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Formal analysesශ Check the paper for details 

...Encode the resulting bit vectors as 
succinct bit vectors

We will show that some are 
in practice both small and fast!
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structureLog (       )3 Use different relabelings

Degree-Minimizing: Targeting general graphs
(no assumptions on graph structure)

(1) The more often a label occurs 
(i.e., the higher vertex degree), the 
smaller permuted value it receives

2 3 4 5 1MPermute(                                    ) = v w x y z
(simultaneously for all 
other neighborhoods)

(2) Encode new labels with gap encoding 
(differences between consecutive labels 

instead of full labels)

v w x y z w-vGap-encode(                               ) = x-w y-x z-yv

More schemes
that assume specific 
classes of graphs

...
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OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can be arbitrarily 
combined.

How to ensure fast, manageable, 
and extensible implementation

of all these schemes?

We use C++ templates to develop
a library that facilitates implementation, 
benchmarking, analysis, and extending 

the discussed schemes
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TYPES OF GRAPHS
Real-world graphs (SNAP [3], KONECT [4], Webgraph [5], DIMACS [6])

Synthetic graphs

Kronecker [1]

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.
[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[3] SNAP. https://snap.stanford.edu

Erdös-Rényi [2]

Road networks

Communication graphs

Social networks

Purchase networks Citation graphs

Web graphs

[4] KONECT. https://konect.cc
[5] DIMACS Challenge
[6] Webgraphs. https://law.di.unimi.it/datasets.php

https://snap.stanford.edu/
https://konect.cc/
https://konect.cc/
http://law.di.unimi.it/datasets.php
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BFS (direction 
optimization [2])

Connected 
Components 

(Shiloach-Vishkin [1]) SSSP (Delta-Stepping [3])

Root

[1] Y. Shiloach, U. Vishkin. An O (log n) 
parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
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parallel connectivity algorithm. 1980.

[2] S Beamer et al. Direction-Optimizing Breadth-First Search. 2013.
[3] U. Meyer, P. Sanders. Delta-Stepping: A Parallelizable Shortest Path Algorithm. 2003.
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Conclusions:
Succinct bit vectors consistently 
ensure best storage reductions

The main reason: succinct 
designs work well for sparse bit 

vectors, and graphs „that 
matter” are sparse

ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
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Offset structureLog (       )2 Performance
Accessing randomly selected neighbors

ptr64: traditional array of offsets
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors
zlib(.): zlib-compressed variants

Number of vertices: 4M
Kronecker graphs

bvSD: the fastest and 
(usually) the smallest

Lots of data again  Conclusions:
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Conclusions:
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the slowest, DM 

somewhat 
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Key insight (offsets) Up to >90% storage reductions (compared to uncompressed 
data) and comparable performance to that of uncompressed 
data accesses (in parallel environments)

Key insight (adjacency data) 

80% storage reductions (compared to 
uncompressed data) and up to >2x speedup over 
modern graph compression schemes (Webgraph)

Takeaway (Results): Log(Graph) ensures 
Space-Performance sweetspot (tunable!)
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Ensure high-performance 
implementation

Use Integer Linear Programming 
(ILP) for more storage reductions
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Succinct bit vectors:
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designs and use 
the best ones 
in a given context

Key method (neighborhoods) 

Recursive partitioning: use representations that 
assume more about graph structure to enable 
better bounds

Modern bitwise 
operations

C++ templates
to reduce overheads in 

performance-critical kernels


