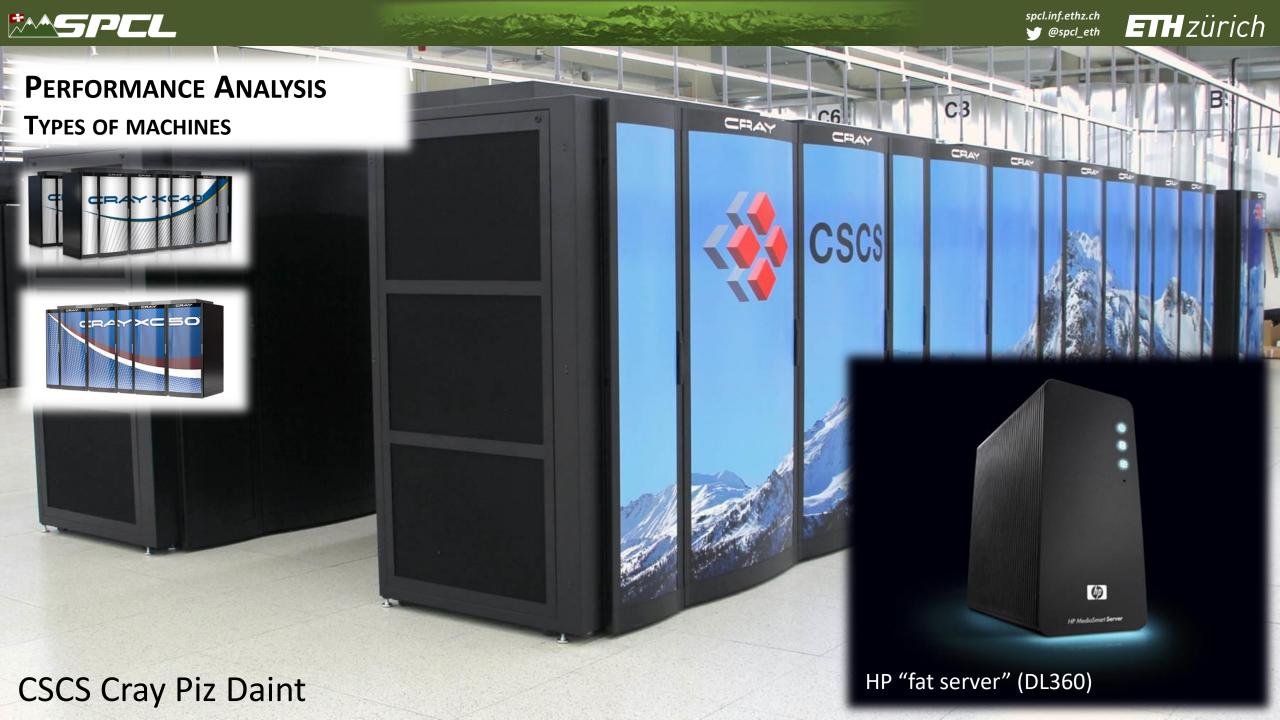
4.8 (§6) 4.4 (§5.3.1) 4.5 (§5.3.2) ...use BRB

(ILP) This part is covered in the extended technical report version of the paper

- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures







PERFORMANCE ANALYSIS

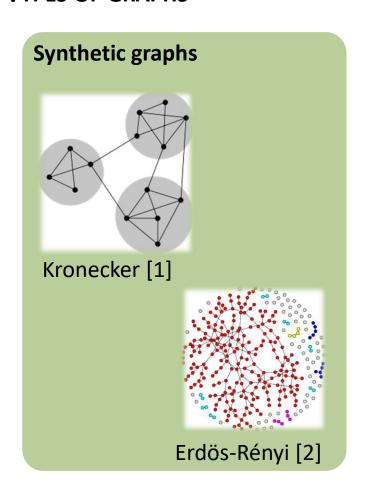
TYPES OF GRAPHS

PERFORMANCE ANALYSIS

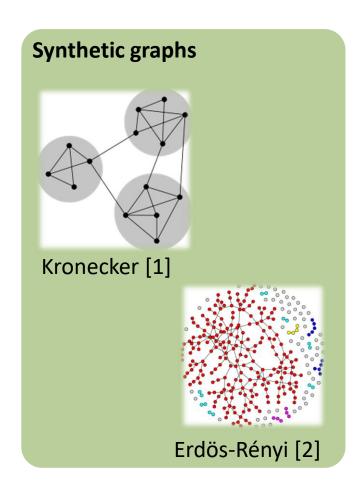
TYPES OF GRAPHS

Synthetic graphs

Synthetic graphs Kronecker [1]

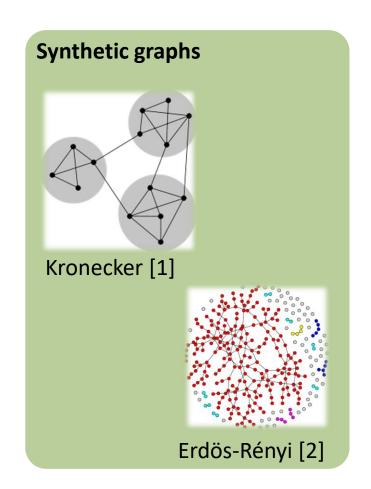


- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.



Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

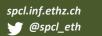
[3] SNAP. https://snap.stanford.edu



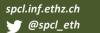
Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6]) Road networks Social networks Web graphs Purchase networks Citation graphs Communication graphs

- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

- [3] SNAP. https://snap.stanford.edu
- [4] KONECT. https://konect.cc
- [5] DIMACS Challenge
- [6] Webgraphs. https://law.di.unimi.it/datasets.php

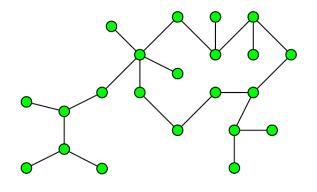


Connected
Components
(Shiloach-Vishkin [1])



Connected Components

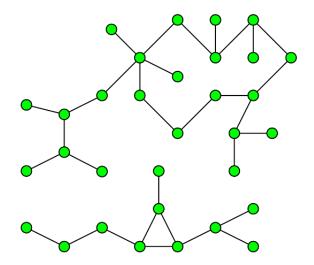
(Shiloach-Vishkin [1])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Connected Components

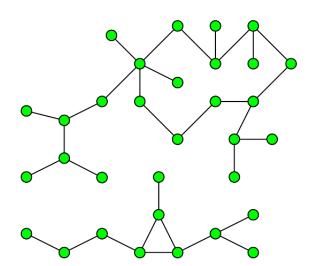
(Shiloach-Vishkin [1])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

Connected
Components
(Shiloach-Vishkin [1])

BFS (direction optimization [2])



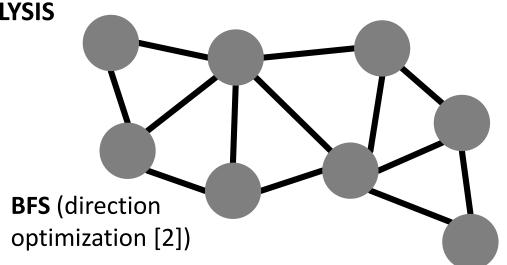
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

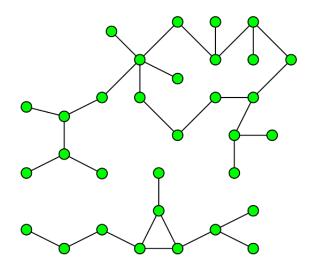
PERFORMANCE ANALYSIS

ALGORITHMS

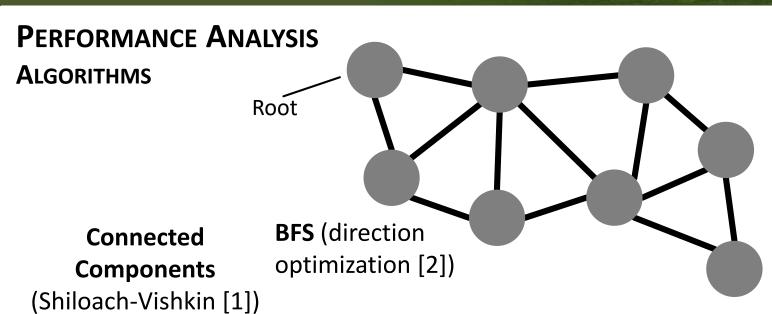
Connected Components

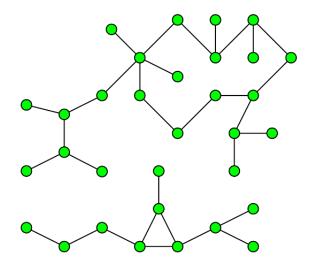
(Shiloach-Vishkin [1])

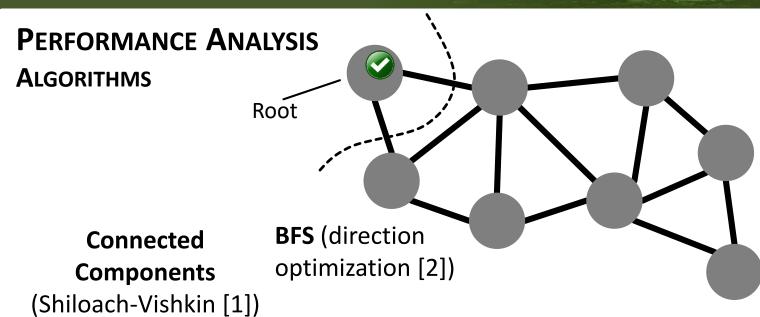


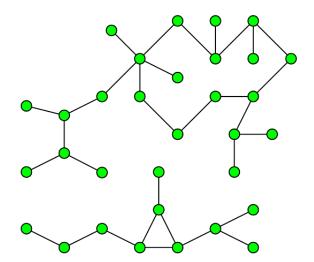


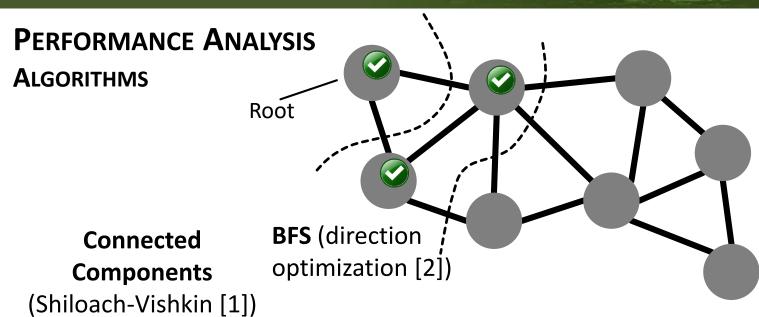
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

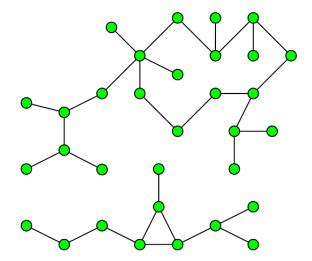


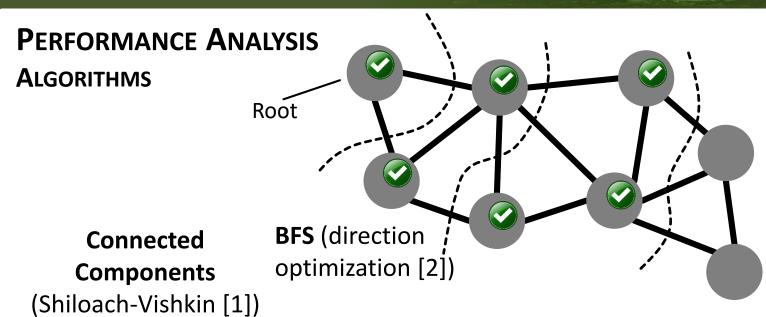


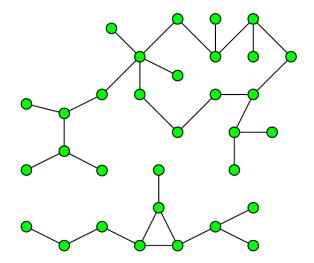


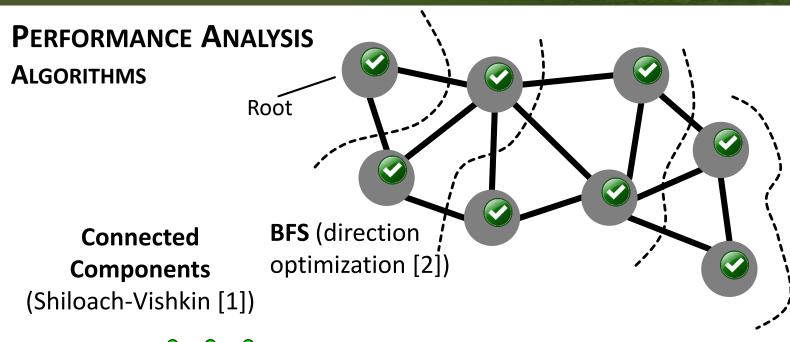


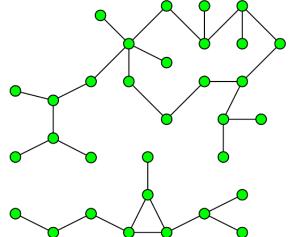


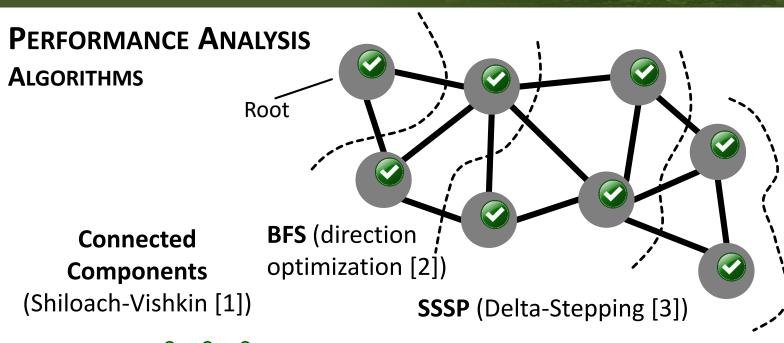


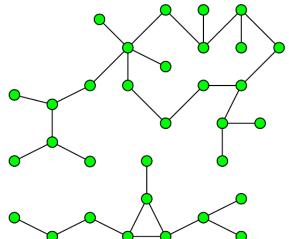


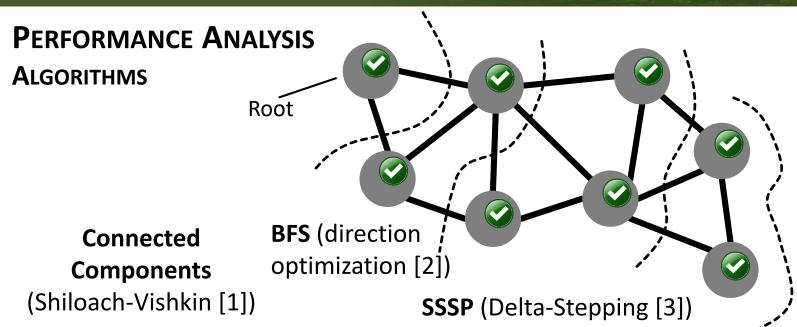




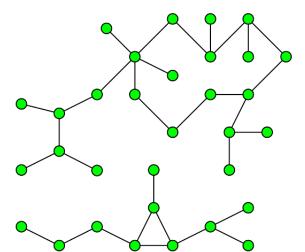




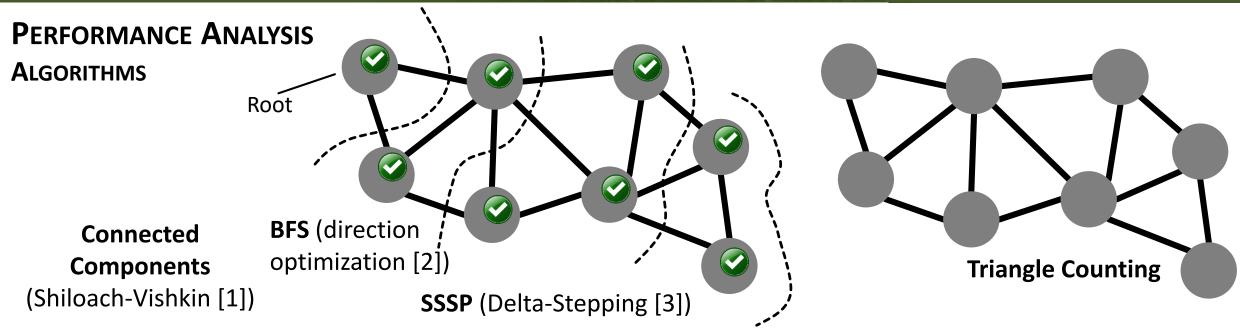


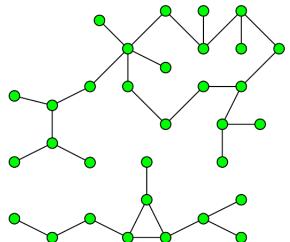


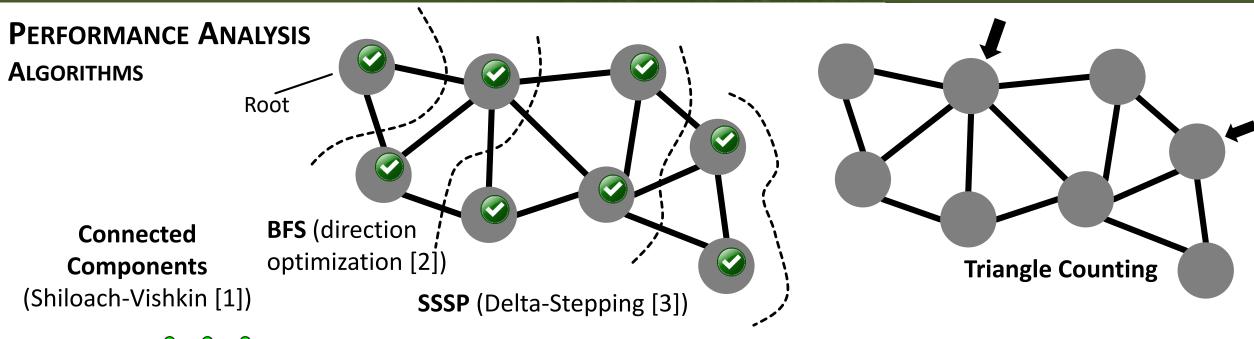
Triangle Counting

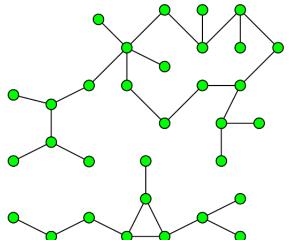


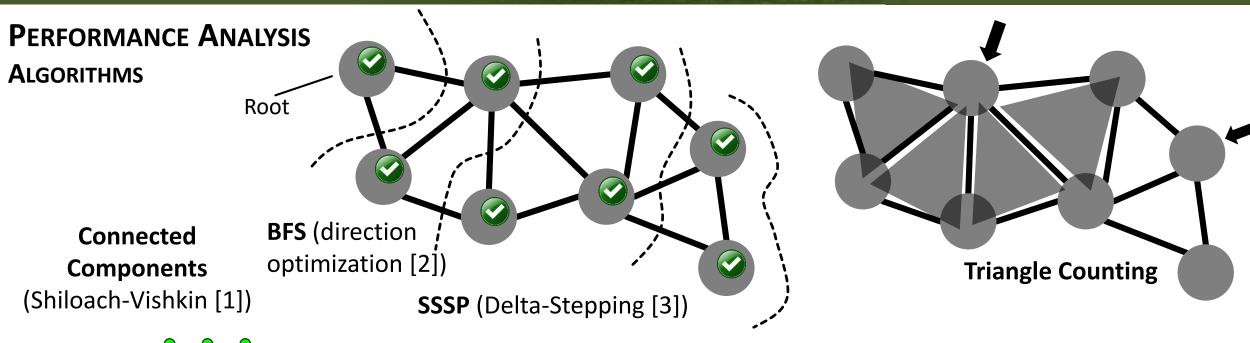
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

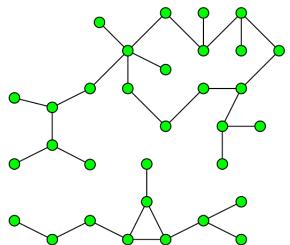


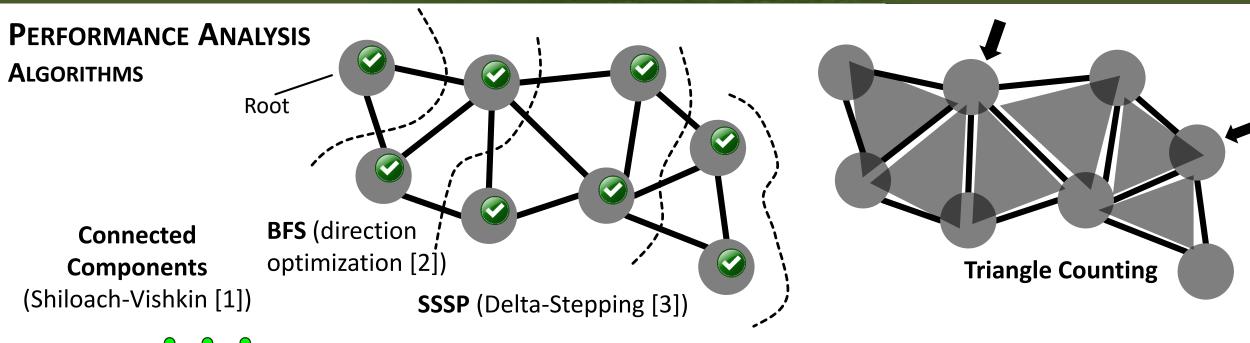


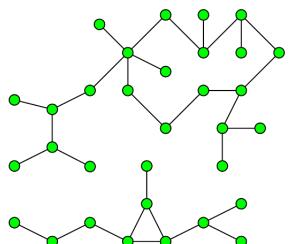


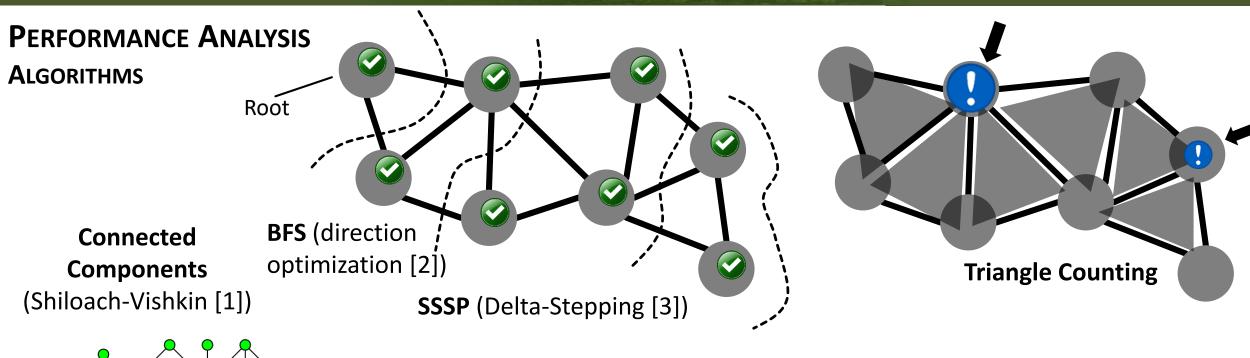


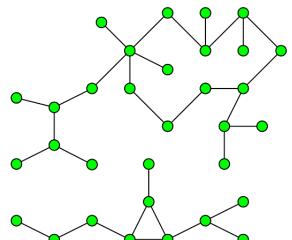






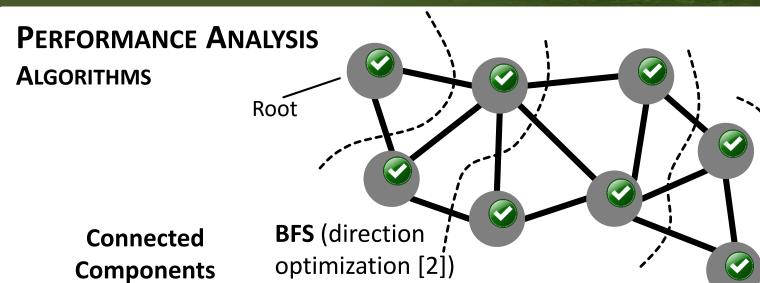


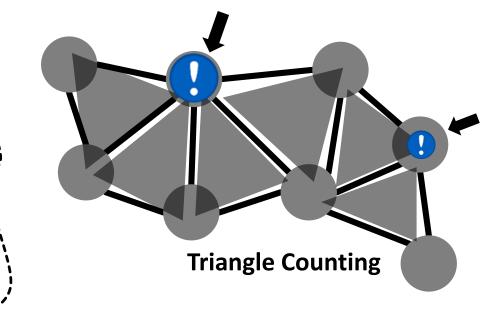


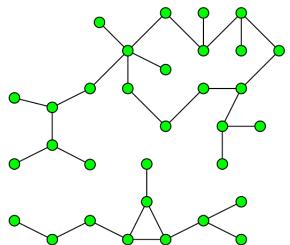


[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.







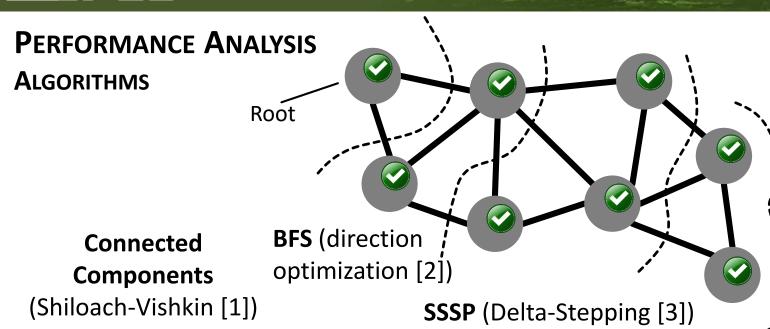
(Shiloach-Vishkin [1])

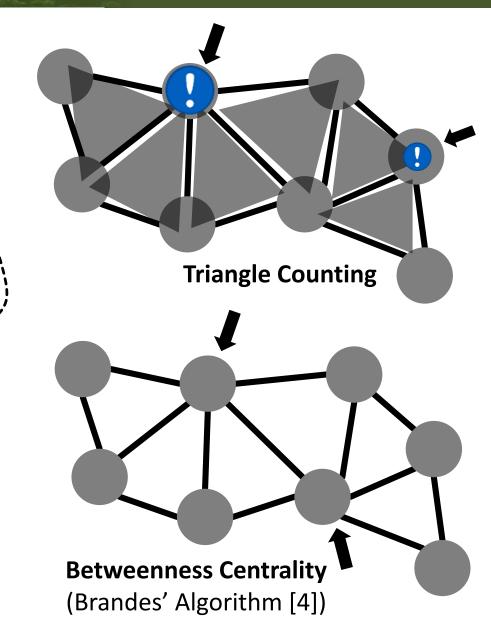
SSSP (Delta-Stepping [3])

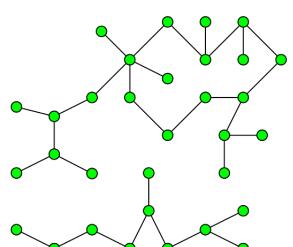
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.



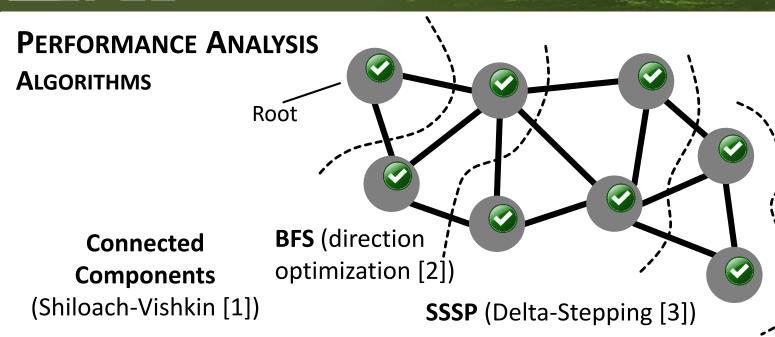


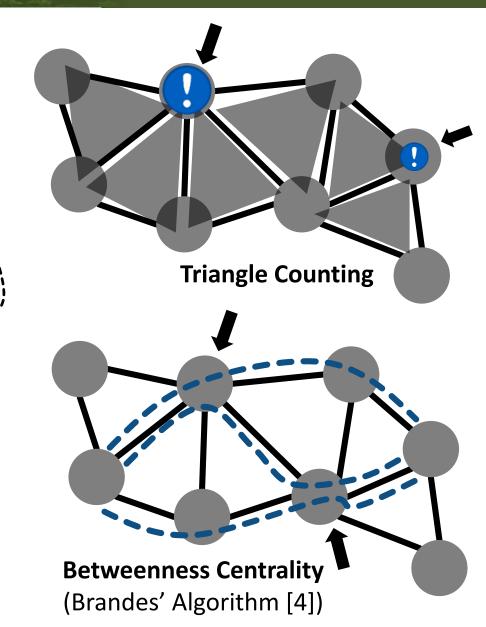


[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

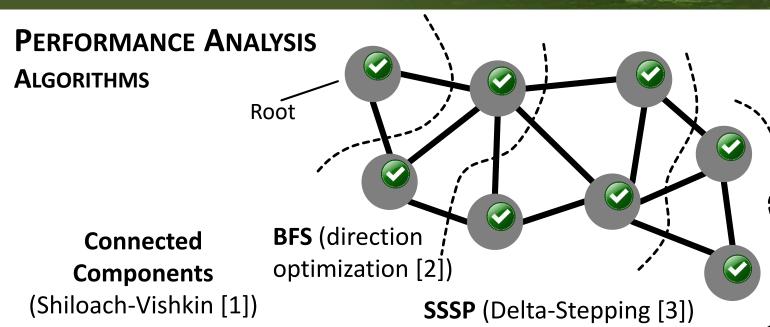


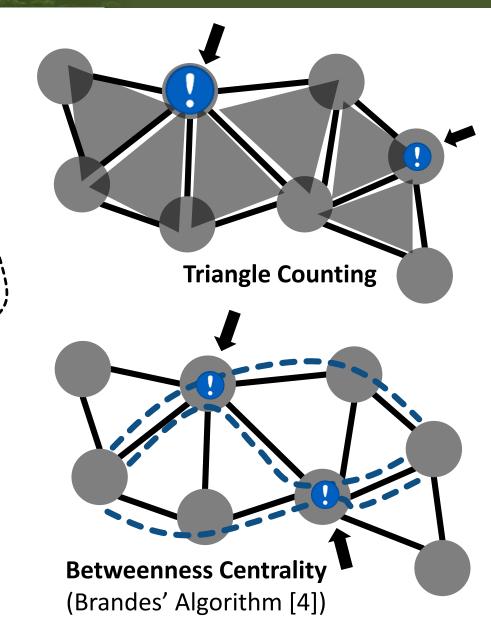


[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.





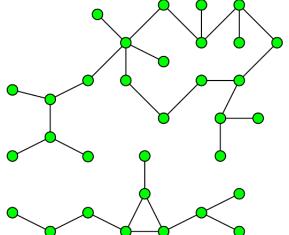
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

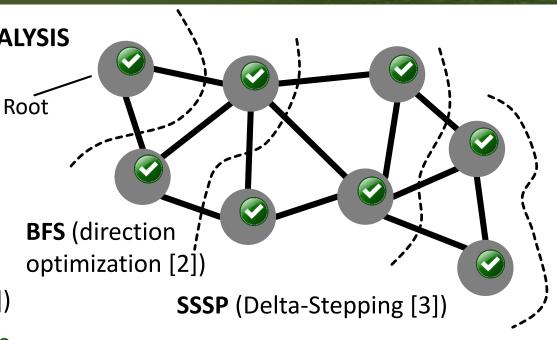
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

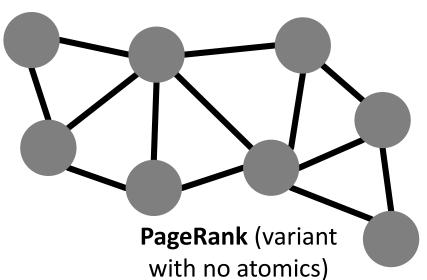
Connected Components

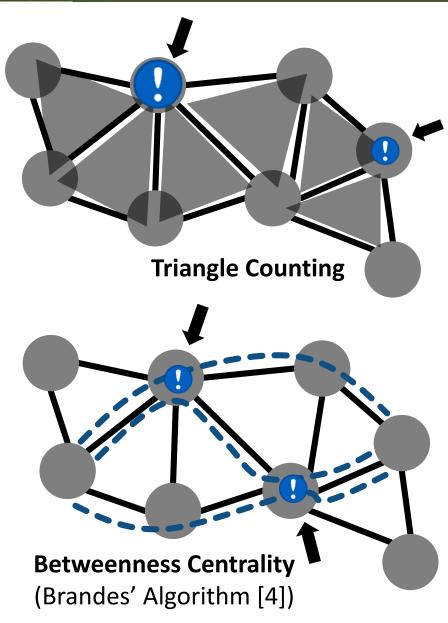
(Shiloach-Vishkin [1])



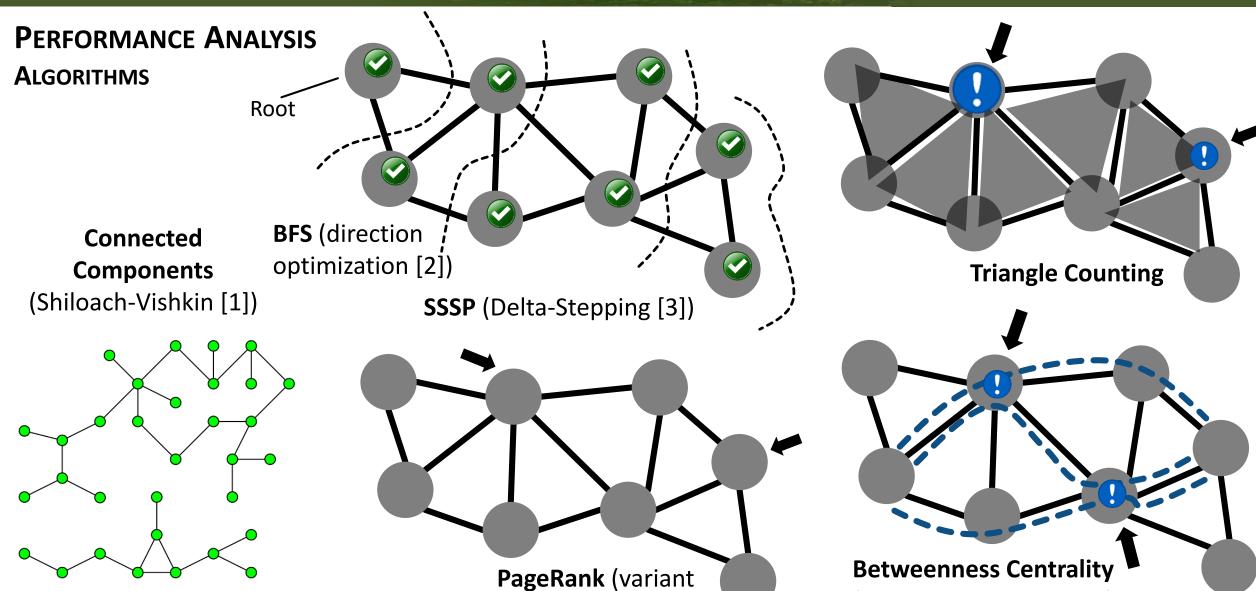
[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.







[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

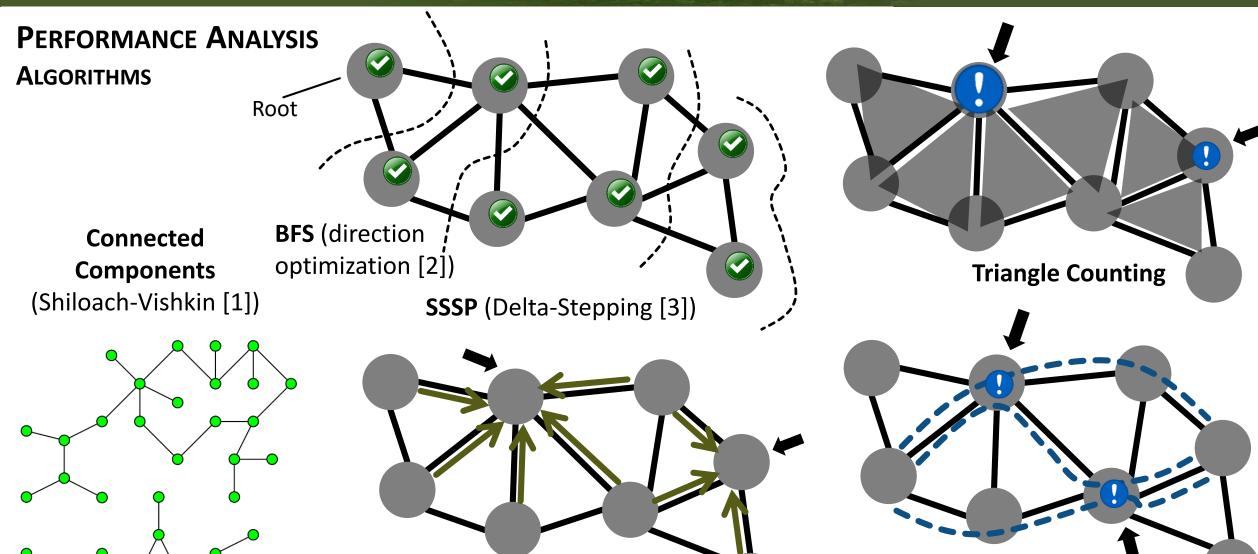


with no atomics)

- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

(Brandes' Algorithm [4])



PageRank (variant

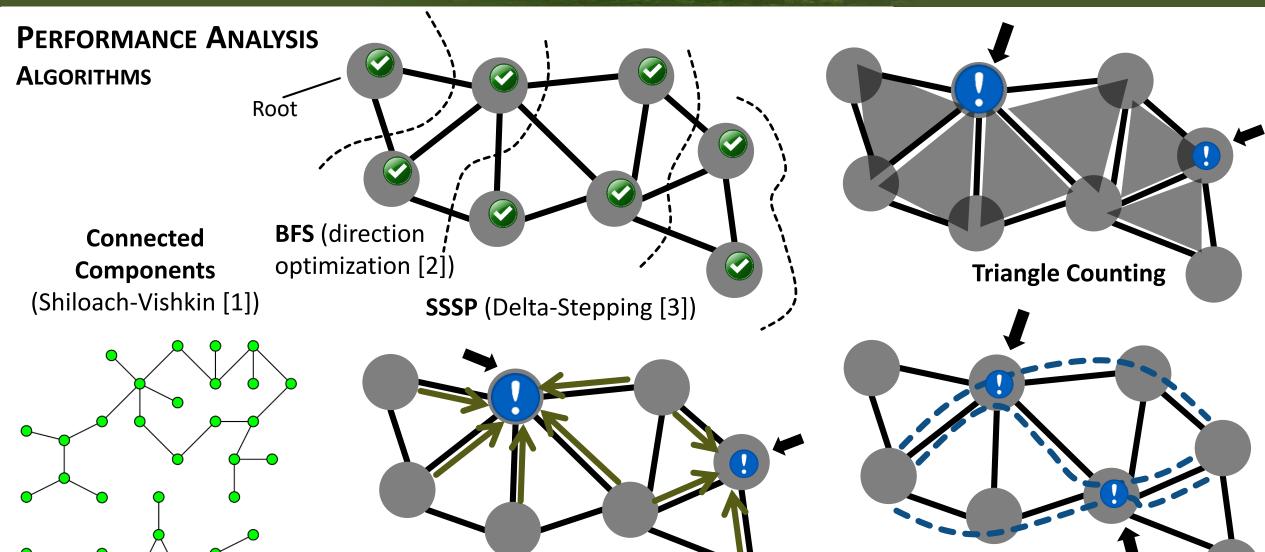
with no atomics)

- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

Betweenness Centrality

(Brandes' Algorithm [4])



- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

PageRank (variant

with no atomics)

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

Betweenness Centrality

(Brandes' Algorithm [4])

PERFORMANCE ANALYSIS

COMPARISON TARGETS

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

Zlib [2].
Comparison to a traditional compression scheme

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

^[2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.

Zlib [2].

Comparison to a traditional compression scheme

WebGraph Library [3]
Comparison to a state-of-the-art
graph compression scheme

- [1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
- [2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.
- [3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.

Zlib [2].

Comparison to a traditional compression scheme

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

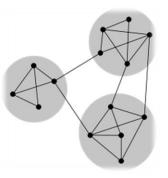
WebGraph Library [3]
Comparison to a state-of-the-art
graph compression scheme

Recursive Partitioning [4].

Comparison to a tuned scheme for compressing adjacency data

- [1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
- [2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.
- [3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.
- [4] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact Representations of Separable Graphs. SODA, 2003.

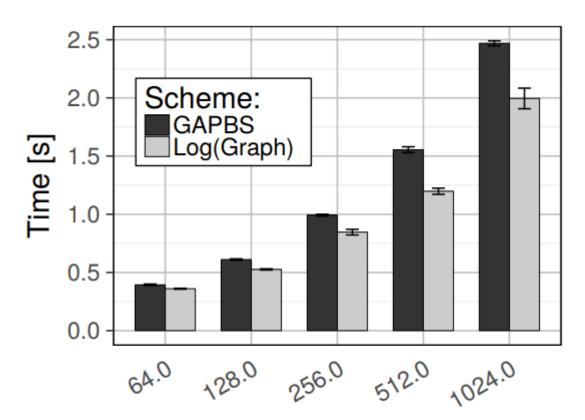
Storage, Performance



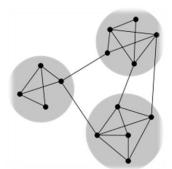
Kronecker graphs Number of vertices: 4M

1 Log (Vertex), Log (Edge weights)

Storage, Performance



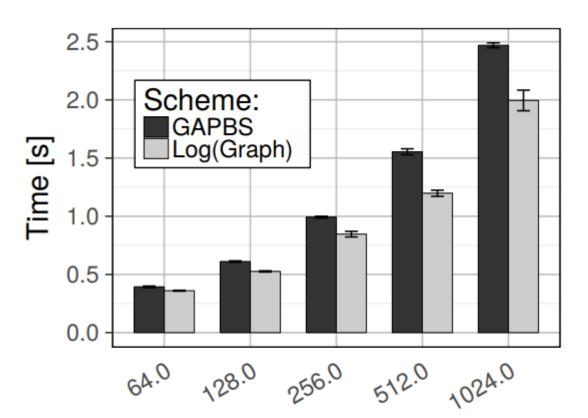
Number of edges per vertex



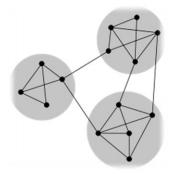
Kronecker graphs Number of vertices: 4M

1 Log (Vertex), Log (Edge weights)

Storage, Performance



Number of edges per vertex



Kronecker graphs Number of vertices: 4M

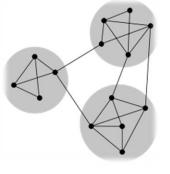
Log(Graph) consistently reduces storage overhead (by 20-35%)

1 Log (Vertex), Log (Edge Weights)

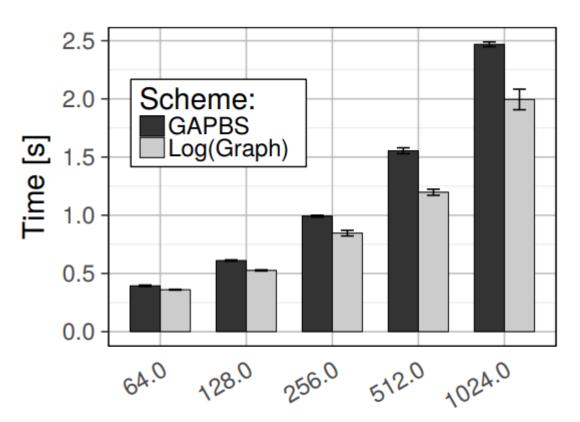
Storage, Performance

Log(Graph)

accelerates GAPBS



Kronecker graphs Number of vertices: 4M

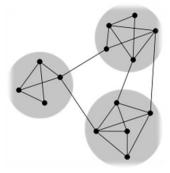


Number of edges per vertex

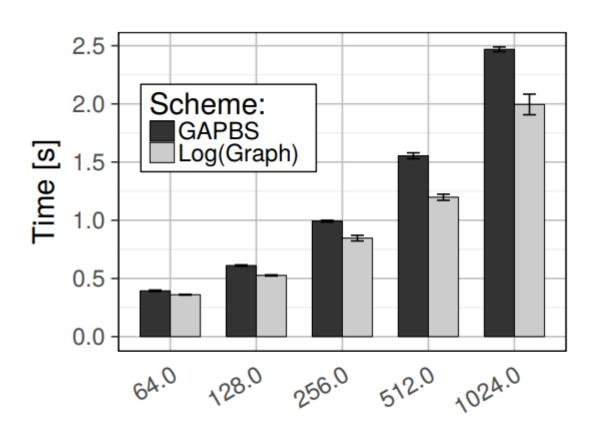
Log(Graph) consistently reduces storage overhead (by 20-35%)

1 Log (Vertex), Log (Edge)

Storage, Performance



Kronecker graphs Number of vertices: 4M



Number of edges per vertex

Both storage and performance are improved simultaneously

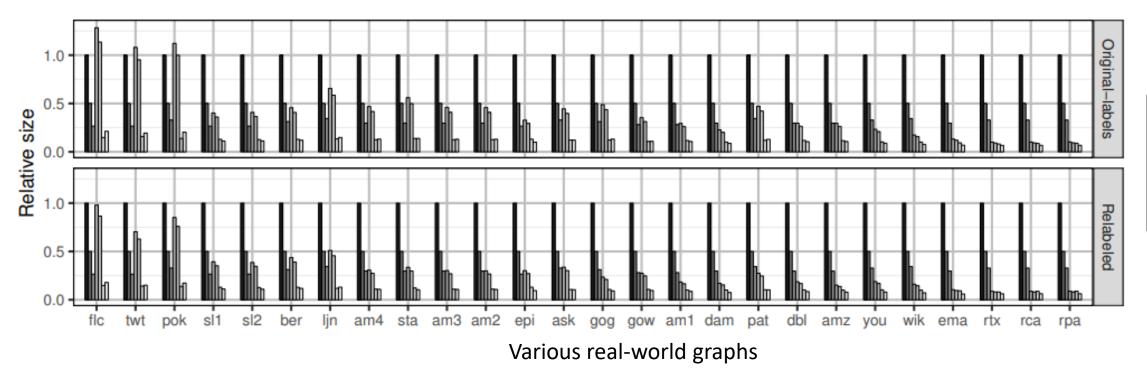
Log(Graph)

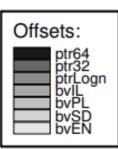
accelerates GAPBS

Log(Graph) consistently reduces storage overhead (by 20-35%)

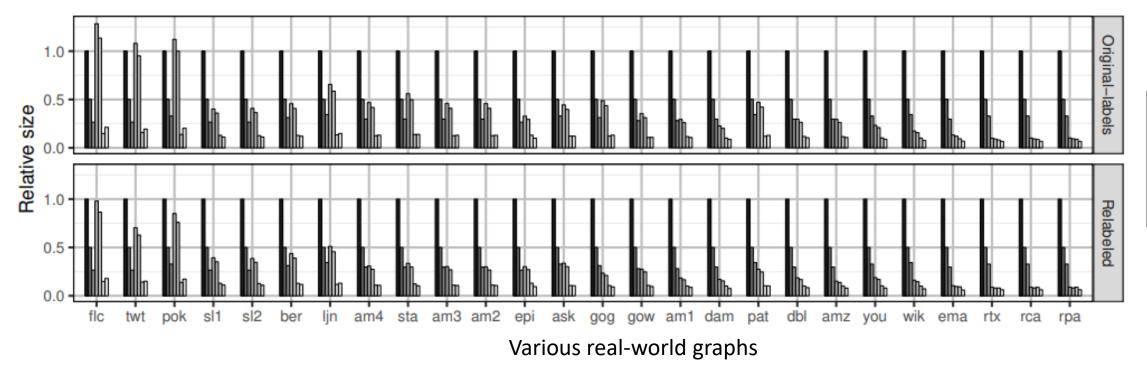
2 Log (Offset structure) Storage

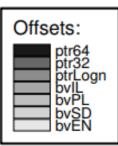
2 Log (Offset structure) Storage





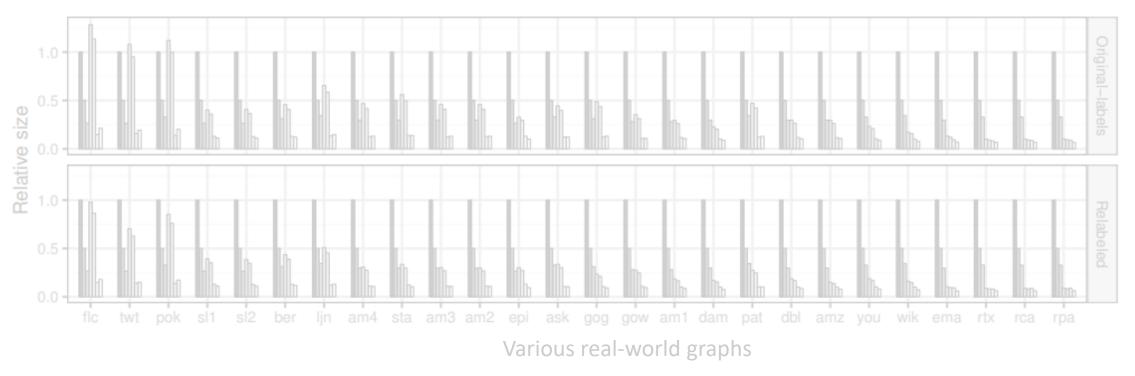
2 Log (Offset structure) **Storage**





Lots of data ©

Conclusions:



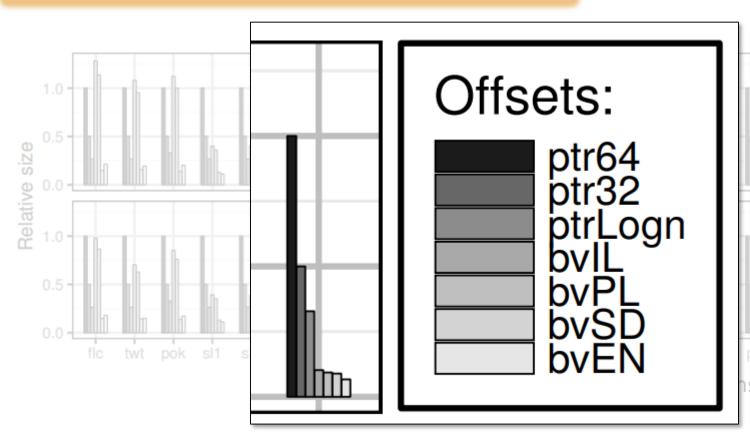
Offsets:

ptr64
ptr32
ptrLogn
bvIL
bvPL
bvSD
bvEN

Lots of data © Conclusions:

2 Log (Offset structure)

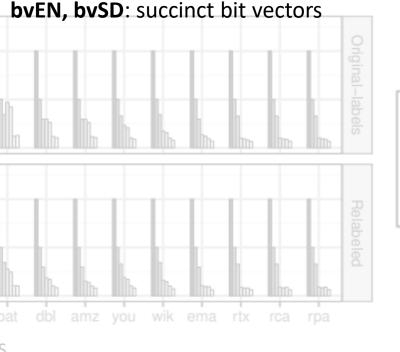
Storage



ptr64, ptr32: traditional array of offsets ptrLogn: separate compression of each offset **bvPL**: plain bit vectors

bvIL: compact bit vectors

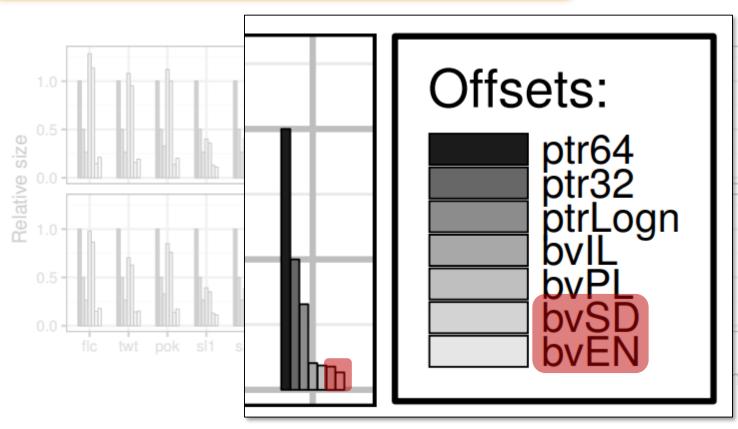
bvEN, **bvSD**: succinct bit vectors



Lots of data ©

Conclusions:

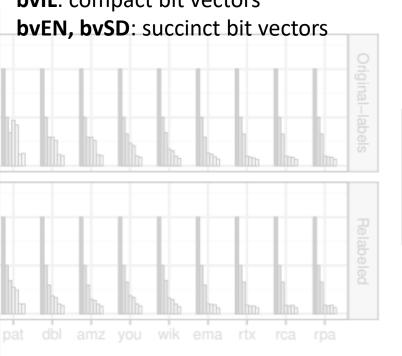
2 Log (Offset structure) Storage



ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset

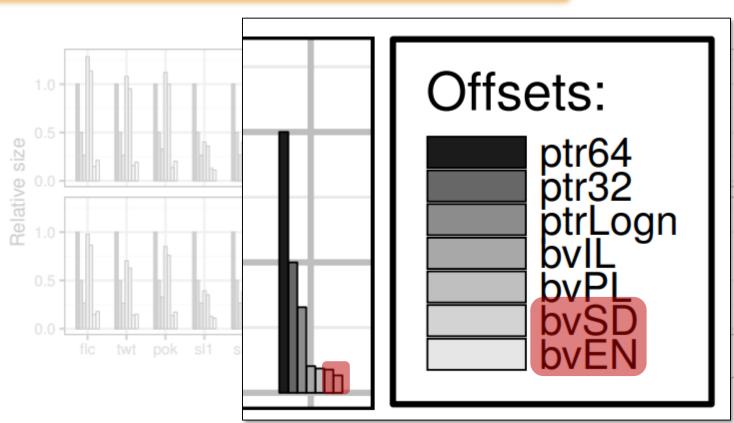
bvPL: plain bit vectors

bvIL: compact bit vectors



Lots of data © Conclusions:

2 Log (Offset structure) **Storage**

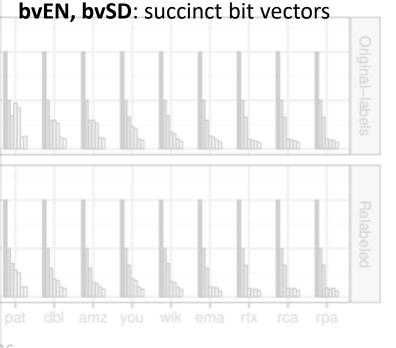


ptr64, ptr32: traditional array of offsets ptrLogn: separate compression of each offset

bvPL: plain bit vectors

bvIL: compact bit vectors

bvEN, **bvSD**: succinct bit vectors



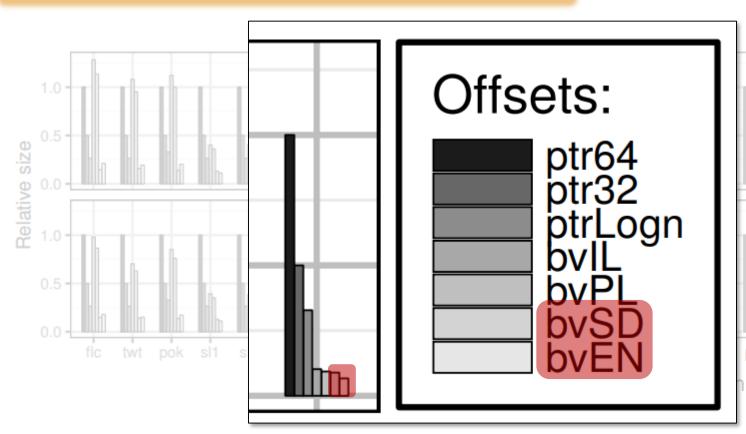
Lots of data © **Conclusions:**

Succinct bit vectors consistently ensure best storage reductions

Offsets:

2 Log (Offset structure)

Storage



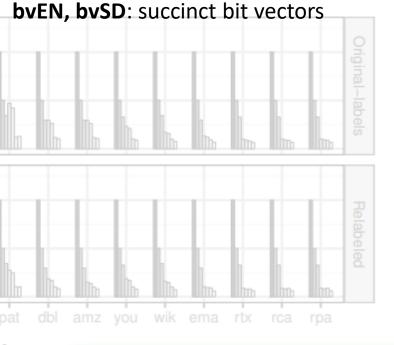
Lots of data © **Conclusions:**

Succinct bit vectors consistently ensure best storage reductions

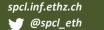
ptr64, ptr32: traditional array of offsets **ptrLogn**: separate compression of each offset

bvPL: plain bit vectors

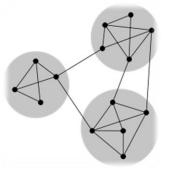
bvIL: compact bit vectors



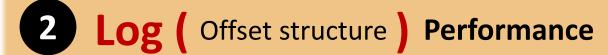
The **main reason**: succinct designs work well for sparse bit vectors, and graphs "that matter" are sparse



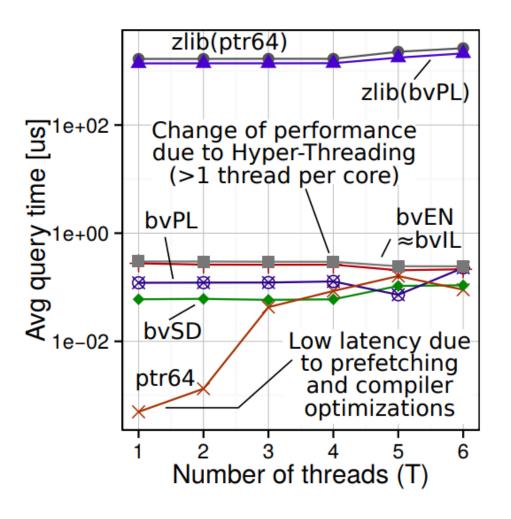
Accessing randomly selected neighbors

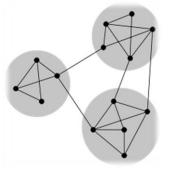


Kronecker graphs
Number of vertices: 4M

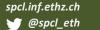


Accessing randomly selected neighbors





Kronecker graphs
Number of vertices: 4M





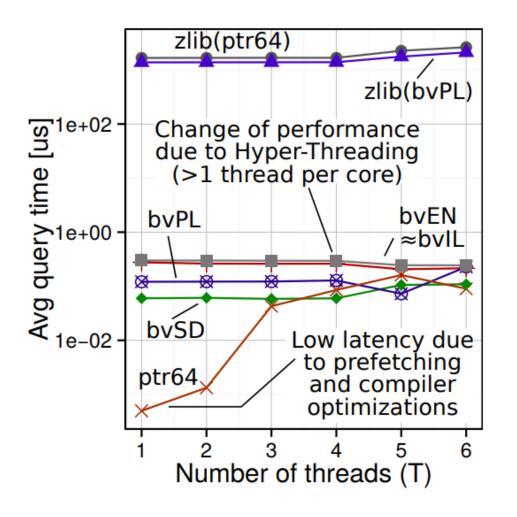
Accessing randomly selected neighbors

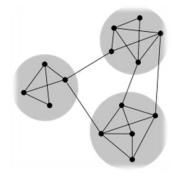
ptr64: traditional array of offsets

bvPL: plain bit vectors

bvIL: compact bit vectors

bvEN, bvSD: succinct bit vectors **zlib(.)**: zlib-compressed variants





Kronecker graphs
Number of vertices: 4M

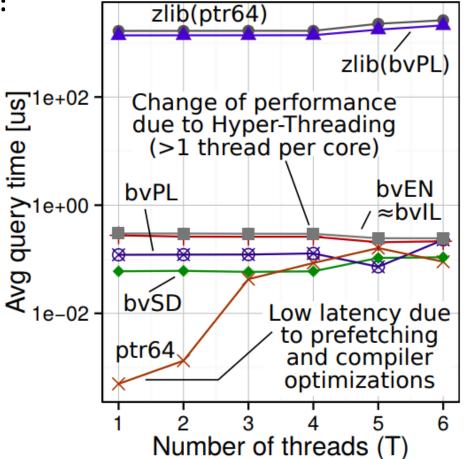
Accessing randomly selected neighbors

ptr64: traditional array of offsets

bvPL: plain bit vectors

bvIL: compact bit vectors

bvEN, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants





Kronecker graphs Number of vertices: 4M

Accessing randomly selected neighbors

ptr64: traditional array of offsets

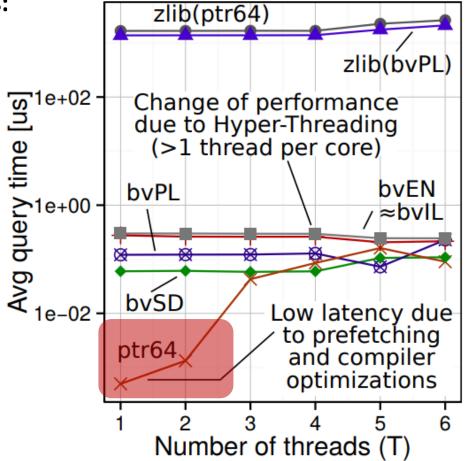
bvPL: plain bit vectors

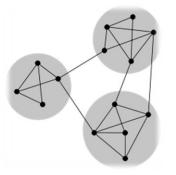
bvIL: compact bit vectors

bvEN, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest





Kronecker graphs
Number of vertices: 4M

Accessing randomly selected neighbors

bvPL: plain bit vectors

bvIL: compact bit vectors

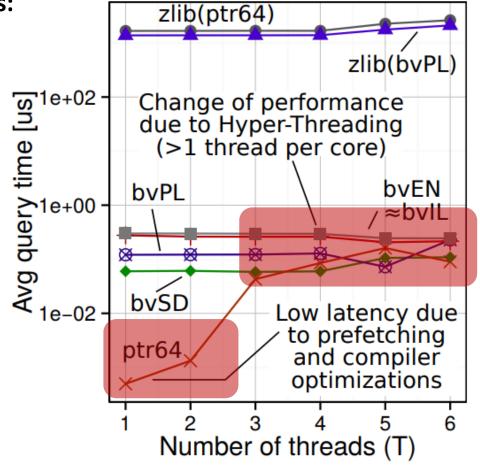
bvEN, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants

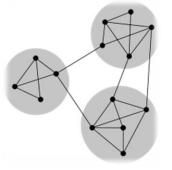
ptr64: traditional array of offsets

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable





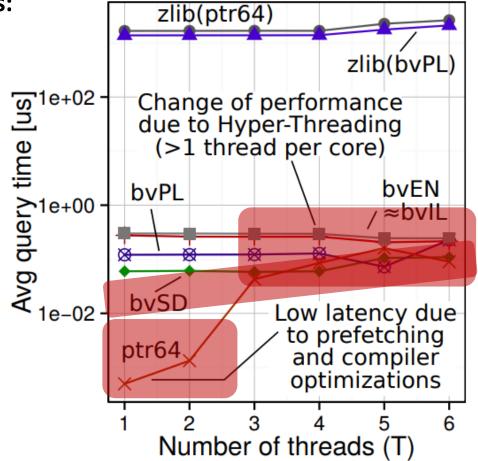
Kronecker graphs Number of vertices: 4M

Accessing randomly selected neighbors

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable



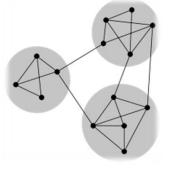
ptr64: traditional array of offsets

bvPL: plain bit vectors

bvIL: compact bit vectors

bvEN, bvSD: succinct bit vectors **zlib(.)**: zlib-compressed variants

bvSD: the fastest and (usually) the smallest



Kronecker graphs
Number of vertices: 4M

3 Log (Adjacency structure) Storage, Performane

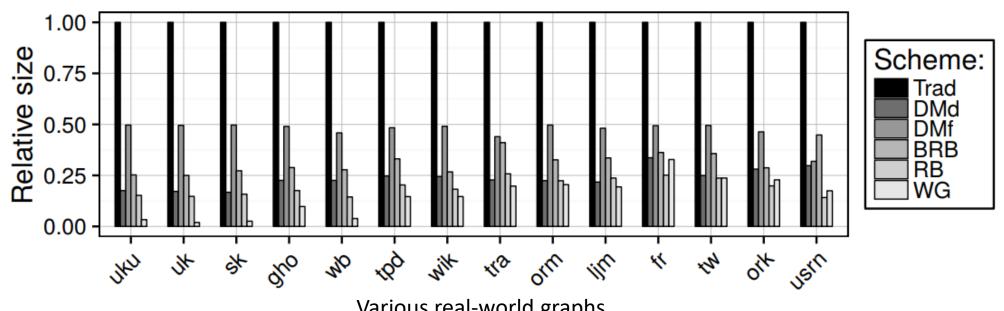
Log (Adjacency)

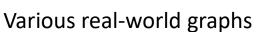
Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs





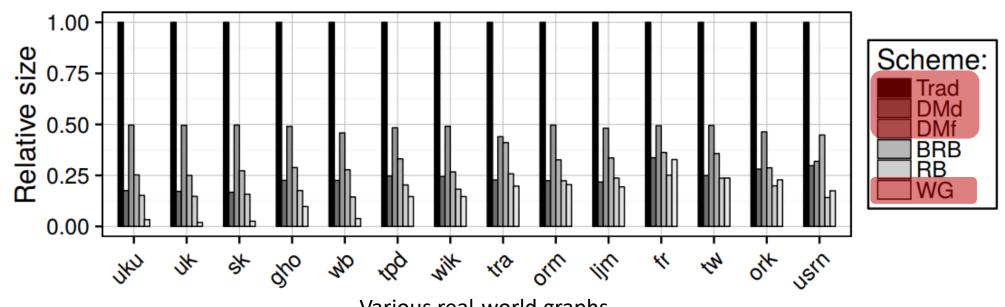
Log (Adjacency)

Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



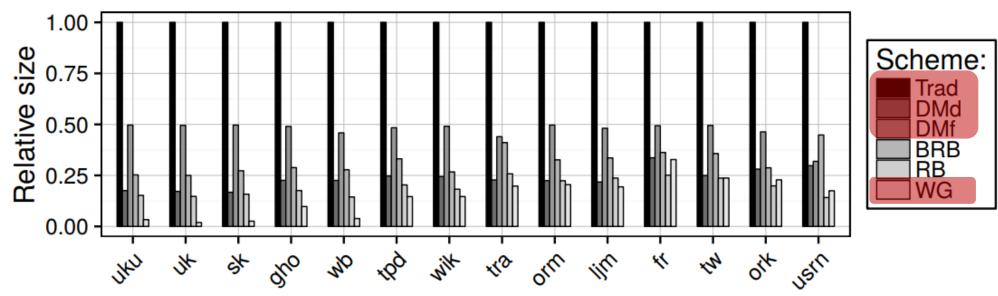
3 Log (Adjacency structure)

Storage, Performane **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

Conclusions:

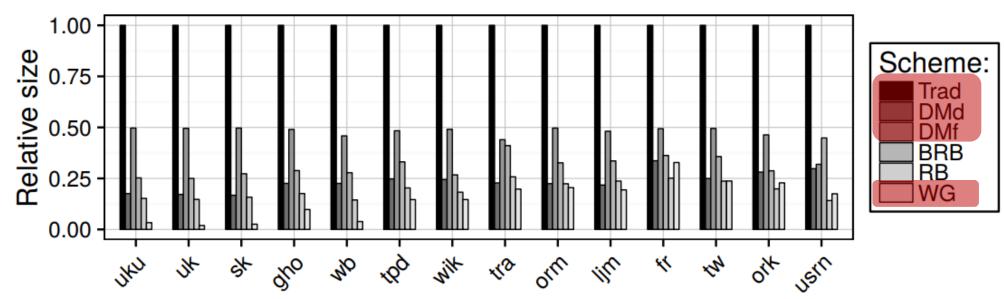
Log (Adjacency)

Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

Conclusions:

WebGraph best for web graphs ©

3 Log (Adjacency structure)

Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

Conclusions:

WebGraph best for web graphs ©

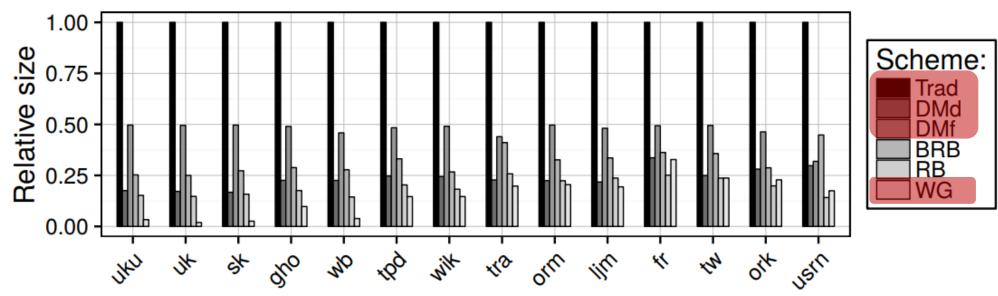
3 Log (Adjacency)

Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, **RB**: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

Conclusions:

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG

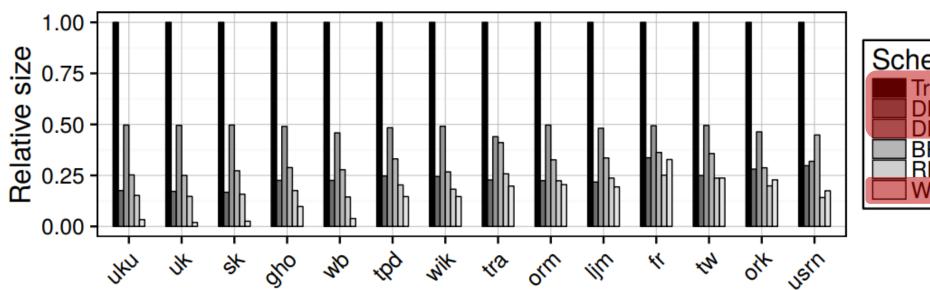
3 Log (Adjacency)

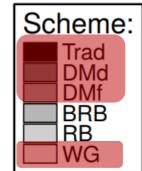
Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs





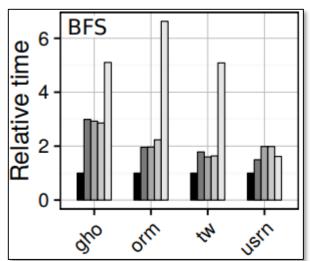
Lots of data ©

Various real-world graphs

Conclusions:

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG



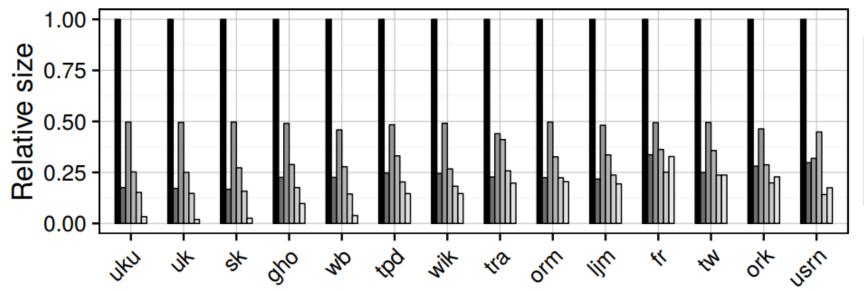
3 Log (Adjacency structure)

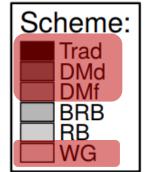
Storage, **Performane** **Trad**: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs





WebGraph is the slowest, DM somewhat slower than Trad

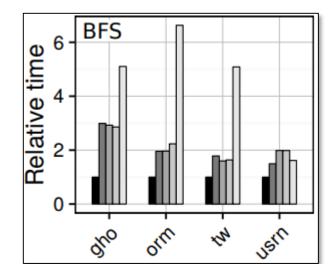
Lots of data ©

Various real-world graphs

Conclusions:

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG



Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (offsets)

Up to >90% storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)

Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

Key insight (adjacency data)

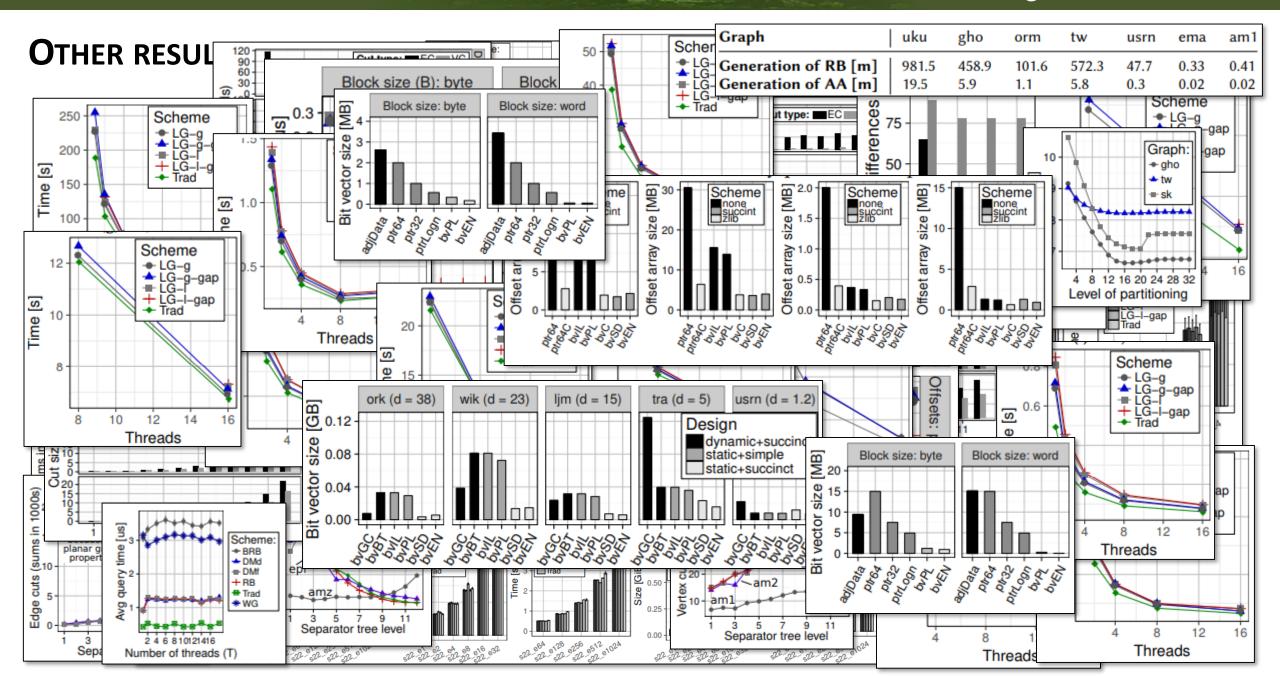
80% storage reductions (compared to uncompressed data) and up to >2x speedup over modern graph compression schemes (Webgraph)

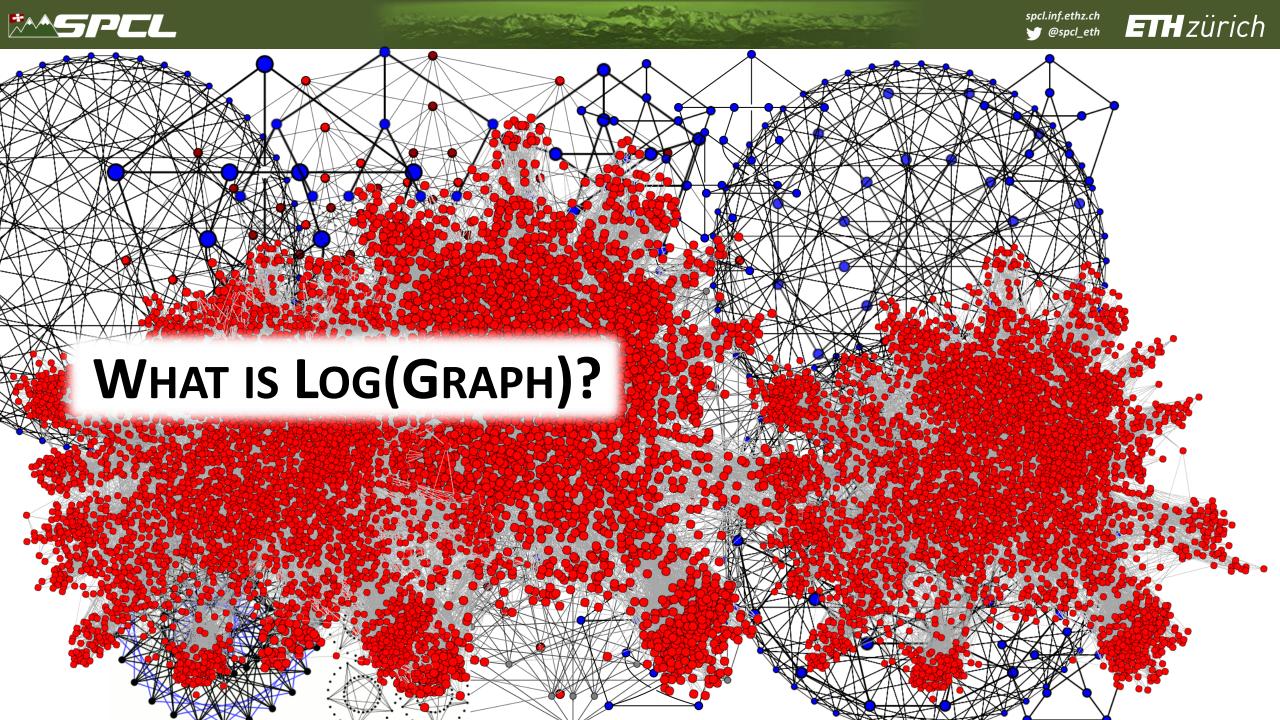
Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

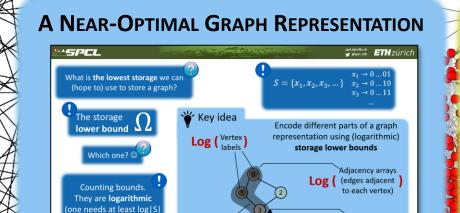
Key insight (offsets)

Up to >90% storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)

OTHER RESULTS



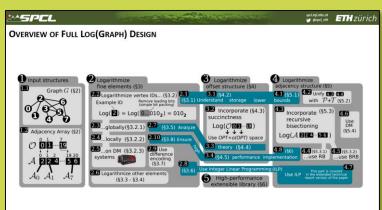




bits to store an object

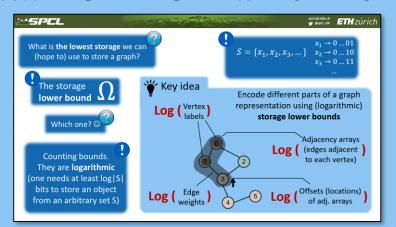
from an arbitrary set S

AN EXTENSIBLE GRAPH REPRESENTATION

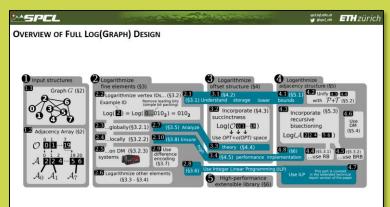


WHAT IS LOG(GRAPH)?

5 Log (Offsets (locations) of adj. arrays

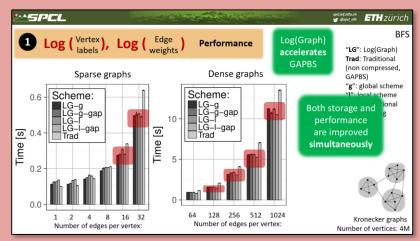


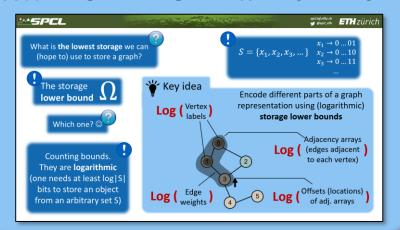
AN EXTENSIBLE GRAPH REPRESENTATION



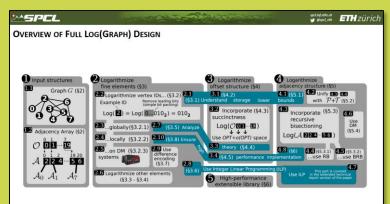
WHAT IS LOG(GRAPH)?

A HIGH-PERFORMANCE GRAPH REPRESENTATION



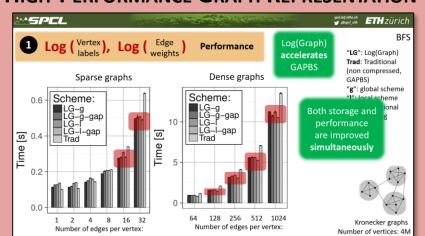


AN EXTENSIBLE GRAPH REPRESENTATION

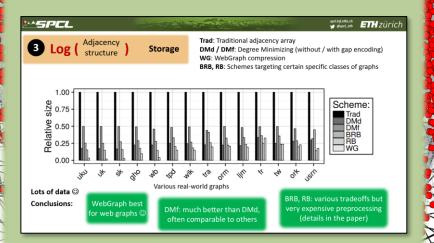


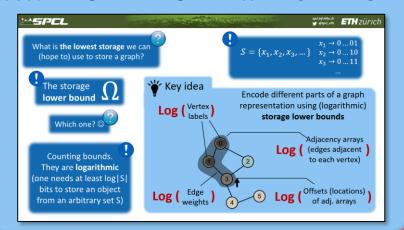
WHAT IS LOG(GRAPH)?

A HIGH-PERFORMANCE GRAPH REPRESENTATION

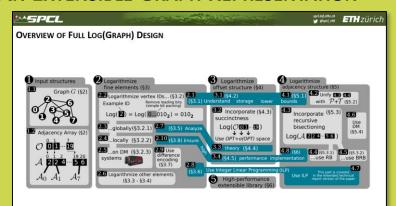


A CONDENSED GRAPH REPRESENTATION





AN EXTENSIBLE GRAPH REPRESENTATION

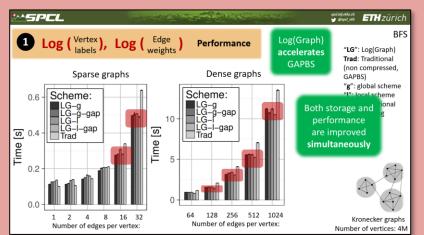


Website:

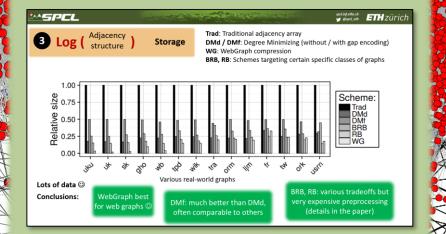
http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph

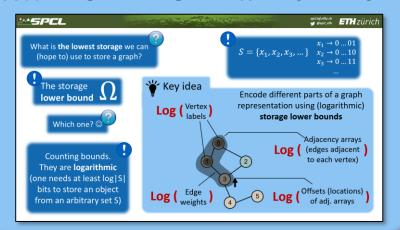
WHAT IS LOG(GRAPH)?

A HIGH-PERFORMANCE GRAPH REPRESENTATION

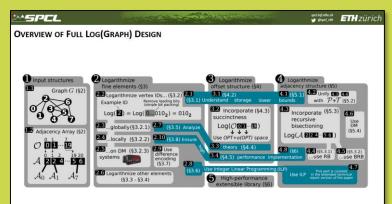


A CONDENSED GRAPH REPRESENTATION



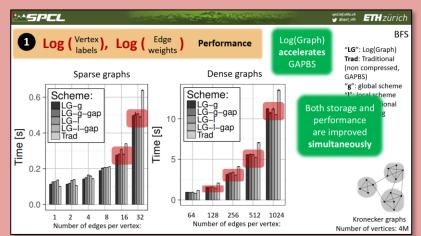


AN EXTENSIBLE GRAPH REPRESENTATION

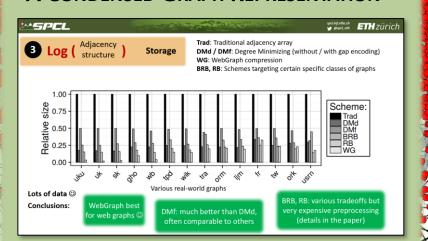


WHAT IS LOG(GRAPH)?

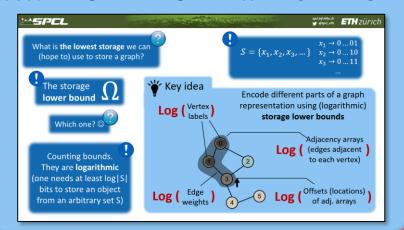
A HIGH-PERFORMANCE GRAPH REPRESENTATION



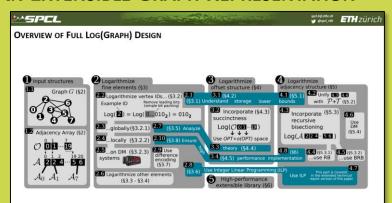
A CONDENSED GRAPH REPRESENTATION



http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph



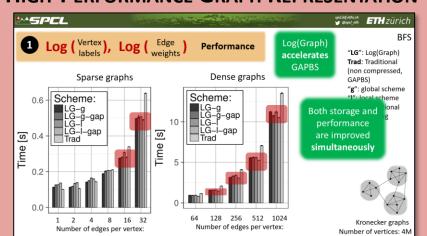
AN EXTENSIBLE GRAPH REPRESENTATION



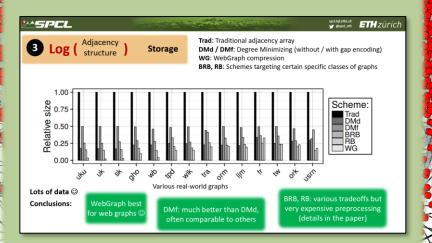
WHAT IS LOG(GRAPH)?

Thank you for your attention

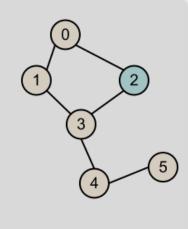
A HIGH-PERFORMANCE GRAPH REPRESENTATION

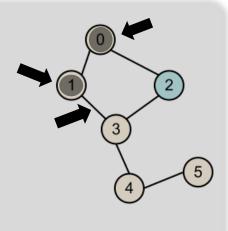


A CONDENSED GRAPH REPRESENTATION



http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph





1 Log (Vertex), Log (Edge) weights

Symbols

 \widehat{W} : max edge weight,

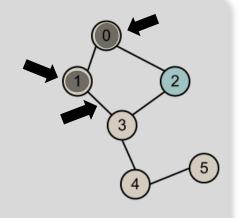
n: #vertices,

m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,



Symbols

 \widehat{W} : max edge weight,

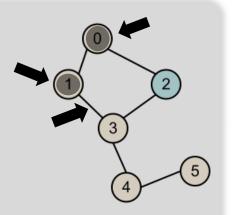
n: #vertices,

m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,



 $\lceil \log n \rceil$

Symbols

 \widehat{W} : max edge weight,

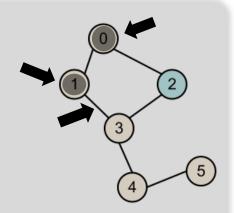
: #vertices,

m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,



 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

Symbols

 \widehat{W} : max edge weight,

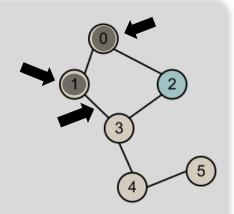
n: #vertices,

m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,



 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?
Not really ©

Symbols

 \widehat{W} : max edge weight,

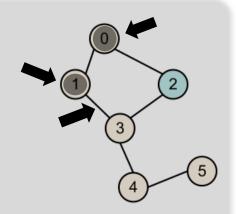
i : #vertices,

m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,



 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

n:#vertices,

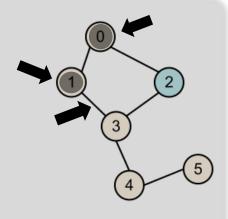
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

n:#vertices,

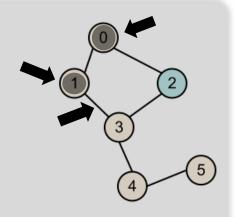
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

n: #vertices,

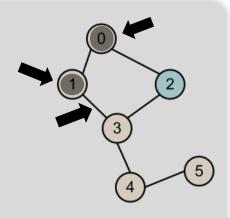
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

: #vertices,

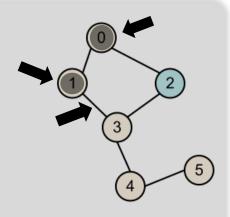
m: #edges,

 d_v : degree of vertex v,

 N_1 : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

n: #vertices,

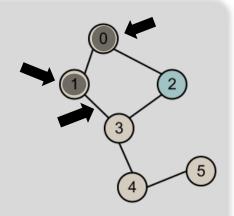
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really

Symbols

 \widehat{W} : max edge weight,

n:#vertices,

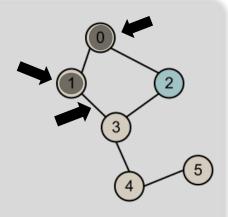
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

: #vertices,

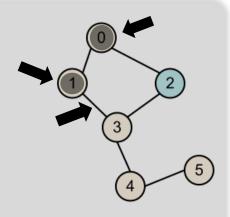
m: #edges,

 d_v : degree of vertex v,

 N_n : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really

Symbols

 \widehat{W} : max edge weight,

n:#vertices,

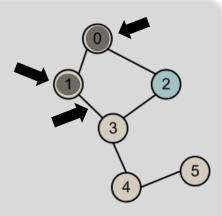
m: #edges,

 d_v : degree of vertex v,

 N_v : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v

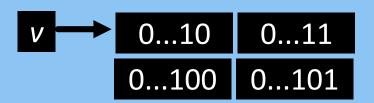


Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$



 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?
Not really ©

Symbols

 \widehat{W} : max edge weight,

n: #vertices,

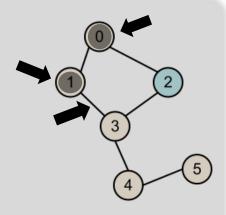
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v



Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$

 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$

This is it?

Not really ©

Symbols

 \widehat{W} : max edge weight,

i : #vertices,

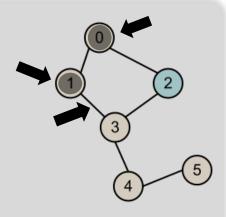
m: #edges,

 d_v : degree of vertex v,

 N_{ν} : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$: maximum among N_v

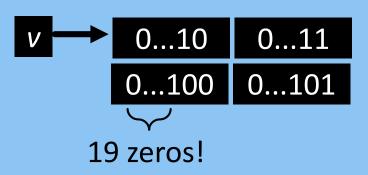


Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$



Thus, use the local bound $\lceil \log \widehat{N_v} \rceil$

n: #vertices,
m: #edges,
H: number of compute nodes,
H_i: number of machine elements at level i,
N: number of machine levels

: #vertices, Symbols

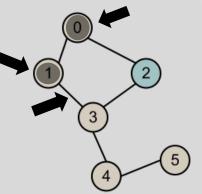
m: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N : number of machine levels



Lower bounds (local): distributed memories

n: #vertices,
m: #edges,
H: number of compute nodes,
H_i: number of machine elements at level i,

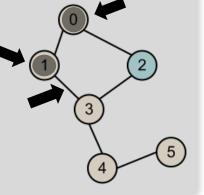
N: number of machine levels

: #vertices, Symbols
: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level *i*, *N*: number of machine levels



Lower bounds (local): distributed memories

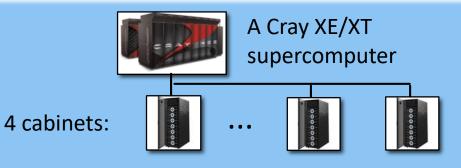
A Cray XE/XT supercomputer

substitute in the second secon

 H_i : number of machine

elements at level i,

N : number of machine levels



: #vertices, Symbols

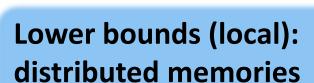
m: #edges,

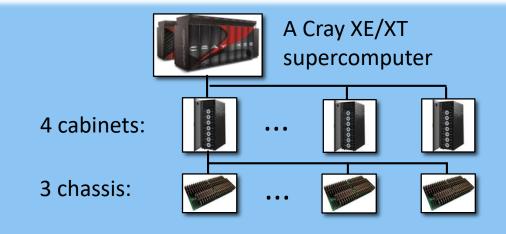
H: number of compute nodes,

 H_i : number of machine

elements at level i,

N : number of machine levels



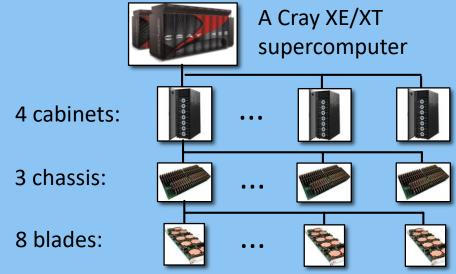


: #vertices, Symbols

m: #edges,

H: number of compute nodes,

Lower bounds (local): distributed memories



: #vertices, Symbols

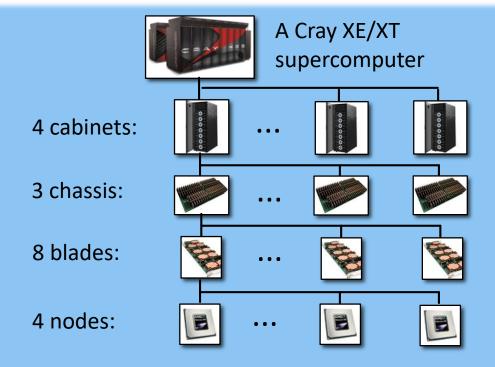
m: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N : number of machine levels



: #vertices, Symbols

m:#edges,

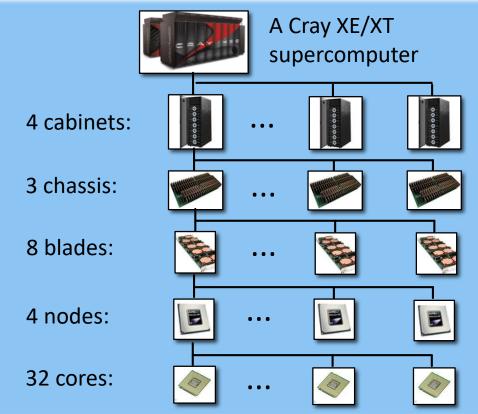
H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels

Lower bounds (local): distributed memories



: #vertices, Symbols

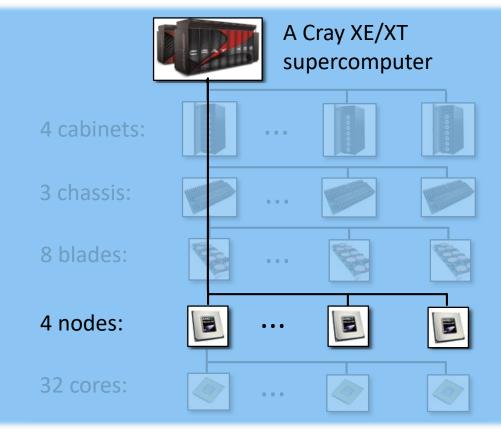
m:#edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels



: #vertices, Symbols

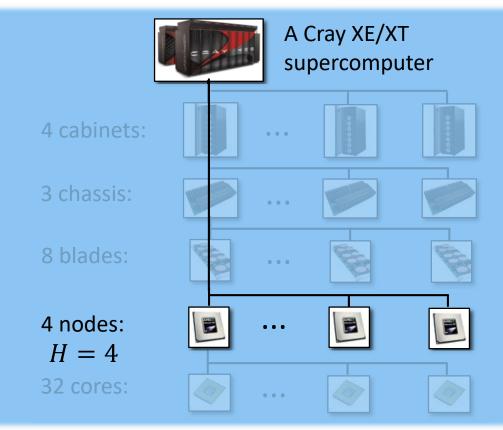
m: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels



: #vertices, Symbols

m: #edges,

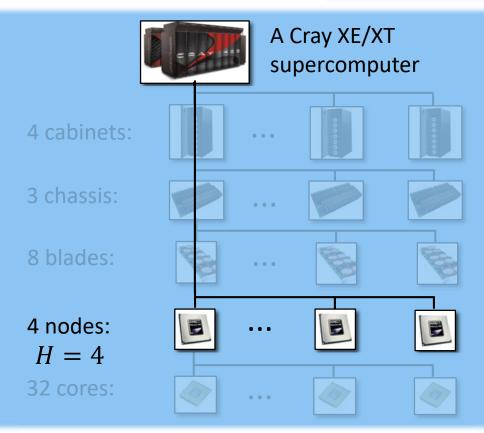
H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels

The number of vertices that can be stored in the memory of one node:



Symbols : #vertices,

: #edges,

: number of compute nodes,

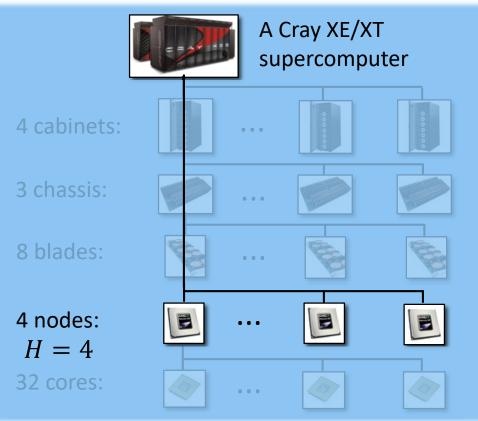
: number of machine

elements at level i,

N: number of machine levels

Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: *H*



n:#vertices,

Symbols

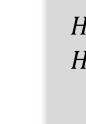
m: #edges,

H: number of compute nodes,

 H_i : number of machine

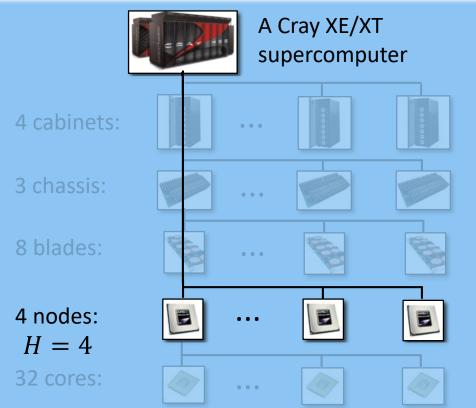
elements at level i,

N: number of machine levels



The number of vertices that can be stored in $\frac{n}{H}$

The **"intra-node**" vertex label thus takes [bits]: $\log \frac{n}{H}$



This is it? Still not really ©

ı : #vertices,

,

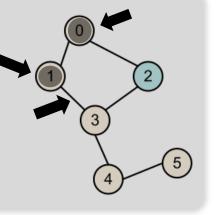
: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels



Lower bounds (local): distributed memories

The number of vertices that can be stored in $\frac{n}{H}$ the memory of one node:

The **"intra-node**" vertex label thus takes [bits]: $\log \frac{n}{H}$

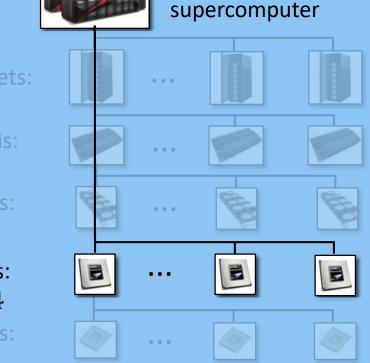
The "inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil \log H \rceil$

4 cabinets:

3 chassis:

8 blades:

4 nodes: H = 4



A Cray XE/XT

This is it? Still not really ©

: #vertices,

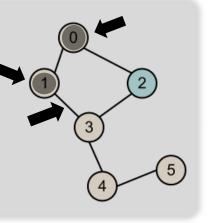
: #edges,

: number of compute nodes,

: number of machine

elements at level i,

N: number of machine levels



Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: H

The **"intra-node**" vertex label thus takes [bits]:

The "inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil \log H \rceil$

A Cray XE/XT supercomputer 4 cabinets:

4 nodes:

H=4

The total size of the adjacency **arrays** is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$

This is it? Still not really ©

i : #vertices,

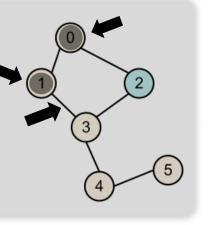
n: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels



Lower bounds (local): distributed memories

The number of vertices that can be stored in $\frac{n}{H}$ the memory of one node:

The **"intra-node**" vertex label thus takes [bits]: $\log \frac{n}{H}$

The "inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil \log H \rceil$

4 cabinets: 4 nodes: H=432 cores:

A Cray XE/XT supercomputer

The total size of the adjacency arrays is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$

We also generalize this to arbitrarily many levels (details in the paper ©) and derive the total size:

This is it? Still not really ©

i : #vertices,

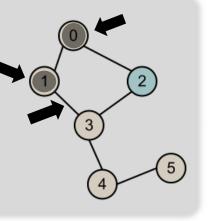
: #edges,

H: number of compute nodes,

 H_i : number of machine

elements at level i,

N: number of machine levels



Lower bounds (local): distributed memories

The number of vertices that can be stored in $\frac{n}{H}$ the memory of one node:

The **"intra-node**" vertex label thus takes [bits]: $\log \frac{n}{H}$

The "inter-node" vertex label is unique for a whole node and it takes [bits]: $\lceil \log H \rceil$

4 cabinets: 4 nodes: H=432 cores:

A Cray XE/XT supercomputer

The total size of the adjacency arrays is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$

We also generalize this to arbitrarily many levels (details in the paper ©) and derive the total size:

$$n\left[\log\frac{n}{H_N}\right] + \sum_{j=2}^{N-1} H_j \left[\log H_j\right]$$

Formal analyses: more

(check the paper ©)

1 Log (Vertex), Log (Edge weights)

₩ Formal analyses: more (check the paper ©)

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|\mathscr{A}| = \sum_{v \in V} \left(d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = 2m \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$|\mathcal{A}| = \sum_{v \in V} \left(d_v \left(\left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right) + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left(\left(\frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$

2 **void** relabel(*G*) {

6 visit[0..n-1] = [false..false];

if(visit[id] == false) {

for (int i = 1; i < n; ++i)

8 sort(ID); sort(D);

 $\mathcal{N}(id) = nl++;$ visit[id] = true;

if(visit[i] == false)

 $\mathcal{N}(id) = nl++;$

}}

19 }

1 Log (Vertex), Log (Edge Weights)

1 /* Input: graph G, Output: a **new** relabeling $\mathcal{N}(v), \forall v \in V$. */

4 $D[0..n-1] = [d_0..d_{n-1}]$; //An array with degrees of vertices.

for(int j = 0; j < D[i]; ++j) { //For each neighbor...

5 //An auxiliary array for determining if a vertex was relabeled:

int $id = N_{j,ID[i]}$; $//N_{j,ID[i]}$ is jth neighbor of vertex with ID ID[i]

 $3 \quad ID[0..n-1] = [0..n-1];$ //An array with vertex IDs.

7 nl = 1; //An auxiliary variable ``new label''.

9 for(int i = 1; i < n; ++i) //For each vertex...

∰

Formal analyses: more (check the paper ©)

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

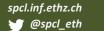
$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|=\sum_{v\in V}\left(d_v\left\lceil\log\widehat{N}_v
ight
ceil+\left\lceil\log\log\widehat{N}_v
ight
ceil
ight)$$

$$|\mathcal{A}| = 2m \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

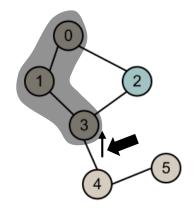
$$\left|\widehat{N}_v\right| + \left\lceil \log \widehat{\mathcal{W}} \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$

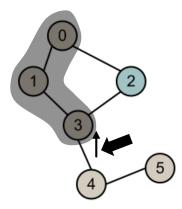


2 Log (Offset structure)

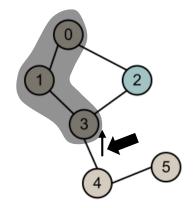
...Encode the resulting bit vectors as succinct bit vectors



...Encode the resulting bit vectors as succinct bit vectors



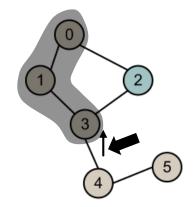
...Encode the resulting bit vectors as succinct bit vectors



Formal analyses

0	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

...Encode the resulting bit vectors as succinct bit vectors

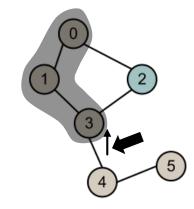


Formal analyses

Check the paper for details ©

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	1	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

...Encode the resulting bit vectors as succinct bit vectors



Formal analyses

Check the paper for details ©

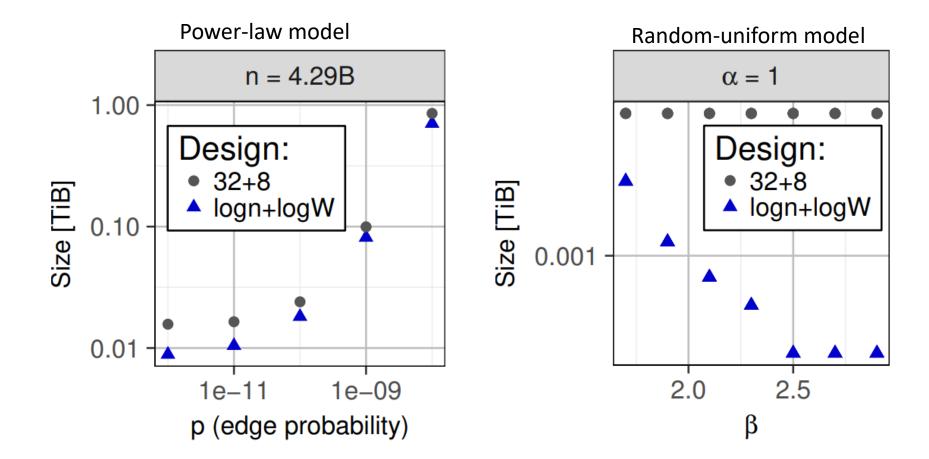
O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

Key methods

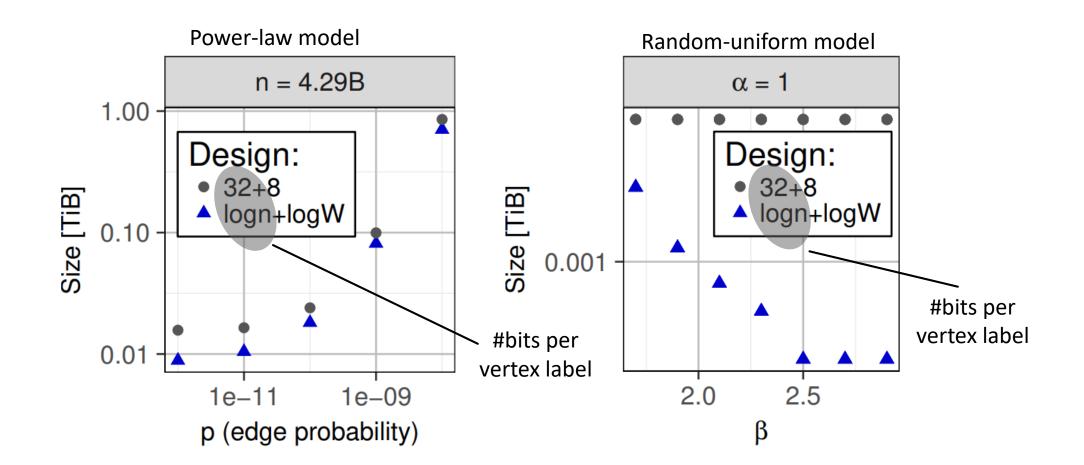
Use the sdsl-lite sequential library of succinct bit vectors [1] and investigate if it fares well when being accessed by multiple threads

> [1] S. Gog. SDSL-Lite Succinct Library. 2015.

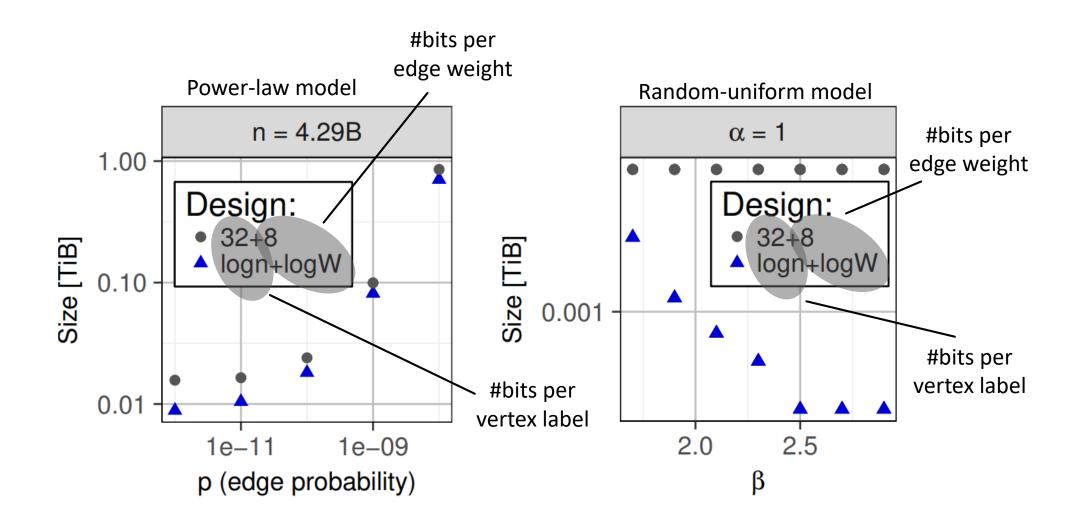
1 Log (Vertex), Log (Edge weights) Storage



1 Log (Vertex), Log (Edge weights) Storage



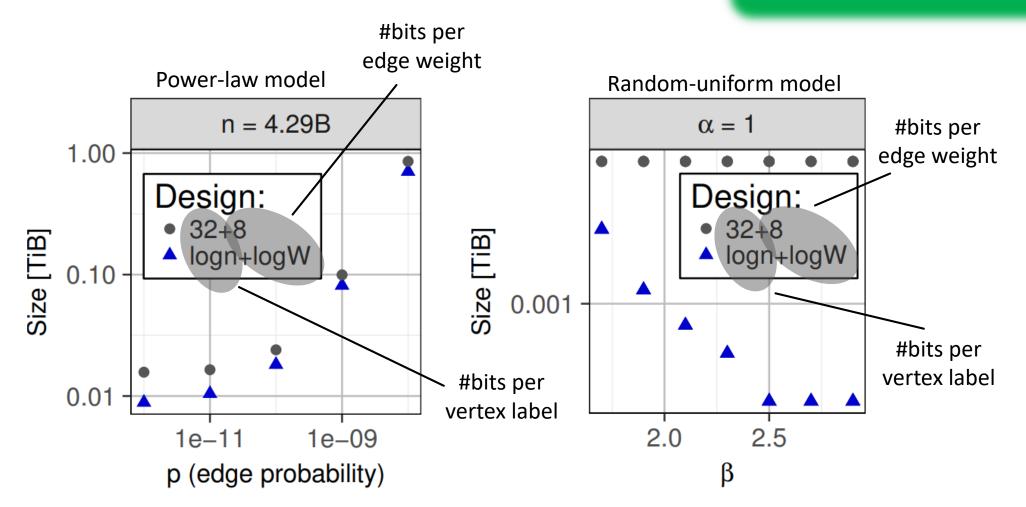
1 Log (Vertex), Log (Edge weights) Storage



Log (Vertex), Log (Edge weights)

Storage

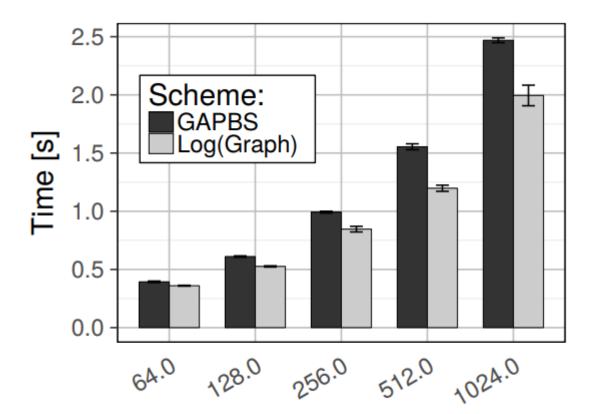
Log(Graph) consistently reduces storage overhead (by 20-35%)



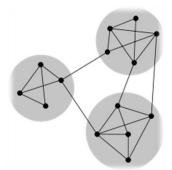
SSSP

```
1 Log (Vertex), Log (Edge weights)
```

Performance



Number of edges per vertex

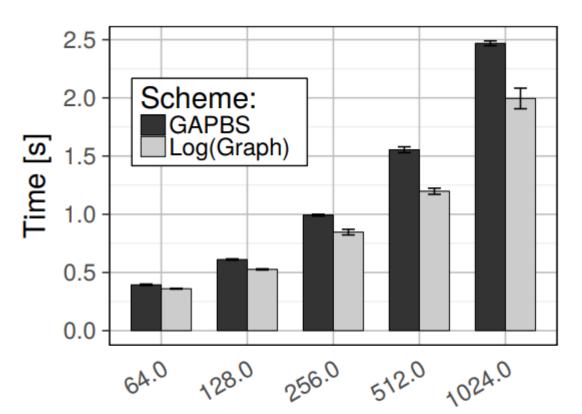


Kronecker graphs Number of vertices: 4M

SSSP

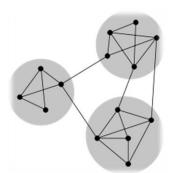
1 Log (Vertex), Log (Edge Weights)

Performance



Number of edges per vertex

Log(Graph) accelerates GAPBS



Kronecker graphs Number of vertices: 4M

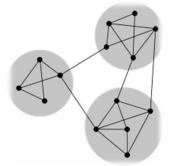
SSSP

1 Log (Vertex), Log (Edge Weights)

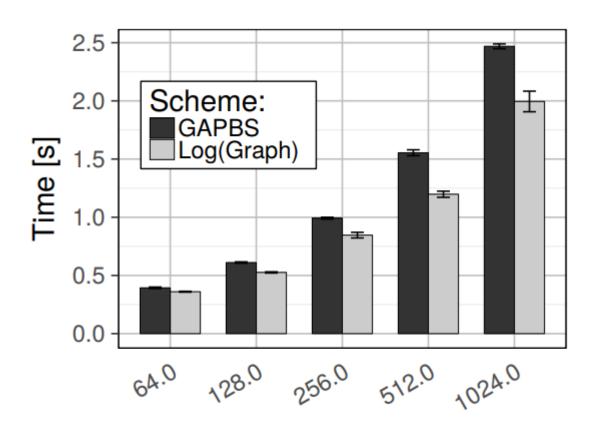
Performance

Log(Graph)

accelerates GAPBS



Kronecker graphs Number of vertices: 4M



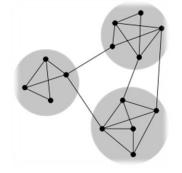
Number of edges per vertex

Both storage and performance are improved simultaneously

Performance

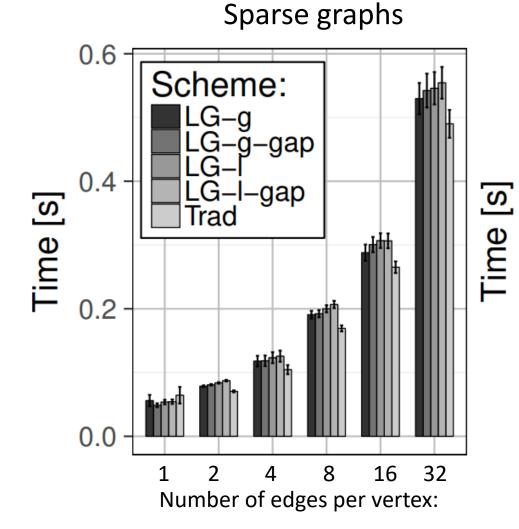
Betweenness Centrality

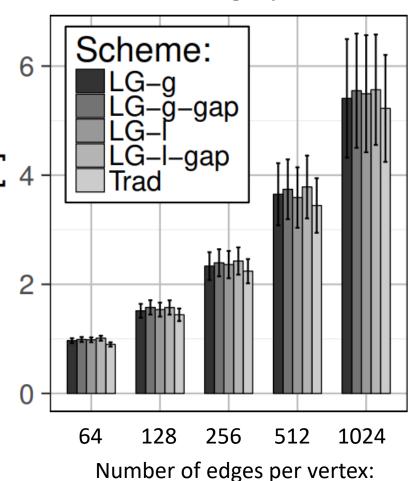
"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional
gap encoding



Kronecker graphs
Number of vertices: 4M

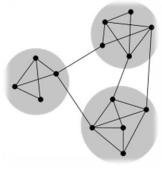
Performance





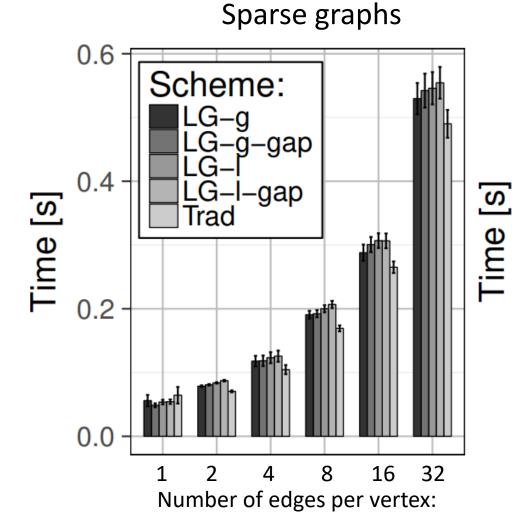
Betweenness Centrality

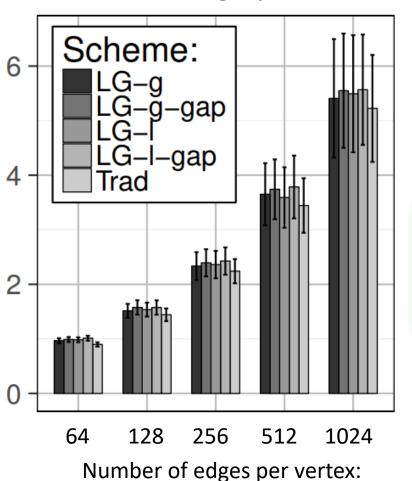
"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional
gap encoding



Kronecker graphs
Number of vertices: 4M

Performance





Betweenness Centrality

"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional

Log(Graph) incurs
negligible
overheads

gap encoding

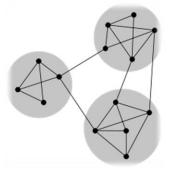
Kronecker graphs
Number of vertices: 4M


```
1 Log (Vertex), Log (Edge Weights)
```

Performance

BFS

"**LG**": Log(Graph) **Trad**: Traditional (non compressed, GAPBS) "g": global scheme "I": local scheme "gap": additional gap encoding

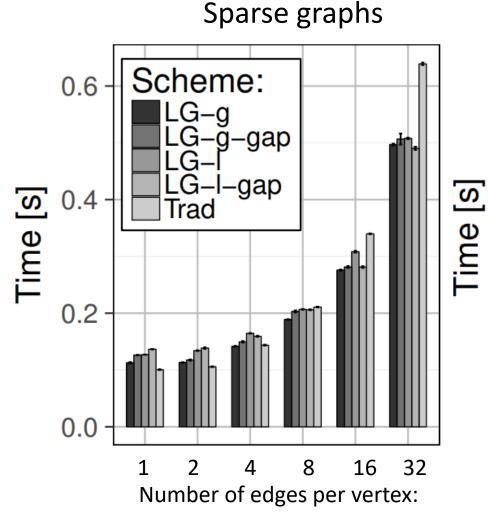


Kronecker graphs Number of vertices: 4M

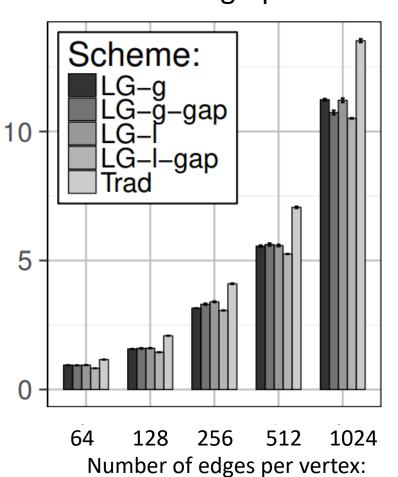
1

Log (Vertex), Log (Edge weights)

Performance



Dense graphs

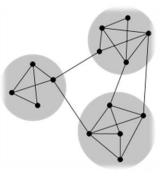


BFS

Trad: Traditional (non compressed, GAPBS)
"g": global scheme
"l": local scheme
"gap": additional

gap encoding

"LG": Log(Graph)



Kronecker graphs
Number of vertices: 4M

BFS

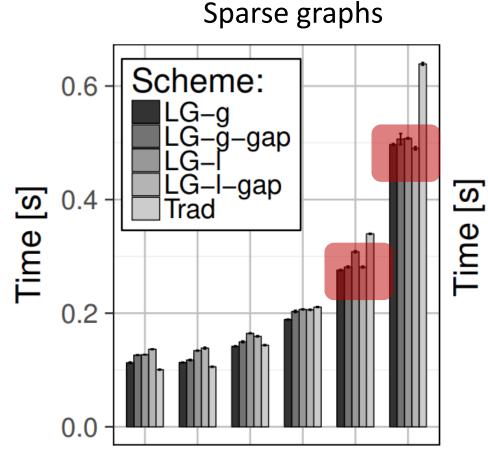
1

Log (Vertex), Log (Edge weights)

16

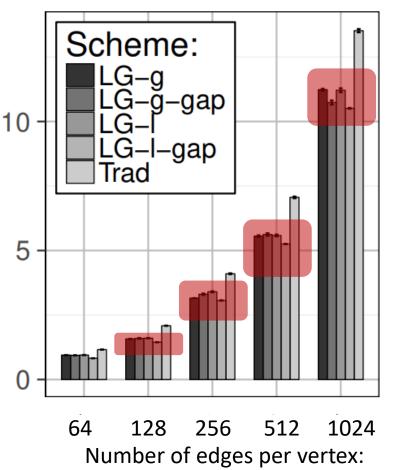
32

Performance



Number of edges per vertex:

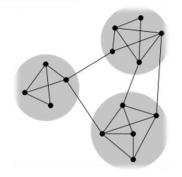
Dense graphs



"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)

"g": global scheme
"l": local scheme

Both storage and performance are improved simultaneously



Kronecker graphs
Number of vertices: 4M

Performance

Log(Graph)
accelerates
GAPBS

BFS

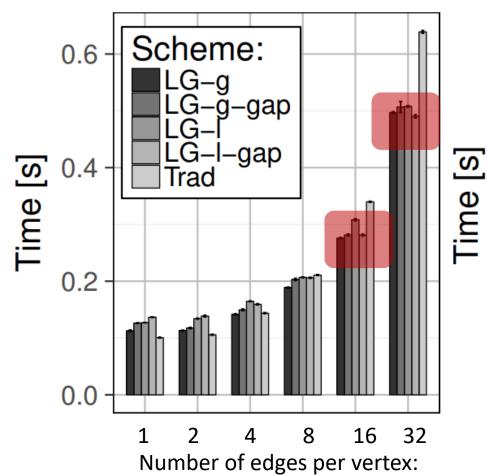
"LG": Log(Graph)
Trad: Traditional
(non compressed,

GAPBS)

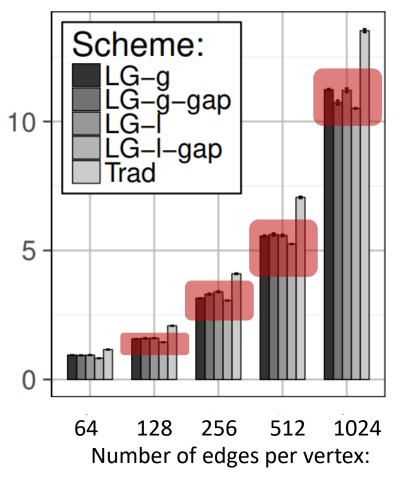
"g": global scheme
"I": local scheme

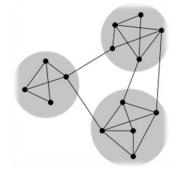
Both storage and performance are improved simultaneously

Sparse graphs



Dense graphs

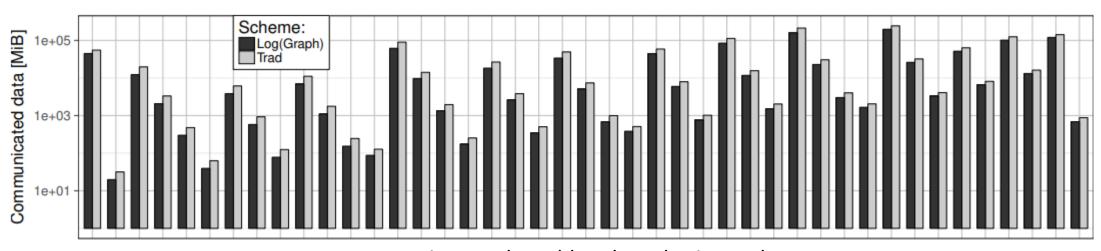




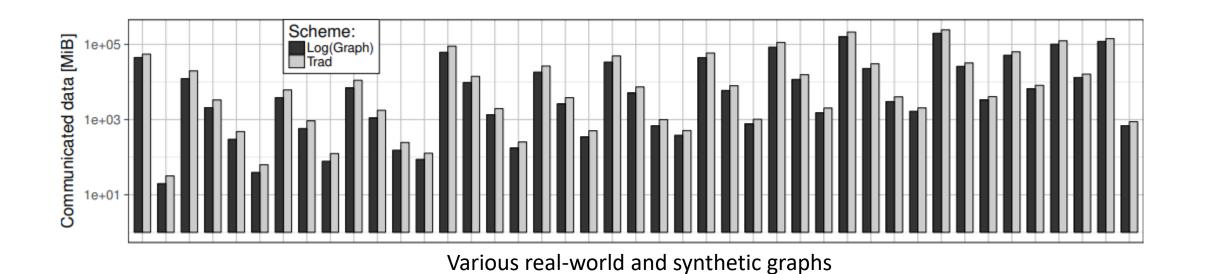
Kronecker graphs
Number of vertices: 4M

Communicated data

PageRank



Communicated data



The amount of communicated data is consistently reduced by ~37%

3 Log (Adjacency structure) Storage

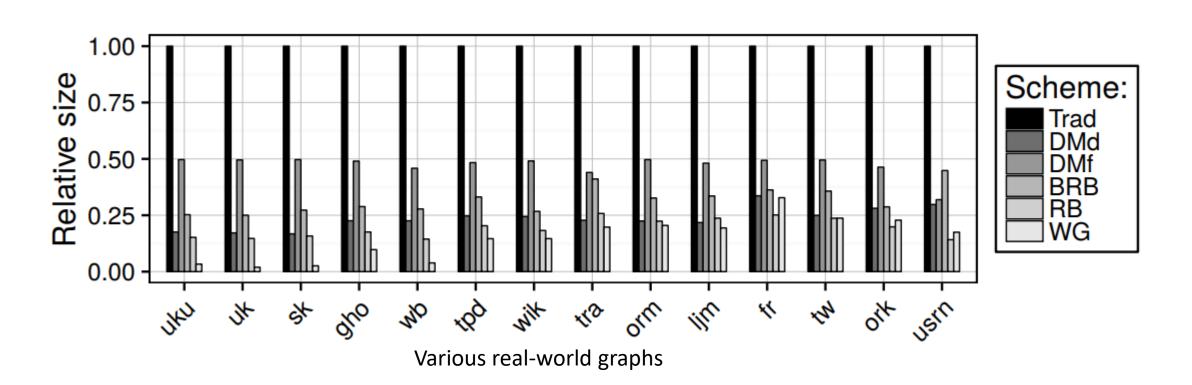
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



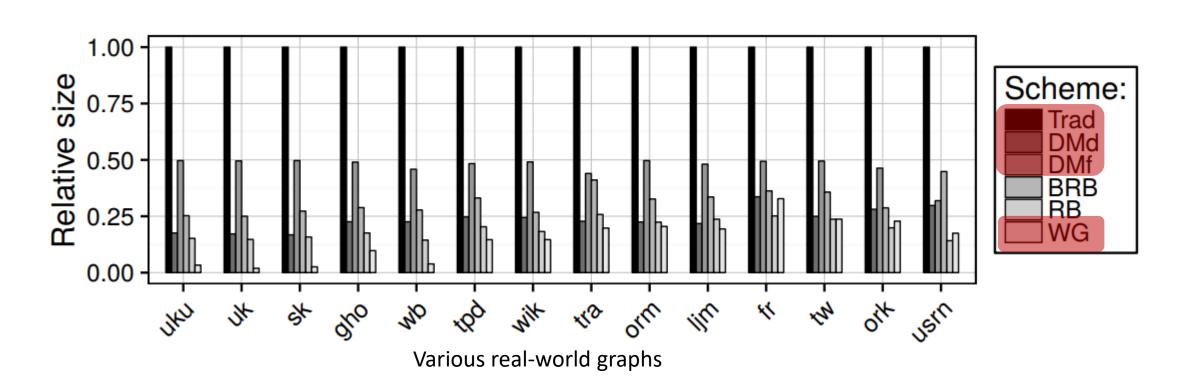
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



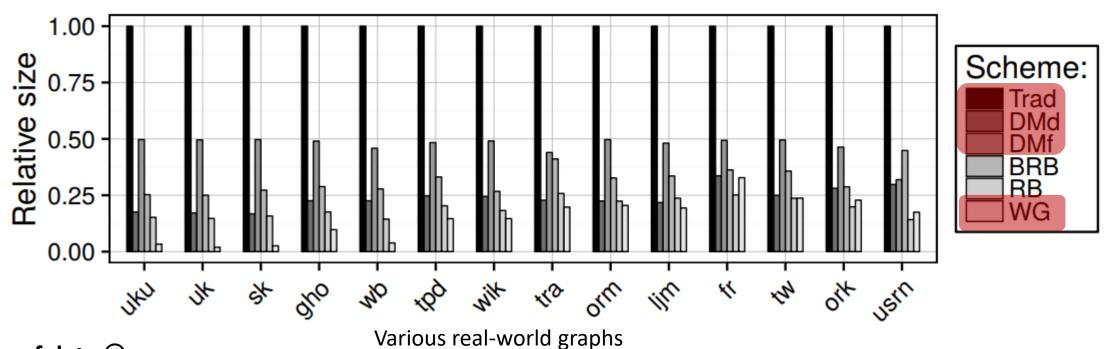
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data [©]

Conclusions:

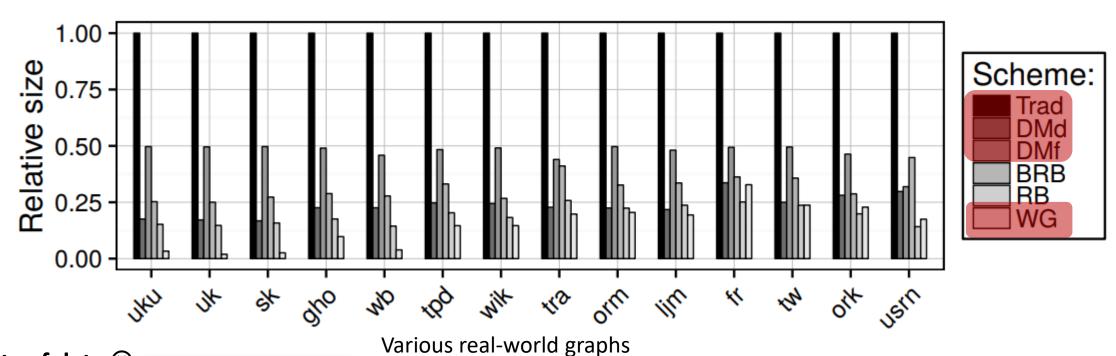
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Conclusions:

WebGraph best for web graphs ©

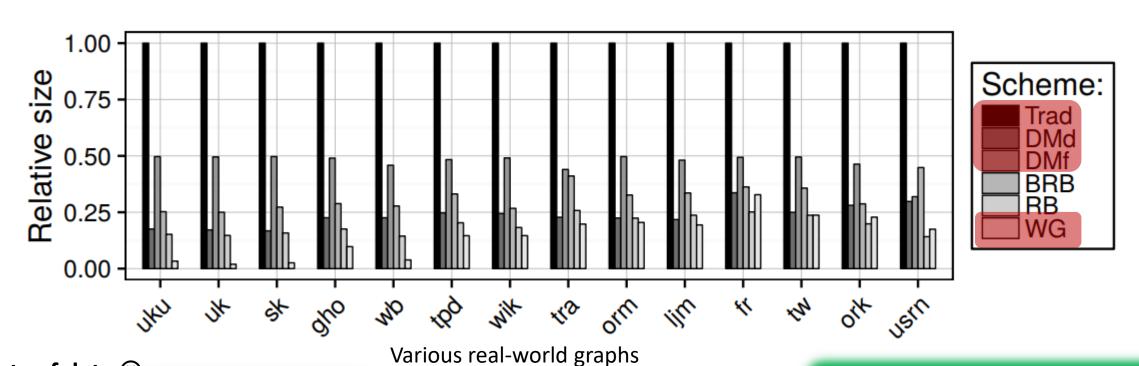
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data [©]

Conclusions:

WebGraph best for web graphs ©

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

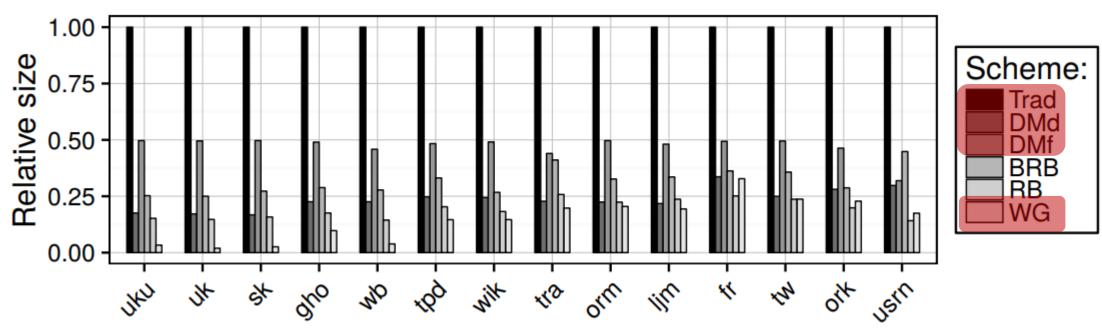
Storage

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data [©]

Conclusions:

WebGraph best for web graphs ©

Various real-world graphs

DMd: much better than DMf, often comparable to others

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)

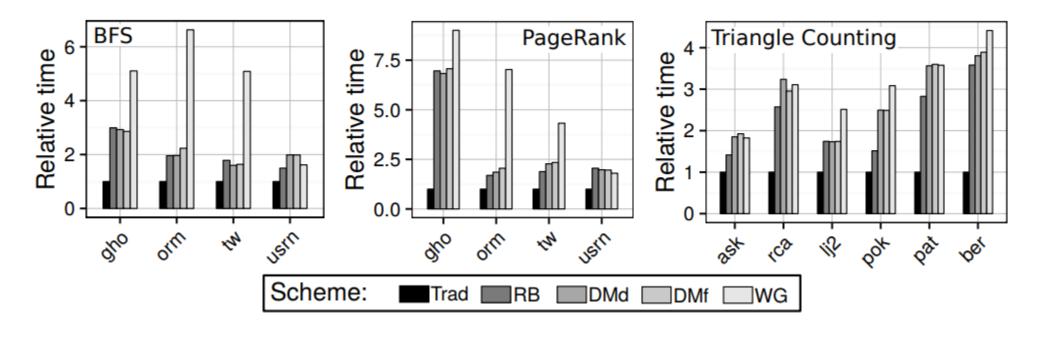
Performance

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

RB: Scheme targeting certain specific classes of graphs



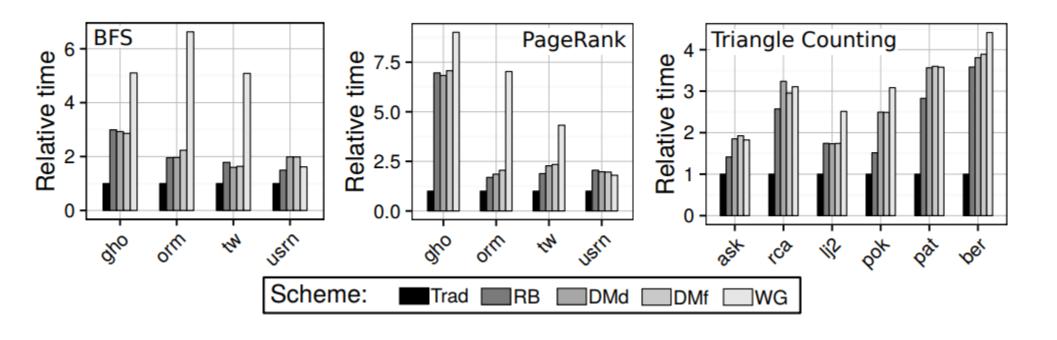
Performance

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

WG: WebGraph compression

RB: Scheme targeting certain specific classes of graphs



WebGraph is the slowest

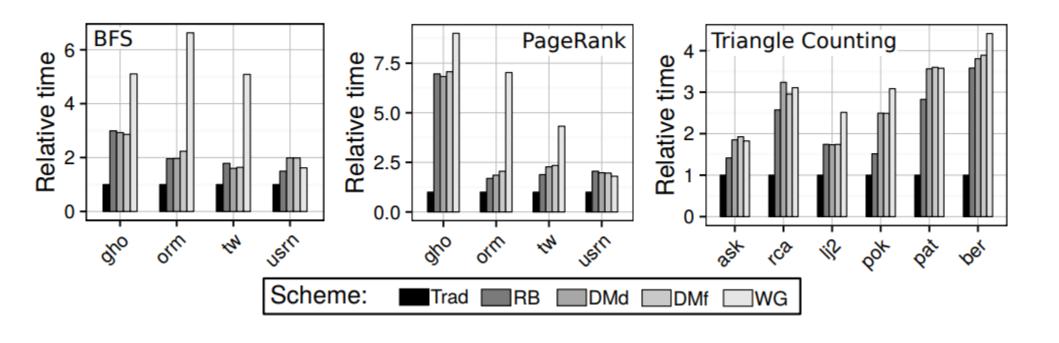
Performance

Trad: Traditional adjacency array

DMd / DMf: Degree Minimizing (without / with gap encoding)

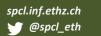
WG: WebGraph compression

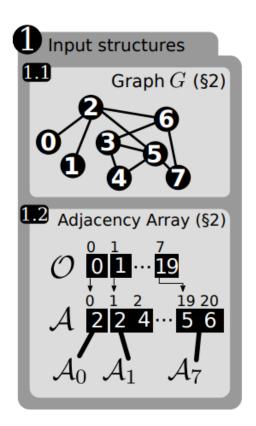
RB: Scheme targeting certain specific classes of graphs

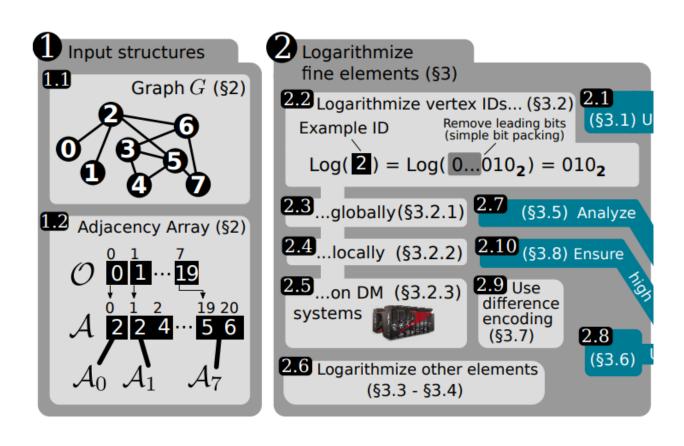


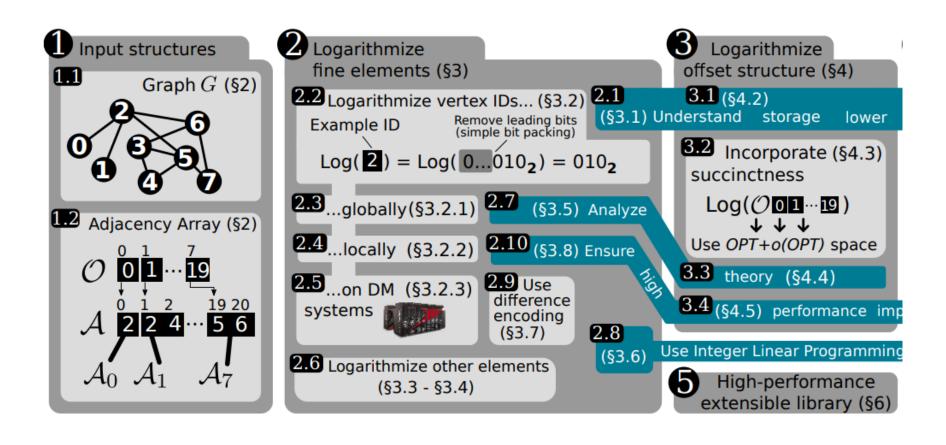
WebGraph is the slowest

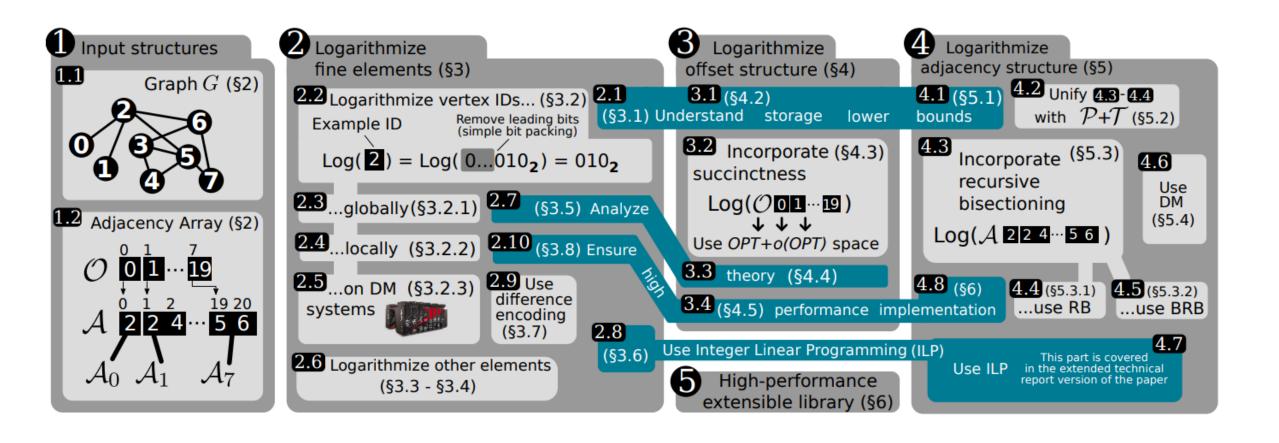
DM, RB: comparable

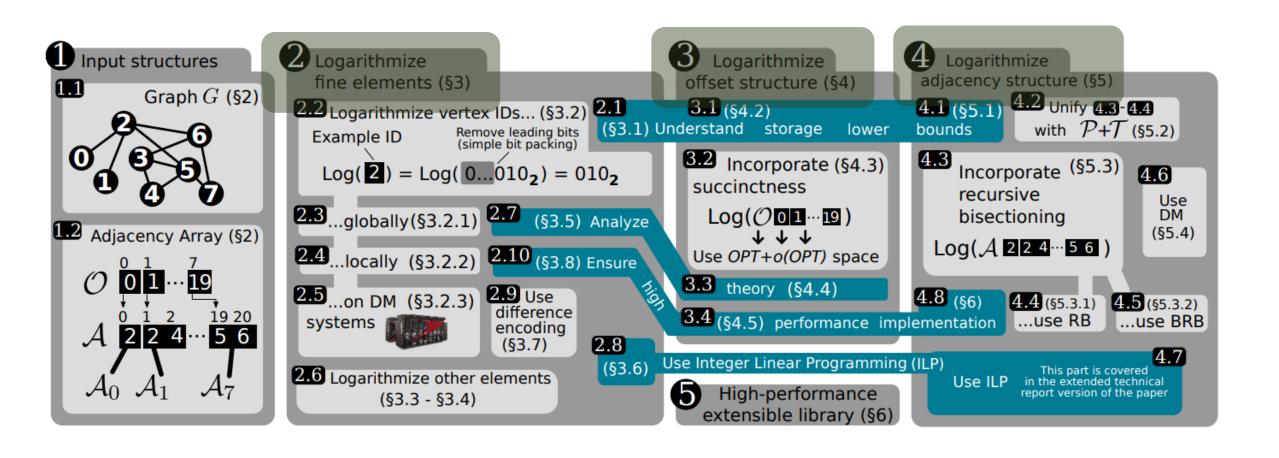


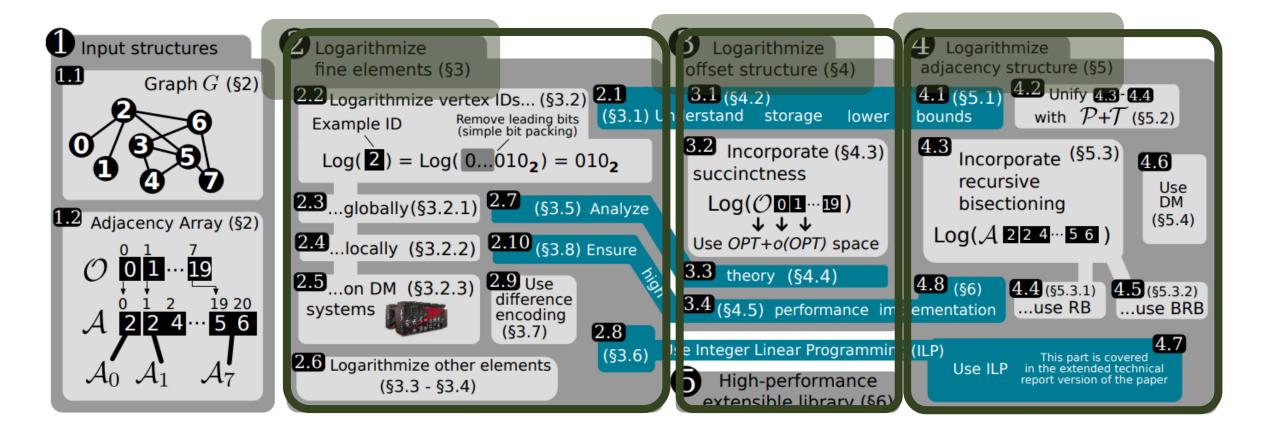




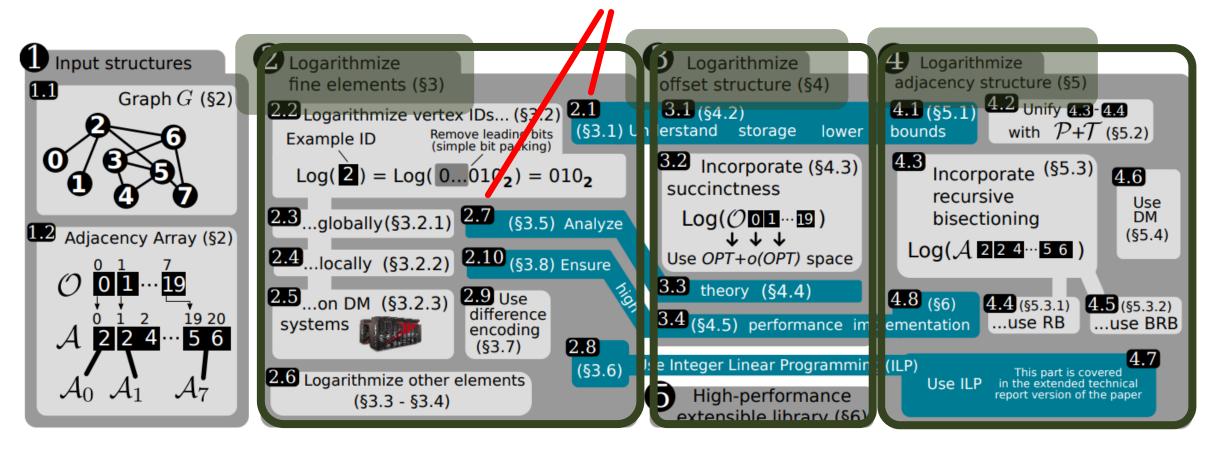




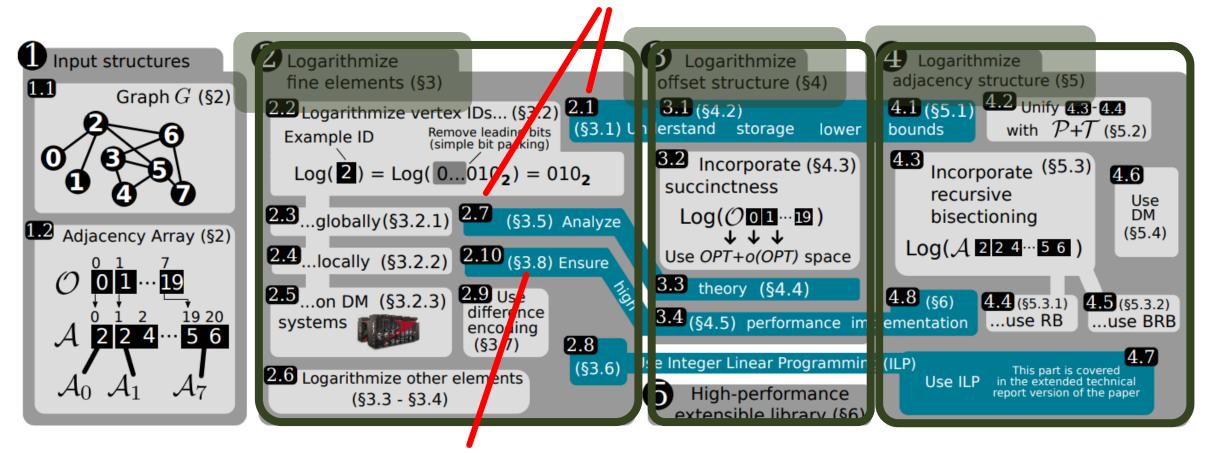




Understand storage lower bounds and the theory

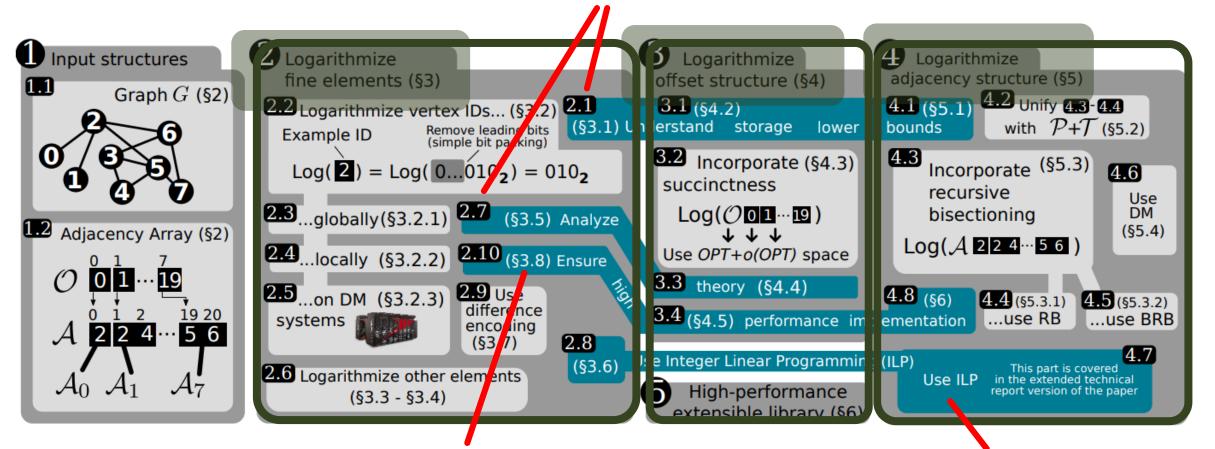


Understand storage lower bounds and the theory



Ensure high-performance implementation

Understand storage lower bounds and the theory



Ensure high-performance implementation

Use Integer Linear Programming (ILP) for more storage reductions

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations



Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations

Key method (offsets)

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations

Key method (offsets)

Succinct bit vectors:

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array		O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]		$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations

Key method (neighborhoods)

Key method (offsets)

Succinct bit vectors:

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array		O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]		$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations

Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds

Key method (offsets)

Succinct bit vectors:

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array		O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]		$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

Bit packing: use $\lceil \log n \rceil$ bits for one vertex label

Modern bitwise operations

Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds C++ templates

> to reduce overheads in performance-critical kernels

Key method (offsets)

Succinct bit vectors:

O	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	O(1)
Plain [44]	bvPL	$O(Wn)$ $O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log \left(\frac{2Wm}{B} \right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n + n\log\frac{Wm}{Bn}\right)$	$\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]		$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$