

## Log(Graph): A Near-Optimal High-Performance Graph Representation









## Large graphs...







## Large graphs...





































## Large graphs...









Running on...









#### Used in...





























**KONECT** graph datasets







| en | <u>vvikipedia edits (eff)</u> |            | 30,737,442 372,391,272    |
|----|-------------------------------|------------|---------------------------|
| TW | Twitter (WWW)                 |            | 41,652,230 1,468,365,182  |
| TF | <u>Twitter (MPI)</u>          |            | 52,579,682 1,963,263,821  |
| FR | <u>Friendster</u>             |            | 68,349,466 2,586,147,869  |
| UL | <u>UK domain (2007)</u>       | U = C; • = | 105,153,952 3,301,876,564 |
|    |                               |            |                           |



#### **KONECT** graph datasets

#### **Graph500 Benchmark**



#### **Top Ten from June 2018 BFS**

| RANK \$ | MACHINE 🗢 V                                   | rendor \$ | INSTALLATION \$ L                                                  | OCATION \$   | COUNTRY | ♦ YEAR ♦ | NUMBER<br>OF<br>NODES | OF CORES | SCALE | GTEPS <b>‡</b> |
|---------|-----------------------------------------------|-----------|--------------------------------------------------------------------|--------------|---------|----------|-----------------------|----------|-------|----------------|
| 1       | K computer                                    | Fujitsu   | RIKEN Advanced<br>Institute for<br>Computational<br>Science (AICS) | Kobe Hyogo   | Japan   | 2011     | 82944                 | 663552   | 40    | 38621.4        |
| 2       | Sunway<br>TaihuLight                          | NRCPC     | National<br>Supercomputing<br>Center in Wuxi                       | Wuxi         | China   | 2015     | 40768                 | 10599680 | 40    | 23755.7        |
| 3       | DOE/NNSA/LLNL<br>Sequoia                      | IBM       | Lawrence Livermore<br>National Laboratory                          | Livermore CA | N USA   | 2012     | 98304                 | 1572864  | 41    | 23751          |
| 4       | DOE/SC/Argonne<br>National<br>Laboratory Mira | IBM       | Argonne National<br>Laboratory                                     | Chicago IL   | USA     | 2012     | 49152                 | 786432   | 40    | 14982          |







| en | <u>vvikipedia edits (eff)</u> |             | 30,737,442 372,391,272    |
|----|-------------------------------|-------------|---------------------------|
| TW | Twitter (WWW)                 | O D = C; X; | 41,652,230 1,468,365,182  |
| TF | Twitter (MPI)                 |             | 52,579,682 1,963,263,821  |
| FR | <u>Friendster</u>             |             | 68,349,466 2,586,147,869  |
| UL | <u>UK domain (2007)</u>       | U = C; • =  | 105,153,952 3,301,876,564 |
|    |                               |             |                           |



#### **KONECT** graph datasets

#### **Graph500 Benchmark**

#### Webgraph datasets

|                    | We        | bgraph da    | tasets      |                | G        | RAF     |               |
|--------------------|-----------|--------------|-------------|----------------|----------|---------|---------------|
| Graph              | ¢         | Crawl date • | Nodes \$    | Arcs \$        |          | _ 50    | 00            |
| <u>uk-2014</u>     |           | 2014         | 787 801 471 | 47614527250    |          |         |               |
| eu-2015            |           | 2015         | 1070557254  | 91 792 261 600 | on 🕏     | COUNTRY | <b>♦</b> YEAR |
| gsh-2015           |           | 2015         | 988490691   | 33877399152    | Lhunga   | lanan   | 20            |
| uk-2014-host       |           | 2014         | 4769354     | 50829923       | -e Hyogo | Japan   | 20            |
| eu-2015-host       |           | 2015         | 11264052    | 386915963      |          |         |               |
| gsh-2015-hos       | <u>st</u> | 2015         | 68 660 142  | 1 802 747 600  | , i      | China   | 20            |
| <u>uk-2014-tpd</u> |           | 2014         | 1766010     | 18244650       | Ì        | Cilila  | 20            |
| <u>eu-2015-tpd</u> |           | 2015         | 6650532     | 170145510      |          |         |               |
| gsh-2015-tpd       | l         | 2015         | 30809122    | 602119716      | rmore C  | A USA   | 20            |
| clueweb12          |           | 2012         | 978408098   | 42 574 107 469 | ago IL   | USA     | 20            |
| <u>uk-2002</u>     |           | 2002         | 18520486    | 298113762      | 2012     | 03/1    | 20            |

| +   |          |            |         |       |                 |          |                |
|-----|----------|------------|---------|-------|-----------------|----------|----------------|
| )   | ON \$ CO | UNTRY \$ Y | EAR 🗘 O | F 💠   | NUMBER<br>OF \$ | SCALE \$ | GTEPS <b>≑</b> |
| - 1 | e Hyogo  | Japan      | 2011    | 82944 | 663552          | 40       | 38621.4        |
| 3   |          |            |         |       |                 |          |                |
| )   | Ķi       | China      | 2015    | 40768 | 10599680        | 40       | 23755.7        |
| 5   | rmore CA | USA        | 2012    | 98304 | 1572864         | 41       | 23751          |
| 9   | ago IL   | USA        | 2012    | 49152 | 786432          | 40       | 14982          |







| en | <u>vvikipedia edits (eii)</u> |            | 30,737,442 372,391,272    |
|----|-------------------------------|------------|---------------------------|
| TW | Twitter (WWW)                 | D = C X    | 41,652,230 1,468,365,182  |
| TF | <u>Twitter (MPI)</u>          |            | 52,579,682 1,963,263,821  |
| FR | <u>Friendster</u>             |            | 68,349,466 2,586,147,869  |
| UL | <u>UK domain (2007)</u>       | U — [] • = | 105,153,952 3,301,876,564 |

#### Web data commons datasets

| Granularity      | #Nodes        | #Arcs           |
|------------------|---------------|-----------------|
| Page             | 3,563 million | 128,736 million |
| Host             | 101 million   | 2,043 million   |
| Pay-Level-Domain | 43 million    | 623 million     |

## KONECT graph datasets

#### **Graph500 Benchmark**

#### Webgraph datasets

| Graph \$            | Crawl date \$ | Nodes \$   | Arcs \$        |           | _ 50    | 00       |                      |               |       |          |
|---------------------|---------------|------------|----------------|-----------|---------|----------|----------------------|---------------|-------|----------|
| <u>uk-2014</u>      | 2014          | 787801471  | 47614527250    |           |         |          | NUMBER               | NUMBER        |       |          |
| <u>eu-2015</u>      | 2015          | 1070557254 | 91 792 261 600 | ON \$     | COUNTRY | ♦ YEAR ♦ |                      | ♦ OF<br>CORES | SCALE | GTEPS \$ |
| gsh-2015            | 2015          | 988490691  | 33 877 399 152 | a libraga | lanan   | 2011     |                      |               | 40    | 20624.4  |
| uk-2014-host        | 2014          | 4769354    | 50829923       | e Hyogo   | Japan   | 2011     | 829 <mark>4</mark> 4 | 663552        | 40    | 38621.4  |
| <u>eu-2015-host</u> | 2015          | 11 264 052 | 386915963      |           |         |          |                      |               |       |          |
| gsh-2015-host       | 2015          | 68 660 142 | 1 802 747 600  | ci.       | China   | 2015     | 40768                | 10599680      | ) 40  | 23755.7  |
| <u>uk-2014-tpd</u>  | 2014          | 1766010    | 18244650       |           | Cililo  | 2013     | 10700                | 10333000      | , ,,, | 23733.7  |
| <u>eu-2015-tpd</u>  | 2015          | 6650532    | 170145510      |           |         |          |                      |               |       |          |
| <u>gsh-2015-tpd</u> | 2015          | 30809122   | 602119716      | rmore C   | A USA   | 2012     | 98304                | 1572864       | 41    | 23751    |
| clueweb12           | 2012          | 978408098  | 42 574 107 469 | ago IL    | USA     | 2012     | 49152                | 786432        | 40    | 14982    |
| <u>uk-2002</u>      | 2002          | 18520486   | 298113762      | -8-12     | 22,1    | 20.2     | 73132                | . 50 152      |       |          |

GRAPH)









#### Web data commons datasets

| Granularity      | #Nodes        | #Arcs           |  |  |
|------------------|---------------|-----------------|--|--|
| Page             | 3,563 million | 128,736 million |  |  |
| Host             | 101 million   | 2,043 million   |  |  |
| Pay-Level-Domain | 43 million    | 623 million     |  |  |

## KONECT graph datasets

# **Graph500 Benchmark**

#### Webgraph datasets

| Graph \$            | Crawl date \$ | Nodes \$   | Arcs ¢         |          | _ 50    |          |        |          |       |                  |
|---------------------|---------------|------------|----------------|----------|---------|----------|--------|----------|-------|------------------|
| <u>uk-2014</u>      | 2014          | 787801471  | 47614527250    |          |         |          | NUMBER | NUMBER   |       |                  |
| eu-2015             | 2015          | 1070557254 | 91 792 261 600 | ON \$    | COUNTRY | ♦ YEAR ♦ |        | ♦ OF ♦   | SCALE | ◆ GTEPS        ◆ |
| gsh-2015            | 2015          | 988490691  | 33877399152    | a Uluaga | lanan   | 2014     |        |          | 40    | 20624 4          |
| uk-2014-host        | 2014          | 4769354    | 50829923       | e Hyogo  | Japan   | 2011     | 82944  | 663552   | 40    | 38621.4          |
| <u>eu-2015-host</u> | 2015          | 11 264 052 | 386915963      |          |         |          |        |          |       |                  |
| gsh-2015-host       | 2015          | 68 660 142 | 1 802 747 600  | ci       | China   | 2015     | 40768  | 10599680 | 40    | 23755.7          |
| <u>uk-2014-tpd</u>  | 2014          | 1766010    | 18244650       |          | Crima   | 2013     | 10700  | 10333000 | 10    | 2373317          |
| <u>eu-2015-tpd</u>  | 2015          | 6650532    | 170145510      |          |         |          |        |          |       |                  |
| <u>gsh-2015-tpd</u> | 2015          | 30809122   | 602119716      | rmore C  | A USA   | 2012     | 98304  | 1572864  | 41    | 23751            |
| clueweb12           | 2012          | 978408098  | 42 574 107 469 | ago IL   | USA     | 2012     | 49152  | 786432   | 40    | 14982            |
| <u>uk-2002</u>      | 2002          | 18520486   | 298113762      | -00.12   | 52.1    | 2012     |        | 700122   |       | 11332            |























































The storage lower bound

Which one? ©







The storage lower bound

Which one? ©

$$S = \{x_1, x_2, x_3, \dots\} \quad \begin{array}{l} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \end{array}$$











Counting bounds.

They are logarithmic

(one needs at least log|S|

bits to store an object

from an arbitrary set S)



Key idea

$$S = \{x_1, x_2, x_3, \dots\} \quad \begin{array}{l} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \\ \end{array}$$











Which one?

Counting bounds.

They are logarithmic

(one needs at least log|S|

bits to store an object

from an arbitrary set S)



Key idea



Encode different parts of a graph representation using (logarithmic) storage lower bounds













Which one?

Counting bounds.

They are logarithmic

(one needs at least log|S|

bits to store an object

from an arbitrary set S)



## Key idea





Encode different parts of a graph representation using (logarithmic) storage lower bounds











Which one? ©

Counting bounds.

They are logarithmic

(one needs at least log|S|

bits to store an object

from an arbitrary set S)



# **%**

## Key idea



 $S = \{x_1, x_2, x_3, ...\}$   $x_1 \to 0 ... 01$   $x_2 \to 0 ... 10$   $x_3 \to 0 ... 11$  ...

Encode different parts of a graph representation using (logarithmic) storage lower bounds









Which one? ©













Which one?









 $x_1 \rightarrow 0 \dots 01$ 



What is **the lowest storage** we can (hope to) use to store a graph?



Which one?







 $S = \{x_1, x_2, x_3, \dots\}$   $x_2 \to 0 \dots 10$ 

 $x_1 \rightarrow 0 \dots 01$ 



What is **the lowest storage** we can (hope to) use to store a graph?



Which one? ©







 $S = \{x_1, x_2, x_3, \dots\}$   $x_2 \to 0 \dots 10$ 

 $x_1 \rightarrow 0 \dots 01$ 



What is **the lowest storage** we can (hope to) use to store a graph?



Which one?







 $x_1 \rightarrow 0 \dots 01$ 



What is **the lowest storage** we can (hope to) use to store a graph?



Which one?









#### **ADJACENCY ARRAY GRAPH REPRESENTATION**









#### **ADJACENCY ARRAY GRAPH REPRESENTATION**

### Representation









## Representation































**Physical realization** 









































































































# **Symbols**

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 











Lower bounds (global)

# **Symbols**

n:#vertices,

m:#edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$  : maximum among  $N_v$ 











Lower bounds (global)

 $\lceil \log n \rceil$ 

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 











This is it?

Not really ©

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$  : maximum among  $N_v$ 











This is it?

Not really ©

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



**Lower bounds (local)** 









Lower bounds (global)  $[\log n]$ 

This is it?

Not really ©

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**









This is it?

Not really ©

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$ 









This is it?

Not really ©

## **Symbols**

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$







This is it?

Not really

## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$







This is it?

Not really ©

## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$









This is it?

Not really ©

## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local)

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$









This is it?

Not really ©

## **Symbols**

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local)

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$











This is it?

Not really ©

## **Symbols**

: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$











This is it?

Not really ©

## **Symbols**

*i* : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## **Lower bounds (local)**

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$



Thus, use the local bound  $\lceil \log \widehat{N_v} \rceil$ 









## **Symbols**

n : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$











## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$











## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{v}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:











## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:













## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:



$$\left[\log 2^{20}\right] = 20$$











## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local): problem

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$
- ...one neighbor has a large ID:



$$\left[\log 2^{20}\right] = 20$$











# **Symbols**

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 











...Use Integer Linear Programming (ILP)!

# **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 











...Use Integer Linear Programming (ILP)!

## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



Lower bounds (local) enhanced with ILP









## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_n$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



#### Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible









### **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M









### **Symbols**

n : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M











## **Symbols**

n: #vertices,

m:#edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

v 2 3 4 5 1M









## **Symbols**

n: #vertices,

m:#edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



## Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

(simultaneously for all other neighborhoods)

$$\leq 100$$
?











## **Symbols**

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

(simultaneously for all other neighborhoods)

Heuristics: 
$$\min \sum_{v \in V} \widehat{N_v} \frac{1}{d_v}$$

$$\leq 100?$$









## **Symbols**

n : #vertices,

n:#edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible













## **Symbols**

n : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{\mathbb{N}_v}$ : maximum among  $N_v$ 



#### Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible



Intuition:
maximum
labels in new
neighborhoods
will be smaller

(simultaneously for all other neighborhoods)



 $\leq 100$ ?

Inverse of the neighborhood size







## **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

 $p, \alpha, \beta$  : constants











## **Power-law graphs**

#### **Symbols**

 $\widehat{W}$ : max edge weight,

*n* : #vertices,

 $p, \alpha, \beta$  : constants



# Random uniform graphs









Formal analyses

#### **Power-law graphs**

The probability that a vertex has degree *d* is:

 $\alpha d^{\beta}$ 

#### **Symbols**

 $\widehat{W}$ : max edge weight,

n:#vertices,

 $p, \alpha, \beta$  : constants



## Random uniform graphs









1 Log (Vertex), Log (Edge Weights)



Formal analyses

## **Power-law graphs**

The probability that a vertex has degree *d* is:

 $\alpha d^{\beta}$ 



#### **Symbols**

: max edge weight,

: #vertices,

 $p, \alpha, \beta$  : constants



# Random uniform graphs











Formal analyses

## **Power-law graphs**

The probability that a vertex has degree *d* is:

 $\alpha d^{\beta}$ 



# **Symbols**

: max edge weight,

: #vertices,

 $p, \alpha, \beta$  : constants



# Random uniform graphs

The probability that a vertex has degree d is:

pd









1 Log (Vertex), Log (Edge weights)



Formal analyses

## **Power-law graphs**

The probability that a vertex has degree *d* is:



### **Symbols**

: max edge weight,

: #vertices,

 $p, \alpha, \beta$  : constants



# Random uniform graphs

The probability that a vertex has degree d is:

pd











1 Log (Vertex), Log (Edge Weights)



Formal analyses

## **Power-law graphs**

The probability that a vertex has degree d is:

 $\alpha d^{\beta}$ 

**Expected size of** the adjacency array



$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left( \left( \frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

#### **Symbols**

: max edge weight,

: #vertices,

 $p, \alpha, \beta$  : constants



# Random uniform graphs

The probability that a vertex has degree d is:

pd

**Expected size of** the adjacency array



$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$









Formal analyses: more

(check the paper ©)

# 1 Log (Vertex), Log (Edge weights)



₩ Formal analyses: more (check the paper ©)

$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = 2m \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$|\mathcal{A}| = \sum_{v \in V} \left( d_v \left( \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right) + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left( \left( \frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$



$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$|\log \widehat{N}_v|$$

$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left( \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

$$E[|\mathcal{A}|]$$

$$|\mathcal{A}| = \sum_{v \in V} \left( d_v \left( \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

$$|\mathcal{A}| = \sum_{v \in V} \left( d_v \left( \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{W} \right\rceil \right) \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left( \left( \frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$







- 1 Log (Vertex), Log (Edge weights)
- **K** Key methods









- 1 Log ( Vertex ), Log ( Edge ) weights )
- **K** Key methods







- 1 Log (Vertex), Log (Edge weights)
- **K**ey methods



```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v}(v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```





- 1 Log (Vertex), Log (Edge weights)
- **K** Key methods



Return *i*-th neighbor of vertex *v* 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```





- 1 Log (Vertex), Log (Edge weights)
- **K**ey methods

Return *i*-th neighbor of vertex *v* 

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



Pointer to the offset array

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```





- 1 Log ( Vertex ), Log ( Edge weights )
- **Key methods**

Return *i*-th neighbor of vertex *v* 

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



Pointer to the offset array

Pointer to the adjacency array

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```





- 1 Log ( Vertex ), Log ( Edge weights )
- **K**ey methods

Return *i*-th neighbor of vertex *v* 

Use the BEXTR bitwise operation to help extract an arbitrary sequence of bits



Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v}(v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
```





- 1 Log (Vertex), Log (Edge Weights)
- **K** Key methods



```
Return i-th neighbor of vertex v
```

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 





- 1 Log (Vertex), Log (Edge Weights)
- **K** Key methods



Return *i*-th neighbor of vertex *v* 

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N<sub>i,v</sub>(v_ID v, int32_t i, ini64_t * O, int64_t * A, int8_t s){
3   int64_t exactBitOffset = s * (O[v] + i);
4   int8_t * address = (int8_t *) A + (exactBitOffset >> 3);
5   int64_t distance = exactBitOffset & 7;
6   int64_t value = ((int64_t *) (address))[0];
7   return _bextr_u64(value, distance, s); }
```

Get the closest byte alignment





- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods

Operation to help extract an arbitrary sequence of bits



Return *i*-th neighbor of vertex *v* 

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t v, int64_t v, int8_t v, int8_t
```

Get the closest byte alignment





- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods



Return *i*-th neighbor of vertex *v* 

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N_{i,v} (v_ID v, int32_t i, int64_t* \mathcal{O}, int64_t* \mathcal{A}, int8_t s){
3 int64_t exactBitOffset = s * (\mathcal{O}[v] + i);
4 int8_t* address = (int8_t*) \mathcal{A} + (exactBitOffset >> 3);
5 int64_t distance = exactBitOffset & 7;
6 int64_t value = ((int64_t*) (address))[0];
7 return _bextr_u64(value, distance, s); }
Get the distance from the byte alignment
```

Get the closest byte alignment

Access the derived 64-bit value





- 1 Log (Vertex), Log (Edge Weights)
- **K**ey methods

Operation to help extract an arbitrary sequence of bits



Return *i*-th neighbor of vertex *v* 

Derive exact offset (in bits) to the neighbor label

Pointer to the offset array

Pointer to the adjacency array

 $s = \lceil \log n \rceil$ 

```
1 /* v_ID is an opaque type for IDs of vertices. */
2 v_ID N<sub>i,v</sub>(v_ID v, int32_t i, int64_t* O, int64_t* A, int8_t s){
3   int64_t exactBitOffset = s * (O[v] + i);
4   int8_t* address = (int8_t*) A + (exactBitOffset >> 3);
5   int64_t distance = exactBitOffset & 7;
6   int64_t value = ((int64_t*) (address))[0];
7   return _bextr_u64(value, distance, s); }
Get the distance from the byte alignment
```

Get the closest byte alignment

Shift the derived 64-bit value by d bits and mask it with BEXTR

Access the derived 64-bit value





















Use a **bit vector** instead of an array of offsets...









Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays







Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays









Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays









Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays









Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays



*i*-th set bit has a position *x* → the adjacency array of a vertex *i* starts at a word *x* 







Use a **bit vector** instead of an array of offsets...



Bit vectors instead of offset arrays



How many 1s are set before a given i-th bit?

*i*-th set bit has a position *x* → the adjacency array of a vertex *i* starts at a word *x* 





...Encode the resulting bit vectors as succinct bit vectors [1]











1 2 5

### **Succinct bit vectors**











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.









**Succinct bit vectors** 

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

n bits











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

n bits























They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











**Succinct bit vectors** 

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.











They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.





n bits







# ...Encode the resulting bit vectors as succinct bit vectors [1]



**Succinct bit vectors** 

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)



 $\frac{1}{2}\log n = t_2$ 

 $\frac{1}{2}\log n \quad \frac{1}{2}\log n$ 

 $\frac{1}{2}\log n \quad \frac{1}{2}\log n$ 

Compute & store the number of 1s

[1] G. J. Jacobson. Succinct Static Data Structures. 1988









**Succinct bit vectors** 

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

Compute & store the number of 1s 
$$= O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = o(n)$$
  $\log^2 n$ 

n bits

10101010101000101010111110000001100001...

$$\frac{1}{2}\log n = t_2$$

Compute & store the number of 1s

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

 $\log^2 n = t_1$ 









**Succinct bit vectors** 

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

Compute & store the number of 1s = 
$$O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = o(n)$$
  $\log^2 n = t_1$   $\log^2 n$ 

n bits

$$\frac{1}{2}\log n = t_2 \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n \qquad \frac{1}{2}\log n$$

Compute & store the number of 1s 
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$









### **Succinct bit vectors**

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

= small + fast (hopefully)

Compute & store the number of 1s 
$$= O\left(\frac{n}{t_1}\log n\right) = O\left(\frac{n}{\log n}\right) = O(n)$$

### n bits

## 10101010101000101010111110000001100001...

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n = t_2$$

 $\log^2 n = t_1$ 

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

Compute & store the number of 1s 
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$



= small + fast





# ...Encode the resulting bit vectors as succinct bit vectors [1]

# 1 2 3 4 5

### **Succinct bit vectors**

### **Total storage:**

$$n + o(n) + o(n) + \cdots$$
$$= n + o(n)$$

They use [Q] + o(Q) bits ([Q] - lower bound), they answer various queries in o(Q) time.

Compute & store the number of 1s O(Q) time. (hopefully)

$$\log^2 n$$

 $\log^2 n$ 

### n bits

## 101010101010000101010111110000001100001...

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n = t_2$$

 $\log^2 n = t_1$ 

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

$$\frac{1}{2}\log n \quad \frac{1}{2}\log n$$

Compute & store the number of 1s 
$$= O\left(\frac{n}{t_2}\log t_1\right) = O\left(\frac{n\log\log n}{\log n}\right) = o(n)$$







...Encode the resulting bit vectors as succinct bit vectors









...Encode the resulting bit vectors as succinct bit vectors















## Formal analyses

| 0                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | <i>O</i> (1)                      |
| Interleaved [44]       |      | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | <i>O</i> (1)                      |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |











### Formal analyses

### Check the paper for details ©

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       | bvIL | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | l    | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |









| $\Pi$ | _      |     |       |
|-------|--------|-----|-------|
| m .   | Formal | ana | lyses |

Check the paper for details ©

| O                | ID       | Asymptotic size [bits]                        | Exact size [bits]                                   | select or $\mathcal{O}[v]$  |
|------------------|----------|-----------------------------------------------|-----------------------------------------------------|-----------------------------|
| Pointer array    | ptrW     | O(Wn)                                         | W(n+1)                                              | O(1)                        |
| Plain [44]       | l ni     |                                               | 21Mm                                                | 0/1                         |
| Interleaved [44] | We       | will show th                                  | nat some a                                          | are $g \frac{Wm}{B}$        |
| Entropy based [3 | in pr    | actice both s                                 | mall and f                                          | $g\frac{Wm}{B}$             |
| Sparse [76]      | III Pi   | actice both s                                 | IIIaii aiiu i                                       | asti                        |
| B-tree based [1] | bvBT     | $O\left(\frac{m}{B}\right)$                   | $pprox 1.1 \cdot rac{-i \cdot v \cdot m}{B}$       | $O(\log n)$                 |
| Gap-compressed   | [1] bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2V}{B}$ | $\frac{Wm}{Bn}$ $O(\log n)$ |

































Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)













Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)



More schemes that assume specific classes of graphs

• • •











Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)



More schemes that assume specific classes of graphs

• • •









!

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives



More schemes that assume specific classes of graphs

. . .









Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives





More schemes that assume specific classes of graphs

• • •









Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives



(2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)



More schemes that assume specific classes of graphs

• • •







### OVERVIEW OF FULL LOG(GRAPH) DESIGN





































































with  $\mathcal{P}+\mathcal{T}$  (§5.2)



## OVERVIEW OF FULL LOG(GRAPH) DESIGN

How to ensure fast, manageable, and extensible implementation of all these schemes?

We use C++ templates to develop
a library that facilitates implementation,
benchmarking, analysis, and extending
the discussed schemes

Example ID

Remove leading bits (\$3.1) to least a complex (\$3.2)

Log(2) = Log

Looks complex ©

... they all can be arbitrarily combined.

```
2.4...locally (§3.2.2) 2.10 (§3.8) Ensure
2.5...on DM (§3.2.3) 2.9 Use

We analyzed / implemented (in total):
```

4.8 (§6) 4.4 (§5.3.1) 4.5 (§5.3.2) ...use BRB

(ILP) This part is covered in the extended technical report version of the paper

- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures













### **PERFORMANCE ANALYSIS**

**TYPES OF GRAPHS** 







#### **PERFORMANCE ANALYSIS**

**TYPES OF GRAPHS** 

**Synthetic graphs** 







# **Synthetic graphs** Kronecker [1]









- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.









Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

[3] SNAP. <a href="https://snap.stanford.edu">https://snap.stanford.edu</a>









# Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6]) Road networks Social networks Web graphs Purchase networks Citation graphs Communication graphs

- [1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
- [2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

- [3] SNAP. <a href="https://snap.stanford.edu">https://snap.stanford.edu</a>
- [4] KONECT. <a href="https://konect.cc">https://konect.cc</a>
- [5] DIMACS Challenge
- [6] Webgraphs. https://law.di.unimi.it/datasets.php













Connected
Components
(Shiloach-Vishkin [1])







# Connected Components

(Shiloach-Vishkin [1])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.







## Connected Components

(Shiloach-Vishkin [1])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.







Connected
Components
(Shiloach-Vishkin [1])

**BFS** (direction optimization [2])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

PERFORMANCE ANALYSIS

**A**LGORITHMS

Connected Components

(Shiloach-Vishkin [1])





[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

















































**Triangle Counting** 



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.



















































[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.













(Shiloach-Vishkin [1])



**SSSP** (Delta-Stepping [3])

[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.













[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.











[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.











[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.









Connected Components

(Shiloach-Vishkin [1])



[1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.







[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.









with no atomics)

- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

(Brandes' Algorithm [4])









PageRank (variant

with no atomics)

- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

**Betweenness Centrality** 

(Brandes' Algorithm [4])









- [1] Y. Shiloach, U. Vishkin. An O (log n) parallel connectivity algorithm. 1980.
- [2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

PageRank (variant

with no atomics)

[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

**Betweenness Centrality** 

(Brandes' Algorithm [4])







### **PERFORMANCE ANALYSIS**

**COMPARISON TARGETS** 









GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation









Zlib [2].
Comparison to a traditional compression scheme

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation

<sup>[2]</sup> P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.









**Zlib [2]**.

Comparison to a traditional compression scheme





WebGraph Library [3]
Comparison to a state-of-the-art
graph compression scheme

- [1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
- [2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.
- [3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.









**Zlib [2]**.

Comparison to a traditional compression scheme

GAPBS: Graph Algorithm Platform Benchmark Suite [1]. Comparison to a traditional adjacency array implementation



WebGraph Library [3]
Comparison to a state-of-the-art
graph compression scheme

Recursive Partitioning [4].

Comparison to a tuned scheme for compressing adjacency data

- [1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.
- [2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.
- [3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.
- [4] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact Representations of Separable Graphs. SODA, 2003.









Storage, Performance





Kronecker graphs Number of vertices: 4M







1 Log (Vertex), Log (Edge weights)

Storage, Performance



Number of edges per vertex



Kronecker graphs Number of vertices: 4M









1 Log (Vertex), Log (Edge weights)

Storage, Performance



Number of edges per vertex



Kronecker graphs Number of vertices: 4M

Log(Graph) consistently reduces storage overhead (by 20-35%)







1 Log (Vertex), Log (Edge Weights)

Storage, Performance

Log(Graph)

accelerates GAPBS



Kronecker graphs Number of vertices: 4M



Number of edges per vertex

Log(Graph) consistently reduces storage overhead (by 20-35%)









1 Log (Vertex), Log (Edge )

Storage, Performance



Kronecker graphs Number of vertices: 4M



Number of edges per vertex

Both storage and performance are improved simultaneously

Log(Graph)

accelerates GAPBS

Log(Graph) consistently reduces storage overhead (by 20-35%)







2 Log (Offset structure) Storage





2 Log (Offset structure) Storage











2 Log (Offset structure) **Storage** 





Lots of data ©

**Conclusions:** 









Offsets:

ptr64
ptr32
ptrLogn
bvIL
bvPL
bvSD
bvEN

Lots of data © Conclusions:







2 Log (Offset structure)

**Storage** 



ptr64, ptr32: traditional array of offsets ptrLogn: separate compression of each offset **bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN**, **bvSD**: succinct bit vectors





Lots of data ©

**Conclusions:** 







2 Log (Offset structure) Storage



ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors





Lots of data © Conclusions:







2 Log (Offset structure) **Storage** 



ptr64, ptr32: traditional array of offsets ptrLogn: separate compression of each offset

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN**, **bvSD**: succinct bit vectors





Lots of data © **Conclusions:** 

**Succinct bit vectors consistently** ensure best storage reductions







Offsets:

2 Log (Offset structure)

**Storage** 



Lots of data © **Conclusions:** 

**Succinct bit vectors consistently** ensure best storage reductions

ptr64, ptr32: traditional array of offsets **ptrLogn**: separate compression of each offset

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors





The **main reason**: succinct designs work well for sparse bit vectors, and graphs "that matter" are sparse







Accessing randomly selected neighbors



Kronecker graphs
Number of vertices: 4M









#### Accessing randomly selected neighbors





Kronecker graphs
Number of vertices: 4M









#### Accessing randomly selected neighbors

ptr64: traditional array of offsets

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN, bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants





Kronecker graphs
Number of vertices: 4M









#### Accessing randomly selected neighbors

**ptr64:** traditional array of offsets

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN**, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants







Kronecker graphs Number of vertices: 4M









#### Accessing randomly selected neighbors

**ptr64:** traditional array of offsets

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN**, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest





Kronecker graphs
Number of vertices: 4M









#### Accessing randomly selected neighbors

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN**, **bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants

**ptr64:** traditional array of offsets

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable





Kronecker graphs Number of vertices: 4M









#### Accessing randomly selected neighbors

Lots of data again © Conclusions:

In sequential settings (or settings with low parallelism), simple offset arrays are the fastest

Once parallelism overheads kick in, performance of accessing succinct bit vectors and offset arrays becomes comparable



ptr64: traditional array of offsets

**bvPL**: plain bit vectors

**bvIL**: compact bit vectors

**bvEN, bvSD**: succinct bit vectors **zlib(.)**: zlib-compressed variants

bvSD: the fastest and (usually) the smallest



Kronecker graphs
Number of vertices: 4M







3 Log ( Adjacency structure ) Storage, Performane





Log ( Adjacency )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs











Log ( Adjacency )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs











3 Log ( Adjacency structure )

Storage, Performane **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

**Conclusions:** 







Log ( Adjacency )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

**Conclusions:** 

WebGraph best for web graphs ©







3 Log ( Adjacency structure )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

**Conclusions:** 

WebGraph best for web graphs ©









3 Log ( Adjacency )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

**BRB**, **RB**: Schemes targeting certain specific classes of graphs



Lots of data ©

Various real-world graphs

**Conclusions:** 

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG







3 Log ( Adjacency )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs





Lots of data ©

Various real-world graphs

**Conclusions:** 

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG









3 Log ( Adjacency structure )

Storage, **Performane**  **Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs





WebGraph is the slowest, DM somewhat slower than Trad

Lots of data ©

Various real-world graphs

**Conclusions:** 

WebGraph best for web graphs ©

DMd: much better than DMf, often comparable to WG









Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)









Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)









Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

# Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)



Key insight (offsets)

**Up to >90% storage reductions** (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)









Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads



Key insight (adjacency data)

**80% storage reductions** (compared to uncompressed data) and up to >2x speedup over modern graph compression schemes (Webgraph)

# Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)



Key insight (offsets)

**Up to >90% storage reductions** (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)







# **OTHER RESULTS**



















bits to store an object

from an arbitrary set S

#### AN EXTENSIBLE GRAPH REPRESENTATION



# WHAT IS LOG(GRAPH)?

5 Log (Offsets (locations) of adj. arrays











#### AN EXTENSIBLE GRAPH REPRESENTATION



# WHAT IS LOG(GRAPH)?

#### A HIGH-PERFORMANCE GRAPH REPRESENTATION









#### AN EXTENSIBLE GRAPH REPRESENTATION



# WHAT IS LOG(GRAPH)?

#### A HIGH-PERFORMANCE GRAPH REPRESENTATION



#### A CONDENSED GRAPH REPRESENTATION











#### AN EXTENSIBLE GRAPH REPRESENTATION



#### Website:

http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph

# WHAT IS LOG(GRAPH)?

#### A HIGH-PERFORMANCE GRAPH REPRESENTATION



#### A CONDENSED GRAPH REPRESENTATION











#### AN EXTENSIBLE GRAPH REPRESENTATION



# WHAT IS LOG(GRAPH)?

#### A HIGH-PERFORMANCE GRAPH REPRESENTATION



#### A CONDENSED GRAPH REPRESENTATION



http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph









#### AN EXTENSIBLE GRAPH REPRESENTATION



# WHAT IS LOG(GRAPH)?

# Thank you for your attention

#### A HIGH-PERFORMANCE GRAPH REPRESENTATION



#### A CONDENSED GRAPH REPRESENTATION



http://spcl.inf.ethz.ch/ Research/ Performance/ LogGraph



































1 Log (Vertex), Log (Edge ) weights

# **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,











# **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,











 $\lceil \log n \rceil$ 

# **Symbols**

 $\widehat{W}$ : max edge weight,

: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,











 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

# **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,











 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?
Not really ©

# **Symbols**

 $\widehat{W}$ : max edge weight,

*i* : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,











 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

# **Symbols**

 $\widehat{W}$ : max edge weight,

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



**Lower bounds (local)** 









 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

### **Symbols**

 $\widehat{W}$ : max edge weight,

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# **Lower bounds (local)**







 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

### **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# **Lower bounds (local)**

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$ 









 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

### **Symbols**

 $\widehat{W}$ : max edge weight,

: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_1$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$







 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

### **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



# **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$







 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really

### **Symbols**

 $\widehat{W}$ : max edge weight,

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



### **Lower bounds (local)**

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$









 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

#### **Symbols**

 $\widehat{W}$ : max edge weight,

: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_n$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



### Lower bounds (local)

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$









 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really

#### **Symbols**

 $\widehat{W}$ : max edge weight,

n:#vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_v$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



### Lower bounds (local)

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$

$$\left[\log 2^{22}\right] = 22$$











 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?
Not really ©

#### **Symbols**

 $\widehat{W}$ : max edge weight,

n: #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



### **Lower bounds (local)**

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$











 $\lceil \log n \rceil \lceil \log \widehat{W} \rceil$ 

This is it?

Not really ©

#### **Symbols**

 $\widehat{W}$ : max edge weight,

*i* : #vertices,

m: #edges,

 $d_v$ : degree of vertex v,

 $N_{\nu}$ : neighbors (adj. array) of

vertex v,

 $\widehat{N_v}$ : maximum among  $N_v$ 



### **Lower bounds (local)**

#### Assume:

- a graph, e.g.,  $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors:  $d_v \ll n$
- ...all these neighbors have small labels:  $\widehat{N_{v}} \ll n$



$$\left[\log 2^{22}\right] = 22$$



Thus, use the local bound  $\lceil \log \widehat{N_v} \rceil$ 







n: #vertices,
m: #edges,
H: number of compute nodes,
H<sub>i</sub>: number of machine elements at level i,
N: number of machine levels









: #vertices, Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N* : number of machine levels











Lower bounds (local): distributed memories

n: #vertices,
m: #edges,
H: number of compute nodes,
H<sub>i</sub>: number of machine elements at level i,

*N*: number of machine levels









: #vertices, Symbols
: #edges,

*H*: number of compute nodes,

 $H_i$ : number of machine

elements at level *i*, *N*: number of machine levels



Lower bounds (local): distributed memories



A Cray XE/XT supercomputer









substitute in the second secon

 $H_i$ : number of machine

elements at level i,

*N* : number of machine levels













: #vertices, Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N* : number of machine levels













: #vertices, Symbols

m: #edges,

H: number of compute nodes,



# Lower bounds (local): distributed memories











: #vertices, Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N* : number of machine levels













: #vertices, Symbols

m:#edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N*: number of machine levels



# Lower bounds (local): distributed memories











: #vertices, Symbols

m:#edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N*: number of machine levels













: #vertices, Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

*N*: number of machine levels













: #vertices, Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

N: number of machine levels



The number of vertices that can be stored in the memory of one node:











**Symbols** : #vertices,

: #edges,

: number of compute nodes,

: number of machine

elements at level i,

N: number of machine levels



# Lower bounds (local): distributed memories

The number of vertices that can be stored in the memory of one node: *H* 











n:#vertices,

Symbols

m: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

N: number of machine levels





The number of vertices that can be stored in  $\frac{n}{H}$ 

The **"intra-node**" vertex label thus takes [bits]:  $\log \frac{n}{H}$ 











This is it? Still not really ©

ı : #vertices,

,

: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

N: number of machine levels



# Lower bounds (local): distributed memories

The number of vertices that can be stored in  $\frac{n}{H}$  the memory of one node:

The **"intra-node**" vertex label thus takes [bits]:  $\log \frac{n}{H}$ 

The "inter-node" vertex label is unique for a whole node and it takes [bits]:  $\lceil \log H \rceil$ 

4 cabinets:

3 chassis:

8 blades:

4 nodes: H = 4



A Cray XE/XT









This is it? Still not really ©

: #vertices,

: #edges,

: number of compute nodes,

: number of machine

elements at level i,

*N*: number of machine levels



# **Lower bounds (local):** distributed memories

The number of vertices that can be stored in the memory of one node: H

The **"intra-node**" vertex label thus takes [bits]:

The "inter-node" vertex label is unique for a whole node and it takes [bits]:  $\lceil \log H \rceil$ 

A Cray XE/XT supercomputer 4 cabinets:

4 nodes:

H=4

The total size of the adjacency **arrays** is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$









This is it? Still not really ©

i : #vertices,

n: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

N: number of machine levels



# Lower bounds (local): distributed memories

The number of vertices that can be stored in  $\frac{n}{H}$  the memory of one node:

The **"intra-node**" vertex label thus takes [bits]:  $\log \frac{n}{H}$ 

The "inter-node" vertex label is unique for a whole node and it takes [bits]:  $\lceil \log H \rceil$ 

4 cabinets: 4 nodes: H=432 cores:

A Cray XE/XT supercomputer

The total size of the adjacency arrays is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$

We also generalize this to arbitrarily many levels (details in the paper ©) and derive the total size:









This is it? Still not really ©

i : #vertices,

: #edges,

H: number of compute nodes,

 $H_i$ : number of machine

elements at level i,

N: number of machine levels



# Lower bounds (local): distributed memories

The number of vertices that can be stored in  $\frac{n}{H}$  the memory of one node:

The **"intra-node**" vertex label thus takes [bits]:  $\log \frac{n}{H}$ 

The "inter-node" vertex label is unique for a whole node and it takes [bits]:  $\lceil \log H \rceil$ 

4 cabinets: 4 nodes: H=432 cores:

A Cray XE/XT supercomputer

The total size of the adjacency arrays is thus [bits]:

$$n\left[\log\frac{n}{H}\right] + H[\log H]$$

We also generalize this to arbitrarily many levels (details in the paper ©) and derive the total size:

$$n\left[\log\frac{n}{H_N}\right] + \sum_{j=2}^{N-1} H_j \left[\log H_j\right]$$









Formal analyses: more

(check the paper ©)

# 1 Log (Vertex), Log (Edge weights)



₩ Formal analyses: more (check the paper ©)

$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = n \left\lceil \log \frac{n}{\mathcal{H}} \right\rceil + \mathcal{H} \left\lceil \log \mathcal{H} \right\rceil$$

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|\mathscr{A}| = \sum_{v \in V} \left( d_v \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil \right)$$

$$|\mathcal{A}| = 2m \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$|\mathcal{A}| = \sum_{v \in V} \left( d_v \left( \left\lceil \log \widehat{N}_v \right\rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right) + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] \approx \frac{\alpha}{2-\beta} \left( \left( \frac{\alpha n \log n}{\beta - 1} \right)^{\frac{2-\beta}{\beta - 1}} - 1 \right) \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$

2 **void** relabel(*G*) {

6 visit[0..n-1] = [false..false];

**if**(visit[id] == false) {

for (int i = 1; i < n; ++i)

8 sort(ID); sort(D);

 $\mathcal{N}(id) = nl++;$ visit[id] = true;

if(visit[i] == false)

 $\mathcal{N}(id) = nl++;$ 

}}

19 }

1 Log (Vertex), Log (Edge Weights)

1 /\* Input: graph G, Output: a **new** relabeling  $\mathcal{N}(v), \forall v \in V$ . \*/

4  $D[0..n-1] = [d_0..d_{n-1}]$ ; //An array with degrees of vertices.

for(int j = 0; j < D[i]; ++j) { //For each neighbor...

5 //An auxiliary array for determining if a vertex was relabeled:

int  $id = N_{j,ID[i]}$ ;  $//N_{j,ID[i]}$  is jth neighbor of vertex with ID ID[i]

 $3 \quad ID[0..n-1] = [0..n-1];$  //An array with vertex IDs.

7 nl = 1; //An auxiliary variable ``new label''.

9 for(int i = 1; i < n; ++i) //For each vertex...

**∰** 

Formal analyses: more (check the paper ©)

$$E[|\mathcal{O}|] = n \left\lceil \log \left(2pn^2\right) \right\rceil = n \left\lceil \log 2p + 2 \log n \right\rceil$$

$$\forall_{v,u\in V} (u\in N_v) \Rightarrow \left[\mathcal{N}(u)\leq \widehat{N}_v\right]$$

$$|=\sum_{v\in V}\left(d_v\left\lceil\log\widehat{N}_v
ight
ceil+\left\lceil\log\log\widehat{N}_v
ight
ceil
ight)$$

$$|\mathcal{A}| = 2m \left( \lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil \right)$$

$$\left|\widehat{N}_v\right| + \left\lceil \log \widehat{\mathcal{W}} \right\rceil + \left\lceil \log \log \widehat{N}_v \right\rceil + \left\lceil \log \log \widehat{\mathcal{W}} \right\rceil$$

$$E[|\mathcal{A}|] = \left(\lceil \log n \rceil + \left\lceil \log \widehat{\mathcal{W}} \right\rceil\right) pn^2$$







2 Log (Offset structure)

...Encode the resulting bit vectors as succinct bit vectors











...Encode the resulting bit vectors as succinct bit vectors











# ...Encode the resulting bit vectors as succinct bit vectors





# Formal analyses

| 0                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       | bvIL | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |







# ...Encode the resulting bit vectors as succinct bit vectors





# Formal analyses

### Check the paper for details ©

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       | bvIL | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | 1    | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |







# ...Encode the resulting bit vectors as succinct bit vectors





# Formal analyses

#### Check the paper for details ©

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       | bvIL | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |



# **Key methods**

Use the sdsl-lite sequential library of succinct bit vectors [1] and investigate if it fares well when being accessed by multiple threads

> [1] S. Gog. SDSL-Lite Succinct Library. 2015.

1 Log (Vertex), Log (Edge weights) Storage





1 Log (Vertex), Log (Edge weights) Storage



1 Log (Vertex), Log (Edge weights) Storage









Log (Vertex), Log (Edge weights)

Storage

Log(Graph) consistently reduces storage overhead (by 20-35%)









**SSSP** 

```
1 Log (Vertex), Log (Edge weights)
```

### **Performance**



Number of edges per vertex



Kronecker graphs Number of vertices: 4M







**SSSP** 



1 Log (Vertex), Log (Edge Weights)

**Performance** 



Number of edges per vertex

Log(Graph) accelerates GAPBS



Kronecker graphs Number of vertices: 4M







**SSSP** 



1 Log (Vertex), Log (Edge Weights)

**Performance** 

Log(Graph)

accelerates GAPBS



Kronecker graphs Number of vertices: 4M



Number of edges per vertex

Both storage and performance are improved simultaneously







**Performance** 

### **Betweenness Centrality**

"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional
gap encoding



Kronecker graphs
Number of vertices: 4M





#### **Performance**







**Betweenness Centrality** 

"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional
gap encoding



Kronecker graphs
Number of vertices: 4M







#### **Performance**







#### **Betweenness Centrality**

"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
"g": global scheme
"I": local scheme
"gap": additional

Log(Graph) incurs
negligible
overheads

gap encoding

Kronecker graphs
Number of vertices: 4M









```
1 Log (Vertex), Log (Edge Weights)
```

**Performance** 

BFS

"**LG**": Log(Graph) **Trad**: Traditional (non compressed, GAPBS) "g": global scheme "I": local scheme "gap": additional gap encoding



Kronecker graphs Number of vertices: 4M





1

Log (Vertex), Log (Edge weights)

**Performance** 



Dense graphs



BFS

Trad: Traditional (non compressed, GAPBS)
"g": global scheme
"l": local scheme
"gap": additional

gap encoding

"LG": Log(Graph)



Kronecker graphs
Number of vertices: 4M







BFS

1

Log (Vertex), Log (Edge weights)

16

32

**Performance** 



Number of edges per vertex:

Dense graphs



"LG": Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)

"g": global scheme
"l": local scheme

Both storage and performance are improved simultaneously



Kronecker graphs
Number of vertices: 4M









**Performance** 

Log(Graph)
accelerates
GAPBS

BFS

"LG": Log(Graph)
Trad: Traditional
(non compressed,

GAPBS)

"g": global scheme
"I": local scheme

Both storage and performance are improved simultaneously

Sparse graphs



Dense graphs





Kronecker graphs
Number of vertices: 4M









## Communicated data

PageRank











## Communicated data





The amount of communicated data is consistently reduced by ~37%







3 Log ( Adjacency structure ) Storage







**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs









**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs









**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data <sup>©</sup>

**Conclusions:** 







**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data ©

**Conclusions:** 

WebGraph best for web graphs ©







**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data <sup>©</sup>

**Conclusions:** 

WebGraph best for web graphs ©

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)







**Storage** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

BRB, RB: Schemes targeting certain specific classes of graphs



Lots of data <sup>©</sup>

**Conclusions:** 

WebGraph best for web graphs ©

Various real-world graphs

**DMd:** much better than DMf, often comparable to others

BRB, RB: various tradeoffs but very expensive preprocessing (details in the paper)













**Performance** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

**RB**: Scheme targeting certain specific classes of graphs









**Performance** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

**RB**: Scheme targeting certain specific classes of graphs



WebGraph is the slowest







**Performance** 

**Trad**: Traditional adjacency array

**DMd / DMf**: Degree Minimizing (without / with gap encoding)

**WG**: WebGraph compression

**RB**: Scheme targeting certain specific classes of graphs



WebGraph is the slowest

DM, RB: comparable













































# Understand storage lower bounds and the theory









Understand storage lower bounds and the theory



Ensure high-performance implementation





Understand storage lower bounds and the theory



Ensure high-performance implementation

Use Integer Linear Programming (ILP) for more storage reductions























Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label









Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

**Modern bitwise** operations









Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

**Modern bitwise** operations



Key method (offsets)







Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

**Modern bitwise** operations



Key method (offsets)

#### **Succinct bit vectors:**

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          |      | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       |      | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |









Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

**Modern bitwise** operations



Key method (neighborhoods)



Key method (offsets)

**Succinct bit vectors:** 

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          |      | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       |      | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |







Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

Modern bitwise operations



Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds



Key method (offsets)

**Succinct bit vectors:** 

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          |      | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O\left(\frac{Wm}{B}\right)$                  | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       |      | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     | bvGC | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |





Bit packing: use  $\lceil \log n \rceil$  bits for one vertex label

Modern bitwise operations



Key method (neighborhoods)

Recursive partitioning: use representations that assume more about graph structure to enable better bounds C++ templates

> to reduce overheads in performance-critical kernels



Key method (offsets)

**Succinct bit vectors:** 

| O                      | ID   | Asymptotic size [bits]                        | Exact size [bits]                                     | select or $\mathcal{O}[v]$        |
|------------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------|
| Pointer array          | ptrW | O(Wn)                                         | W(n+1)                                                | O(1)                              |
| Plain [44]             | bvPL | $O(Wn)$ $O\left(\frac{Wm}{B}\right)$          | $\frac{2Wm}{B}$                                       | O(1)                              |
| Interleaved [44]       | bvIL | $O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$   | $2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$            | $O\left(\log \frac{Wm}{B}\right)$ |
| Entropy based [31, 78] | bvEN | $O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$  | $\approx \log \left( \frac{2Wm}{B} \right)$           | $O\left(\log \frac{Wm}{B}\right)$ |
| Sparse [76]            | bvSD | $O\left(n + n\log\frac{Wm}{Bn}\right)$        | $\approx n \left(2 + \log \frac{2Wm}{Bn}\right)$      | O(1)                              |
| B-tree based [1]       | bvBT | $O\left(\frac{Wm}{B}\right)$                  | $\approx 1.1 \cdot \frac{2Wm}{B}$                     | $O(\log n)$                       |
| Gap-compressed [1]     |      | $O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$ | $\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$ | $O(\log n)$                       |