
Analysis of the Memory Registration Process in
the Mellanox InfiniBand Software Stack

Frank Mietke, Robert Rex, Robert Baumgartl,
Torsten Mehlan, Torsten Hoefler and Wolfgang Rehm

Department of Computer Science
Chemnitz University of Technology, Germany

{firstname.surname}@informatik.tu-chemnitz.de

Abstract. To leverage high speed interconnects like InfiniBand it is im-
portant to minimize the communication overhead. The most interfering
overhead is the registration of communication memory.
In this paper, we present our analysis of the memory registration pro-
cess inside the Mellanox InfiniBand driver and possible ways out of this
bottleneck. We evaluate and characterize the most time consuming parts
in the execution path of the memory registration function using the Read
Time Stamp Counter (RDTSC) instruction. We present measurements
on AMD Opteron and Intel Xeon systems with different types of Host
Channel Adapters for PCI-X and PCI-Express. Finally, we conclude with
first results using Linux hugepage support to shorten the time of regis-
tering a memory region.

1 Introduction

High speed interconnects like InfiniBand [4] or Myrinet [11] use DMA engines
in conjunction with user level communication protocols to achieve high band-
width, low latency and a low CPU utilization. That is the user level application
(Consumer in InfiniBand Architecture) just creates a communication request in-
cluding the relevant information like starting address and length of the commu-
nication buffer. This communication request is then transmitted to the network
adapter (Host Channel Adapter in InfiniBand) through a simple user level API
function call. For a normal send operation the HCA takes the request to create
the appropriate packet structure and programs the DMA engine to get the user
data. After this the packet is immediately transferred to the other communica-
tion partner. This process is depicted in figure 1.

The DMA engine responsible for transferring the data from main memory to
the network adapter handles only physical addresses. Thus the virtual addresses
of the communication buffer have to be translated into a physical one. Further-
more it is important to ensure that every page of the communication buffer is
pinned to prevent swapping. This process of pinning and address translation is
called memory registration. Every communication operation of InfiniBand needs

Fig. 1. InfiniBand Architecture Communication Stack ([4])

registered memory except the inline send operation where the data is directly
transferred to the network adapter inside the communication request.

To avoid the expensive registration costs several approaches were investigated
and integrated. We present them in the next section. In section 3 we give a
detailed description of the memory registration function of the Mellanox Infini-
Band software stack and how we measured the single components inside this
function. This section includes also the appropriate measurements and presents
the results of our first approach to shorten the registration time. We summarize
and conclude in section 4.

2 Related Work

Due to the costs of memory registration several approaches try to reduce the
impact of this operation on middleware or application level. These approaches
can roughly be categorized in two classes static and dynamic. Static means that
every memory area is registered in advance or it is hidden in a memory allo-
cation call. Dynamic means that a memory area is registered on the fly in the
communication path. Typically – to complicate there work further – the amount
of pinned memory pages and the number of registered memory regions may be
limited.

Avoiding the registration operation by using memory copies in conjunction with
pre-registered memory regions belongs to the static class. This is typically used

if only small messages are sent or received to improve the latency behaviour.
Application examples are several InfiniBand MPI implementations like MVA-
PICH [8], MVAPICH2 [7] and MPICH2-CH3-IB [3].
Registration of the whole physical memory or parts thereof in advance is another
approach in the static class. A call to malloc allocates then already registered
memory for the application. DSM systems like [6] use this approach.

Tezuka proposed the Pin-Down caching [14] where a lazy deregistration mech-
anism is applied. That is memory regions are registered once and then hold in
a cache. To improve the search speed a hash table is used in MVAPICH [8]
and MPICH2-CH3-IB [3]. To find memory areas with different starting page ad-
dresses that reside inside of another is not possible in a hash table. To remedy
this problem tree structures are used in VIA-RPI [9] for LAM/MPI and Open-
MPI [16] instead of hash tables. All these approaches belong to the dynamic
class and are typically used to transfer large messages.

Other dynamic approaches are Fast Memory Registration and Deregistration
(FMRD) [17] as well as Optimistic Group Registration (OGR) [18]. Both are
proposed for an InfiniBand PVFS implementation to improve the speed of Pin-
Down caching and noncontiguous memory registration.

Further proposals to improve the handling with the registration operation were
made in [13],[15],[19] and [2].
But all the above mentioned approaches merely tried to mitigate the registration
costs in an application specific manner and expect an efficient implementation
of the registration operation. To the best of our knowledge there has been no
detailed analysis which went underneath the registration call.

3 Memory Registration Analysis

It has been observed by several researchers that registering memory for commu-
nication is very time-consuming. Table 1 compares the best case (no registration
at all) and worst case (every buffer must be registered) scenario running the
SendRecv test of the Intel MPI Benchmark [5] suite between two Opteron test-
systems each hosting a PCI-express InfiniBand HCA. This comparison clearly
shows how big the influence on communication performance is. A detailed ana-
lysis regarding the impact on applications is done in [10].
The main goal of the work described here is to obtain a precise understanding
of the execution timing of all InfiniBand driver functions contributing to mem-
ory registration. We aimed at identifiying potential performance bottlenecks and
entry points for optimization.

Msg size Bandwidth when Registration necessary FOI if No Registration

32kB 270MB/s 3.22
64kB 457MB/s 2.55

128kB 701MB/s 2.00
256kB 892MB/s 1.74
512kB 1058MB/s 1.56

1024kB 1217MB/s 1.39
2048kB 1295MB/s 1.33
4096kB 1332MB/s 1.31

Table 1. Factor of improvement (FOI) when there are no registration costs

3.1 Profiling the Driver

Prior to data transfer, the following main functions are performed sequentially
by the driver:

– pin the requested quantity of memory pages for subsequent DMA transfers
by the IB controller using mlock(),

– translate the virtual addresses of the pinned pages into physical addresses,
– transmit the obtained physical addresses to the IB controller.

It is irrelevant, whether a send or a receive operation follows that preparation.
The sequence constitutes the memory registration.

The first experiment focused on profiling this sequence. We instrumented the
relevant driver functions (mainly VAPI register mr()) of the Mellanox Infini-
Band driver API with rdtsc machine instructions and code to write the obtained
time stamps into the kernel log. This writing needed approximately 2000-5000
clock cycles which is two to three orders of magnitude smaller than the functions
profiled. Therefore we could safely neglect that measurement error.

Two different situations concerning mlock() can be distinguished:

a) All or most of the pages to be pinned are present in main memory.
b) The pages are not present in memory. mlock() generates page faults and its

performance degrades.

Situation b) typically occurs when: Either the buffer is allocated and registered
for the very first time or the pages have been swapped out due to tight memory.
That is, the former case usually occurs when receiver memory is registered, or
sender memory is pre-registered during the init stage. The latter case should be
avoided at all costs, e. g, by fitting a maximum of physical main memory into
the machine. We conducted our experiments for both situations.

The experimental setup consisted of an AMD Opteron 244 Dual Processor Ma-
chine clocked at 1.8 GHz and equipped with 2 GBytes of RAM. We used the

PCI-Express InfiniBand Adapter MT25208 InfiniHost III Ex with 256MB RAM
and the MemFree version respectively. All experiments were conducted with the
Mellanox InfiniBand Gold Edition Package (IBGD), versions 1.7.0 and 1.8.0.
The operating system was a standard Linux kernel, version 2.6.10UP and SuSe
2.6.11.4-20a-smp (MemFree HCA). One observation that can be made between
the UP and SMP kernel is a slightly bigger overhead due to the spinlock insertion
in SMP kernels. All figures are in doubly logarithmic representation.

Figure 2 and 3 depicts the execution timings for the individual steps and the
overall memory registration for different communication buffer sizes when the
pages of the buffer to be registered are present in memory.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface

Fig. 2. Memory Registration Performance, Pages Present

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface

Fig. 3. Memory Registration Performance, Pages Present (MemFree HCA)

The most time-consuming factor is the address transfer to the IB controller.
Pinning and address translation contribute to overall timing only marginally with
a slightly larger influence for large buffers. Unfortunately, the communication
with the IB controller does not exhibit much optimization potential, because it
is bound by the controller’s reaction time.

Figure 4 and 5 depicts the same execution timings with the pages of the buffer
not present in memory.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface

Fig. 4. Memory Registration Performance, Pages not Present

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface

Fig. 5. Memory Registration Performance, Pages not Present (MemFree HCA)

Several observations can be made here: For buffers larger than 256 kBytes regis-
tration time is almost completely dominated by pinning whereas for small buffer
sizes the communication with the adapter is the most influential factor. This
is not surprising, because the number of occuring page faults increases with

buffer size. Virtual-to-Physical address translation is almost not influencing the
registration timing. Registration of small buffers has almost a constant timing
overhead regardless of the exact buffer size.

We repeated both experiments on an Intel Xeon SMP system hosting 2 CPUs at
2.4 GHz and 2 GBytes of memory and a PCI-X InfiniBand HCA. The software
used was the same as on the Opteron System with the 256MB HCA mentioned
above. We used a slightly modified methodology due to some driver peculiarities
and obtained very similar timing proportions as one can see in figure 6 and 7.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface and rest

Fig. 6. Memory Registration Performance, Pages Present (PCI-X HCA)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4 16 64 256 1024 4096 16384 65536

du
ra

tio
n

in
 p

ro
ce

ss
or

 ti
ck

s

size of buffer in Kilobyte

duration of memory registration

overall duration
address translation

mlock()-function
communication with interface and rest

Fig. 7. Memory Registration Performance, Pages not Present (PCI-X HCA)

But the quantitative values are worse compared to AMD Opterons due to the dif-
ferent locations of the memory controller and PCI-X vs. PCI-express (Opteron)
HCAs. More details can be found in [12].

3.2 Performance of mlock()

Because mlock() performance seemed relevant if pages are not present, we next
concentrated on profiling it. The table lists the obtained timings for pinning
a single page of 4kBytes on the AMD Opteron and the Intel Xeon processor
when the page is not present in memory. The shown profile is a typical case
when registering receiver memory or preregister sender memory. All times are
in processor cycles.

Function AMD Opteron Intel Xeon

Search for Free Page Frame and Up-
date Page Table

3500 9000

Zero out Page Frame 1000 2000

Pin the Page 1800 5400

Table 2. Timing Profile for mlock()

Even if you normalize the numbers of the timings the Xeon system needs almost
twice the time to execute mlock() due to its memory subsystem. As you can
see the pinning itself is now only a fraction of the costs of the mlock() call. We
tried in some experiments to remove the zeroing step but failed with libraries
which presume zeroed pages.

3.3 Using Large Pages

Most modern processors like Intel Xeon or AMD Opteron support different page
sizes. The most obvious improvement of registration time could be the usage of
larger pages. The current 2.6 Linux kernels [1] provide the hugetlbfs to use these
different page sizes simultaneously. Apparent advantages using larger page sizes
for registering memory are:

– mlock() has to pin less pages
– there are less address translations
– and thus less translations has to be transferred to the HCA
– the Mellanox driver can already use large page sizes

To use the hugetlbfs it is necessary to utilize mmap() or shared memory system
calls. In table 3 the registration times are shown using 4kB and 2MB page sizes.
The timings in the 4kB column correspond to the values of figure 4. To be
comparable the timings in the 2MB column include mmap() and the register
call. By using hugetlbfs one attains improvements of 15% up to 25%.

Buffer Size in kB Registration Time 4kB (ms) Registration Time 2MB (ms)

2048 1.8 1.5

4096 3.7 2.9

8192 7.4 5.7

16384 14.7 11.3

32768 28.8 22.5

65536 57.9 45.0

Table 3. Comparison of registration time for 4kB and 2MB page sizes

4 Summary and Conclusions

With this paper we have given a quantitative analysis of the execution timing of
the memory registration inside the Mellanox InfiniBand driver. We showed that
in the case where the pages are not present the mlock() call is the dominant
factor. Otherwise the communication with the adapter to communicate the ad-
dress translations is the dominant part. Furthermore, we showed that the AMD
Opteron has a much better timing behaviour of the mlock() call than the Intel
Xeon.
Finally we presented our first results using larger page sizes and showed that
improvements of 15% up to 25% are attainable using the mmap approach.

To improve the behaviour of mlock() when pages are not present, a seperate
kernel thread could fill the pages with zeros when the kernel has time. This
could drastically reduce the amount of work which mlock() does. To avoid the
address translation and thus the communication with the HCA, one would have
to change the behaviour of the HCA that it can handle virtual addresses and has
access to the kernel page tables. Finally to better utilize hugetlbfs we have to
provide a malloc/free library that supports multiple page sizes simultaneously.
Therefore also the communication protocol to convey the address translation in
the InfiniBand driver has to be changed. Then the applications can transparently
make use of this kernel feature in a memory footprint efficient manner.
All these propositions will be investigated in the future.

References

[1] L. K. Archives. Website. http://www.kernel.org.
[2] C. Bell and D. Bonachea. A New DMA Registration Strategy for Pinning-Based

High Performance Networks. In In Proceedings of Int’l Parallel and Distributed
Processing Symposium (IPDPS 03), April 2003.

[3] R. Grabner, F. Mietke, and W. Rehm. Implementing an MPICH-2 Channel Device
over VAPI on InfiniBand. In Proceedings of the 18th Int’l Parallel and Distributed
Processing Symposium, IPDPS, 2004.

[4] InfiniBand Trade Association. InfiniBand Architecture Specification 1.2, 2004.
[5] Intel GmbH, Hermlheimer Str. 8a, D-50321 Brhl, Germany. Intel MPI Bench-

marks – Users Guide and Methodology Description.
[6] L. Liss, Y. Birk, and A. Schuster. In-Kernel Integration of Operating System and

Infiniband Functions for High Performance Computing Clusters: A DSM Example.
IEEE Transactions on Parallel and Distributed Systems, 16(9), September 2005.

[7] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,
and B. Toonen. Design and Implementation of MPICH2 over InfiniBand with
RDMA Support. In In Proceedings of Int’l Parallel and Distributed Processing
Symposium (IPDPS 04), April 2004.

[8] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Performance RDMA-
Based MPI Implementation over InfiniBand. In In the Proceedings of 17th Annual
ACM International Conference on Supercomputing, June 2003.

[9] T. Mehlan, W. Rehm, R. Engler, and T. Wenzel. Providing a High-Performance
VIA-Module for LAM/MPI. In In Proceedings of IEEE International Confer-
ence on Parallel Computing in Electrical Engineering (PARELEC’04), September
2004.

[10] F. Mietke, R. Rex, T. Mehlan, T. Hoefler, and W. Rehm. Reducing the Im-
pact of Memory Registration in InfiniBand. In Proceedings of the 1. Workshop
Kommunikation in Clusterrechnern und Clusterverbundsystemen (KiCC), 2005.

[11] Myrinet. Myrinet Inc. http://www.myri.com.
[12] R. Rex. Analysis and Evaluation of Memory Locking Operations for High-Speed

Network Interconnects. Student Project, Chemnitz University of Technology, Oc-
tober 2005.

[13] S. Sur, U. Bondhugula, A. Mamidala, H.-W. Jin, and D. K. Panda. High Perfor-
mance RDMA Based All-to-all Broadcast for InfiniBand Clusters. In In Proceed-
ings of International Conference on High Performance Computing (HiPC 2005),
December 2005.

[14] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down Cache: A Virtual
Memory Management Technique for Zero-copy Communication. In In Proceedings
of 12th Int. Parallel Processing Symposium, March 1998.

[15] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda. Host-Assisted
Zero-Copy Remote Memory Access Communication on InfiniBand. In In Proceed-
ings of Int’l Parallel and Distributed Processing Symposium (IPDPS 04), April
2004.

[16] O. M. Website. A High Performance Message Passing Library.
http://www.open-mpi.org.

[17] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand: Design and Per-
formance Evaluation. In In Proceedings of International Conference on Parallel
Processing (ICPP 03), October 2003.

[18] J. Wu, P. Wyckoff, and D. K. Panda. Supporting Efficient Noncontiguous Access
in PVFS over InfiniBand. In In Proceedings of IEEE International Conference on
Cluster Computing (Cluster’2003), December 2003.

[19] J. Wu, P. Wyckoff, D. K. Panda, and R. Ross. Unifier: Unifying Cache Manage-
ment and Communication Buffer Management for PVFS over InfiniBand. In In
Proceedings of IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 04), April 2004.

