
spcl.inf.ethz.ch

@spcl_eth

MACIEJ BESTA, DIMITRI STANOJEVIC, TIJANA ZIVIC, JAGPREET SINGH, MAURICE HOEROLD, TORSTEN HOEFLER

Log(Graph): A Near-Optimal High-Performance Graph Representation

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

KONECT graph datasets

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Graph500 Benchmark

KONECT graph datasets

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Graph500 Benchmark

KONECT graph datasets

Webgraph datasets

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Graph500 Benchmark

KONECT graph datasets

Web data commons datasets

Webgraph datasets

spcl.inf.ethz.ch

@spcl_eth

Large graphs…

Graph500 Benchmark

KONECT graph datasets

Web data commons datasets

Webgraph datasets

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

Used in…
Large graphs…

Running on…

spcl.inf.ethz.ch

@spcl_eth

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Which one? 

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

Which one? 

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Counting bounds.
They are logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

Representation

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY GRAPH REPRESENTATION

0

1

2

3

4

5

Representation

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

Adjacency arrays (one
contiguous array)

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

Log ()

...

......

spcl.inf.ethz.ch

@spcl_eth

Adjacency arrays
(edges adjacent
to each vertex)

Offsets

ADJACENCY ARRAY GRAPH REPRESENTATION

0 1 2

4

1 0 3

2 0 3

3 1 2

4 3 5

5 4

Representation

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

Log ()

Log ()

...

......

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Lower bounds (global)

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 2 3 4 5

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

log 222 = 22

v 2 3 4 5

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

log෢𝑁𝑣Thus, use the local bound

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10 0...11

0...100 0...101

- ...one neighbor has a large ID:

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

v 2 3 4 5

0...11

0...100 0...101

- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 220 = 20

v 2 3 4 5

0...11

0...100 0...101

- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local): problem

What if:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 220 = 20

v 2 3 4 5

0...11

0...100 0...101

17 zeros!- ...one neighbor has a large ID:

1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

v 2 3 4 5 1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

v 2 3 4 5 1M

2 3 4 5 1M

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

v 2 3 4 5 1M

2 3 4 5 1MPermute() =

(simultaneously for all
other neighborhoods)

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

v 2 3 4 5 1M

2 3 4 5 1MPermute() = ? ? ? ? ?

≤ 100?(simultaneously for all
other neighborhoods)

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

min෍

𝑣∈𝑉

෢𝑁𝑣
1

𝑑𝑣v 2 3 4 5 1M

2 3 4 5 1MPermute() = ? ? ? ? ?

≤ 100?(simultaneously for all
other neighborhoods)

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

...Use Integer Linear
Programming (ILP)!

Heuristics:

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

min෍

𝑣∈𝑉

෢𝑁𝑣
1

𝑑𝑣v 2 3 4 5 1M

2 3 4 5 1MPermute() = ? ? ? ? ?

≤ 100?(simultaneously for all
other neighborhoods)

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

Inverse of the
neighborhood size

...Use Integer Linear
Programming (ILP)!

Heuristics:

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce
such maximum labels in as many
neighborhoods as possible

min෍

𝑣∈𝑉

෢𝑁𝑣
1

𝑑𝑣v 2 3 4 5 1M

2 3 4 5 1MPermute() = ? ? ? ? ?

≤ 100?(simultaneously for all
other neighborhoods)

: #edges,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

Inverse of the
neighborhood size

Intuition:
maximum

labels in new
neighborhoods
will be smaller

...Use Integer Linear
Programming (ILP)!

Heuristics:

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

The probability that a
vertex has degree d is:

𝛼𝑑𝛽

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

The probability that a
vertex has degree d is:

𝛼𝑑𝛽

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

The probability that a
vertex has degree d is:

𝛼𝑑𝛽
The probability that a
vertex has degree d is:

𝑝𝑑

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

The probability that a
vertex has degree d is:

𝛼𝑑𝛽
The probability that a
vertex has degree d is:

𝑝𝑑

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analysesශ

: max edge weight,
: #vertices,

෡𝑊
𝑛

Symbols

Power-law graphs

Random uniform graphs

The probability that a
vertex has degree d is:

𝛼𝑑𝛽

Expected size of
the adjacency array

The probability that a
vertex has degree d is:

𝑝𝑑
Expected size of

the adjacency array

𝑝, 𝛼, 𝛽 : constants

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

...

...

...

...

A Cray XE/XT
supercomputer

...

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Pointer to the

offset array

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Pointer to the

offset array

Pointer to the
adjacency array

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Derive exact offset (in bits)

to the neighbor label
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Derive exact offset (in bits)

to the neighbor label
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

Get the
closest byte
alignment

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Derive exact offset (in bits)

to the neighbor label
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

Get the
closest byte
alignment

Get the distance from
the byte alignment

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Derive exact offset (in bits)

to the neighbor label
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

Get the
closest byte
alignment

Get the distance from
the byte alignment

Access the derived
64-bit value

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Key methods

Use the BEXTR bitwise
operation to help extract an

arbitrary sequence of bits

Return i-th
neighbor of

vertex v
Derive exact offset (in bits)

to the neighbor label
Pointer to the

offset array

Pointer to the
adjacency array 𝑠 = log𝑛

Get the
closest byte
alignment

Get the distance from
the byte alignment

Access the derived
64-bit value

Shift the derived 64-bit value by d bits
and mask it with BEXTR

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

Bit vectors instead of offset arrays

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

101010100101

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

i-th set bit has a position x
the adjacency array of a vertex i

starts at a word x

101010100101

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Use a bit vector instead of an
array of offsets...

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Bit vectors instead of offset arrays

i-th set bit has a position x
the adjacency array of a vertex i

starts at a word x

101010100101

How many 1s
are set before a
given i-th bit?

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛 log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log𝑛

log 𝑛
= 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log𝑛

log 𝑛
= 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors [1]

Succinct bit vectors They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .n bits

log2 𝑛

1

2
log 𝑛

log2 𝑛 log2 𝑛

...

...

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

1

2
log 𝑛

...

= 𝑡1

= 𝑡2

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡1
log 𝑛 = 𝑂

𝑛

log 𝑛
= 𝑜(𝑛)

Compute & store
the number of 1s

= 𝑂
𝑛

𝑡2
log 𝑡1 = 𝑂

𝑛 log log𝑛

log 𝑛
= 𝑜(𝑛)

Total storage:

𝑛 + 𝑜 𝑛 + 𝑜 𝑛 +⋯
= 𝑛 + 𝑜(𝑛)

= small + fast
(hopefully)

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ Check the paper for details 

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ Check the paper for details 

...Encode the resulting bit vectors as
succinct bit vectors

We will show that some are
in practice both small and fast!

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

More schemes
that assume specific
classes of graphs

...

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

More schemes
that assume specific
classes of graphs

...

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

More schemes
that assume specific
classes of graphs

...

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

v w x y z w-vGap-encode() = x-w y-x z-yv

More schemes
that assume specific
classes of graphs

...

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs
(i.e., the higher vertex degree), the
smaller permuted value it receives

2 3 4 5 1MPermute() = v w x y z
(simultaneously for all
other neighborhoods)

(2) Encode new labels with gap encoding
(differences between consecutive labels

instead of full labels)

v w x y z w-vGap-encode() = x-w y-x z-yv

More schemes
that assume specific
classes of graphs

...

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily
combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

We use C++ templates to develop
a library that facilitates implementation,
benchmarking, analysis, and extending

the discussed schemes

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES

CSCS Cray Piz Daint

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF MACHINES

CSCS Cray Piz Daint

spcl.inf.ethz.ch

@spcl_eth

HP “fat server” (DL360)

PERFORMANCE ANALYSIS

TYPES OF MACHINES

CSCS Cray Piz Daint

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

Synthetic graphs

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

Erdös-Rényi [2]

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS
Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] SNAP. https://snap.stanford.edu

Erdös-Rényi [2]

https://snap.stanford.edu/

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

TYPES OF GRAPHS
Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] SNAP. https://snap.stanford.edu

Erdös-Rényi [2]

Road networks

Communication graphs

Social networks

Purchase networks Citation graphs

Web graphs

[4] KONECT. https://konect.cc
[5] DIMACS Challenge
[6] Webgraphs. https://law.di.unimi.it/datasets.php

https://snap.stanford.edu/
https://konect.cc/
https://konect.cc/
http://law.di.unimi.it/datasets.php

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Connected
Components

(Shiloach-Vishkin [1])

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Connected
Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

Connected
Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2]) Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1])

PageRank (variant
with no atomics)

SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1])

PageRank (variant
with no atomics)

SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1])

PageRank (variant
with no atomics)

SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

ALGORITHMS

BFS (direction
optimization [2])

Betweenness Centrality
(Brandes’ Algorithm [4])

Triangle Counting

Connected
Components

(Shiloach-Vishkin [1])

PageRank (variant
with no atomics)

SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n)
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.

[4] U. Brandes. A Faster Algorithm for Betweenness Centrality. 2001.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TARGETS

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TARGETS

[1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.

GAPBS: Graph Algorithm Platform Benchmark Suite [1].
Comparison to a traditional adjacency array implementation

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TARGETS

[1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.

[2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.

GAPBS: Graph Algorithm Platform Benchmark Suite [1].
Comparison to a traditional adjacency array implementation

Zlib [2].
Comparison to a traditional

compression scheme

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TARGETS

[1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.

[2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.

GAPBS: Graph Algorithm Platform Benchmark Suite [1].
Comparison to a traditional adjacency array implementation

Zlib [2].
Comparison to a traditional

compression scheme

WebGraph Library [3]
Comparison to a state-of-the-art

graph compression scheme

[3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TARGETS

[1] S. Beamer, K. Asanovic, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.

[2] P. Deutsch and J.-L. Gailly. ZLIB Compressed Data Format Specification, 1996.

GAPBS: Graph Algorithm Platform Benchmark Suite [1].
Comparison to a traditional adjacency array implementation

Zlib [2].
Comparison to a traditional

compression scheme

WebGraph Library [3]
Comparison to a state-of-the-art

graph compression scheme

Recursive Partitioning [4].
Comparison to a tuned scheme for

compressing adjacency data

[3] P. Boldi and S. Vigna. The WebGraph Framework I: compression echniques. WWW, 2004.
[4] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact Representations of Separable Graphs. SODA, 2003.

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Both storage and performance
are improved simultaneously

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 Storage

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:
Succinct bit vectors consistently
ensure best storage reductions

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Various real-world graphs

Offset structureLog ()2 Storage

Lots of data 

Conclusions:
Succinct bit vectors consistently
ensure best storage reductions

The main reason: succinct
designs work well for sparse bit

vectors, and graphs „that
matter” are sparse

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

Number of vertices: 4M
Kronecker graphs

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

Number of vertices: 4M
Kronecker graphs

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

Lots of data again  Conclusions:

spcl.inf.ethz.ch

@spcl_eth

In sequential settings
(or settings with low
parallelism), simple
offset arrays are the

fastest

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

Lots of data again  Conclusions:

spcl.inf.ethz.ch

@spcl_eth

In sequential settings
(or settings with low
parallelism), simple
offset arrays are the

fastest

Once parallelism overheads
kick in, performance of
accessing succinct bit

vectors and offset arrays
becomes comparable

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

Lots of data again  Conclusions:

spcl.inf.ethz.ch

@spcl_eth

In sequential settings
(or settings with low
parallelism), simple
offset arrays are the

fastest

Once parallelism overheads
kick in, performance of
accessing succinct bit

vectors and offset arrays
becomes comparable

Offset structureLog ()2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

bvSD: the fastest and
(usually) the smallest

Lots of data again  Conclusions:

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage,

Performane

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

WebGraph
best for web

graphs 

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

WebGraph
best for web

graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

WebGraph
best for web

graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

DMd: much better than DMf,
often comparable to WG

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

WebGraph
best for web

graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

DMd: much better than DMf,
often comparable to WG

Lots of data 

Conclusions:

spcl.inf.ethz.ch

@spcl_eth

WebGraph
best for web

graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage,

Performane

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

DMd: much better than DMf,
often comparable to WG

Lots of data 

Conclusions:

WebGraph is
the slowest, DM

somewhat
slower than

Trad

spcl.inf.ethz.ch

@spcl_eth

Takeaway (Results): Log(Graph) ensures
Space-Performance sweetspot (tunable!)

spcl.inf.ethz.ch

@spcl_eth

Key insight (vertex labels)

20-35% storage reductions
(compared to uncompressed
data) and negligible
decompression overheads

Takeaway (Results): Log(Graph) ensures
Space-Performance sweetspot (tunable!)

spcl.inf.ethz.ch

@spcl_eth

Key insight (vertex labels)

20-35% storage reductions
(compared to uncompressed
data) and negligible
decompression overheads

Key insight (offsets) Up to >90% storage reductions (compared to uncompressed
data) and comparable performance to that of uncompressed
data accesses (in parallel environments)

Takeaway (Results): Log(Graph) ensures
Space-Performance sweetspot (tunable!)

spcl.inf.ethz.ch

@spcl_eth

Key insight (vertex labels)

20-35% storage reductions
(compared to uncompressed
data) and negligible
decompression overheads

Key insight (offsets) Up to >90% storage reductions (compared to uncompressed
data) and comparable performance to that of uncompressed
data accesses (in parallel environments)

Key insight (adjacency data)

80% storage reductions (compared to
uncompressed data) and up to >2x speedup over
modern graph compression schemes (Webgraph)

Takeaway (Results): Log(Graph) ensures
Space-Performance sweetspot (tunable!)

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

spcl.inf.ethz.ch

@spcl_eth

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

A HIGH-PERFORMANCE GRAPH REPRESENTATION

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

A HIGH-PERFORMANCE GRAPH REPRESENTATION A CONDENSED GRAPH REPRESENTATION

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

A HIGH-PERFORMANCE GRAPH REPRESENTATION A CONDENSED GRAPH REPRESENTATION

Website:

http://spcl.inf.ethz.ch/
Research/
Performance/
LogGraph

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)?

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

A HIGH-PERFORMANCE GRAPH REPRESENTATION A CONDENSED GRAPH REPRESENTATION

Website:

http://spcl.inf.ethz.ch/
Research/
Performance/
LogGraph

spcl.inf.ethz.ch

@spcl_eth

WHAT IS LOG(GRAPH)? Thank you
for your attention

A NEAR-OPTIMAL GRAPH REPRESENTATION AN EXTENSIBLE GRAPH REPRESENTATION

A HIGH-PERFORMANCE GRAPH REPRESENTATION A CONDENSED GRAPH REPRESENTATION

Website:

http://spcl.inf.ethz.ch/
Research/
Performance/
LogGraph

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

Lower bounds (global)

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 2 3 4 5

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

log 222 = 22

v 2 3 4 5

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

: #edges,

: max edge weight,
: #vertices,

: degree of vertex ,
: neighbors (adj. array) of
vertex ,
: maximum among

log ෡𝑊

෡𝑊

𝑣

𝑛
𝑚

𝑁𝑣

෢𝑁𝑣

𝑑𝑣

𝑣
𝑁𝑣

log 𝑛

Lower bounds (global)

Lower bounds (local)

Assume:

𝑉 = 1,… , 222- a graph, e.g.,

- A vertex with few neighbors:𝑣 𝑑𝑣 ≪ 𝑛
- ...all these neighbors have small labels: ෢𝑁𝑣 ≪ 𝑛

v 0...10

log 222 = 22

v 2 3 4 5

0...11

0...100 0...101

19 zeros!

log෢𝑁𝑣Thus, use the local bound

Symbols

This is it?
Not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log () : #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log () : #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

A Cray XE/XT
supercomputer

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

A Cray XE/XT
supercomputer

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis: ...

A Cray XE/XT
supercomputer

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis: ...

A Cray XE/XT
supercomputer

...8 blades:

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

A Cray XE/XT
supercomputer

...8 blades:

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

The „intra-node” vertex
label thus takes [bits]: log

𝑛

𝐻

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

The „intra-node” vertex
label thus takes [bits]: log

𝑛

𝐻

The „inter-node” vertex
label is unique for a whole

node and it takes [bits]: log𝐻

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

The „intra-node” vertex
label thus takes [bits]: log

𝑛

𝐻

The „inter-node” vertex
label is unique for a whole

node and it takes [bits]: log𝐻

The total size of the adjacency
arrays is thus [bits]:

𝑛 log
𝑛

𝐻
+ 𝐻 log𝐻

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

The „intra-node” vertex
label thus takes [bits]: log

𝑛

𝐻

The „inter-node” vertex
label is unique for a whole

node and it takes [bits]: log𝐻

The total size of the adjacency
arrays is thus [bits]:

𝑛 log
𝑛

𝐻
+ 𝐻 log𝐻

We also generalize this to
arbitrarily many levels

(details in the paper ) and
derive the total size:

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Lower bounds (local):
distributed memories

: #edges,
: number of compute nodes,

: #vertices,

𝐻

𝑛

𝑚

Symbols

...4 cabinets:

3 chassis:

4 nodes:

...

...

...

A Cray XE/XT
supercomputer

...8 blades:

32 cores:

𝐻 = 4

: number of machine
elements at level i,

𝐻𝑖

The number of vertices
that can be stored in

the memory of one node:

𝑛

𝐻

The „intra-node” vertex
label thus takes [bits]: log

𝑛

𝐻

The „inter-node” vertex
label is unique for a whole

node and it takes [bits]: log𝐻

The total size of the adjacency
arrays is thus [bits]:

𝑛 log
𝑛

𝐻
+ 𝐻 log𝐻

We also generalize this to
arbitrarily many levels

(details in the paper ) and
derive the total size:

𝑛 log
𝑛

𝐻𝑁
+ ෍

𝑗=2

𝑁−1

𝐻𝑗 log𝐻𝑗

: number of machine levels𝑁
This is it? Still not really 

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

spcl.inf.ethz.ch

@spcl_eth

Vertex
labels

Log (),1 Edge
weights

Log ()

Formal analyses: more
(check the paper )

ශ

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2 ...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Formal analysesශ Check the paper for details 

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

Key methodsFormal analysesශ Check the paper for details 

Use the sdsl-lite
sequential library of
succinct bit vectors

[1] and investigate if
it fares well when
being accessed by
multiple threads

[1] S. Gog. SDSL-Lite
Succinct Library. 2015.

...Encode the resulting bit vectors as
succinct bit vectors

spcl.inf.ethz.ch

@spcl_eth

Power-law model Random-uniform model

Vertex
labels

Log (),1 Edge
weights

Log () Storage

spcl.inf.ethz.ch

@spcl_eth

#bits per
vertex label

#bits per
vertex label

Power-law model Random-uniform model

Vertex
labels

Log (),1 Edge
weights

Log () Storage

spcl.inf.ethz.ch

@spcl_eth

#bits per
vertex label

#bits per
edge weight

#bits per
vertex label

#bits per
edge weight

Power-law model Random-uniform model

Vertex
labels

Log (),1 Edge
weights

Log () Storage

spcl.inf.ethz.ch

@spcl_eth

#bits per
vertex label

#bits per
edge weight

#bits per
vertex label

#bits per
edge weight

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

Power-law model Random-uniform model

Vertex
labels

Log (),1 Edge
weights

Log () Storage

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

Log(Graph)
accelerates GAPBS

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

Log(Graph)
accelerates GAPBS

Both storage and
performance
are improved

simultaneously

spcl.inf.ethz.ch

@spcl_eth

Betweenness Centrality

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

spcl.inf.ethz.ch

@spcl_eth

Betweenness Centrality

Sparse graphs

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Dense graphs

Number of vertices: 4M
Number of edges per vertex: Number of edges per vertex:
1 2 4 8 16 32 64 128 256 512 1024

Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

spcl.inf.ethz.ch

@spcl_eth

Betweenness Centrality

Sparse graphs

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Dense graphs

Number of vertices: 4M
Number of edges per vertex: Number of edges per vertex:
1 2 4 8 16 32 64 128 256 512 1024

Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

Log(Graph) incurs
negligible
overheads

spcl.inf.ethz.ch

@spcl_eth

BFS

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

spcl.inf.ethz.ch

@spcl_eth

BFS

Sparse graphs

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Dense graphs

Number of vertices: 4MNumber of edges per vertex: Number of edges per vertex:
1 2 4 8 16 32 64 128 256 512 1024

Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

spcl.inf.ethz.ch

@spcl_eth

BFS

Sparse graphs

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Dense graphs

Number of vertices: 4MNumber of edges per vertex: Number of edges per vertex:
1 2 4 8 16 32 64 128 256 512 1024

Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance

Both storage and
performance
are improved

simultaneously

spcl.inf.ethz.ch

@spcl_eth

BFS

Sparse graphs

“LG”: Log(Graph)
Trad: Traditional
(non compressed,
GAPBS)
“g”: global scheme
“l”: local scheme
“gap”: additional
gap encoding

Dense graphs

Number of vertices: 4MNumber of edges per vertex: Number of edges per vertex:
1 2 4 8 16 32 64 128 256 512 1024

Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Performance Log(Graph)
accelerates

GAPBS

Both storage and
performance
are improved

simultaneously

spcl.inf.ethz.ch

@spcl_eth

PageRank

1024 compute nodes

Various real-world and synthetic graphs

Vertex
labels

Log (),1 Edge
weights

Log ()
Communicated

data

spcl.inf.ethz.ch

@spcl_eth

PageRank

1024 compute nodes

Various real-world and synthetic graphs

The amount of communicated data is
consistently reduced by ~37%

Vertex
labels

Log (),1 Edge
weights

Log ()
Communicated

data

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Lots of data 

Conclusions:

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Lots of data 

Conclusions: WebGraph best for
web graphs 

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Lots of data 

Conclusions: WebGraph best for
web graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Lots of data 

Conclusions: WebGraph best for
web graphs 

BRB, RB: various tradeoffs but
very expensive preprocessing

(details in the paper)

Adjacency
structureLog ()3 Storage

Various real-world graphs

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
BRB, RB: Schemes targeting certain specific classes of graphs

DMd: much better than DMf,
often comparable to others

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Performance

spcl.inf.ethz.ch

@spcl_eth

Adjacency
structureLog ()3 Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

WebGraph is the slowest

Adjacency
structureLog ()3 Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

WebGraph is the slowest DM, RB: comparable

Adjacency
structureLog ()3 Performance

Trad: Traditional adjacency array
DMd / DMf: Degree Minimizing (without / with gap encoding)
WG: WebGraph compression
RB: Scheme targeting certain specific classes of graphs

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design…

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design… Understand storage lower
bounds and the theory

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design… Understand storage lower
bounds and the theory

Ensure high-performance
implementation

spcl.inf.ethz.ch

@spcl_eth

Log(Graph) full design… Understand storage lower
bounds and the theory

Ensure high-performance
implementation

Use Integer Linear Programming
(ILP) for more storage reductions

spcl.inf.ethz.ch

@spcl_eth

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Modern bitwise
operations

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Key method (offsets)

Modern bitwise
operations

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Key method (offsets)

Succinct bit vectors:
understand state-of-the-art
designs and use
the best ones
in a given context

Modern bitwise
operations

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Key method (offsets)

Succinct bit vectors:
understand state-of-the-art
designs and use
the best ones
in a given context

Key method (neighborhoods)

Modern bitwise
operations

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Key method (offsets)

Succinct bit vectors:
understand state-of-the-art
designs and use
the best ones
in a given context

Key method (neighborhoods)

Recursive partitioning: use representations that
assume more about graph structure to enable
better bounds

Modern bitwise
operations

spcl.inf.ethz.ch

@spcl_eth

Key method (vertex labels)

Bit packing: use bits
for one vertex label

log 𝑛

Key method (offsets)

Succinct bit vectors:
understand state-of-the-art
designs and use
the best ones
in a given context

Key method (neighborhoods)

Recursive partitioning: use representations that
assume more about graph structure to enable
better bounds

Modern bitwise
operations

C++ templates
to reduce overheads in

performance-critical kernels

