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Abstract Hybrid parallel programming with the Message Passing Interface
(MPI) for internode communication in conjunction with a shared-memory pro-
gramming model to manage intranode parallelism has become a dominant ap-
proach to scalable parallel programming. While this model provides a great
deal of flexibility and performance potential, it saddles programmers with the
complexity of utilizing two parallel programming systems in the same appli-
cation. We introduce an MPI-integrated shared-memory programming model
that is incorporated into MPI through a small extension to the one-sided com-
munication interface. We discuss the integration of this interface with the MPI
3.0 one-sided semantics and describe solutions for providing portable and ef-
ficient data sharing, atomic operations, and memory consistency. We describe
an implementation of the new interface in the MPICH2 and Open MPI imple-
mentations and demonstrate an average performance improvement of 40% to
the communication component of a five-point stencil solver.

1 Introduction

The Message Passing Interface (MPI [1]) has been the dominant parallel pro-
gramming model since the mid-1990s. One important reason for this domi-
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nance has been its ability to deliver portable performance on large, distributed-
memory massively parallel processing (MPP) platforms, large symmetric mul-
tiprocessing (SMP) machines with shared memory, and hybrid systems with
tightly coupled SMP nodes. For the majority of these systems, applications
written with MPI were able to achieve acceptable performance and scalabil-
ity. However, recent trends in commodity processors, memory, and networks
have created the need for alternative approaches. The number of cores per
chip in commodity processors is rapidly increasing, and memory capacity and
network performance are not able to keep up the same pace. Because memory
capacity per core is decreasing, mapping a single operating system process to
an MPI rank and assigning a rank per core severely limit the problem size
per rank. In addition, MPI’s single-copy model for both message passing and
one-sided communication exacerbate the memory bandwidth problem by using
intranode memory-to-memory copies to share data between ranks. Moreover,
network interfaces are struggling to support the ability for all cores on a node
to use the network effectively. As a result, applications are moving toward a
hybrid model mixing MPI with shared-memory models that attempt to over-
come these limitations [2,3].

A relatively straightforward and incremental approach to extending MPI
to support shared memory has recently been approved by the MPI Forum.
Several functions were added that enable MPI ranks within a shared-memory
domain to allocate shared memory for direct load/store access. The ability
to directly access a region of memory shared between ranks is more efficient
than copying and reduces stress on the memory subsystem. Sharing a region
of memory between ranks also overcomes the per core memory capacity is-
sue and provides more flexibility in how the problem domain is decomposed.
This approach reduces the amount of memory consumed for some data struc-
tures such as read-only databases that replicate state across all ranks. From a
programming standpoint, providing shared memory supports structured pro-
gramming, where data is private until it is explicitly shared. The alternative,
where data is shared and must be explicitly made private, introduces more
complexity into an existing MPI application and the associated MPI imple-
mentation. Shared memory is also nearly ubiquitous, given the prevalence of
multicore processors.

This paper describes these recent extensions to the MPI standard to sup-
port shared memory, discusses implementation options, and demonstrates the
performance advantages of shared memory for a stencil benchmark.

Motivation and Related Work

Support for shared memory in MPI has been considered before, but a num-
ber of factors have made such support increasingly compelling. In particular,
although POSIX shared memory can be used independently from MPI, the
POSIX shared-memory model has several limitations that can be overcome
by exposing it through MPI. First, POSIX shared-memory allocation is not
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a collective operation. One process creates a region of memory and allows
other processes to attach to it. Making shared-memory creation collective of-
fers an opportunity to optimize the layout of the memory based on the layout
of the ranks. Since the MPI implementation has knowledge of the layout of
the shared-memory region, it may be able to make message-passing opera-
tions using this region more efficient. For example, MPI may be able to stripe
messages over multiple network interfaces, choosing the interface that is clos-
est to the memory being sent. Integration between the MPI runtime system
and shared memory simplifies shared-memory allocation and cleanup. Rely-
ing on an application using POSIX shared memory directly to clean up after
abnormal termination has been problematic. Having the MPI implementation
be responsible for allocating and freeing shared memory is a better solution.
Knowledge of shared memory inside the MPI implementation also provides
better support and integration with MPI tools, such as correctness and per-
formance debuggers. Furthermore, nearly all MPI implementations already
have the infrastructure for allocating and managing shared memory since it is
used for intranode data movement, so the burden on existing implementations
is light.

Previous work on efficiently supporting MPI on shared-memory systems
has concentrated mostly on mapping an MPI rank to a system-level or user-
level thread [4–8]. This approach allows MPI ranks to share memory inside an
operating system process, but it requires program transformation or knowledge
on the part of the programmer to handle global and static variables appro-
priately. Systems specifically aimed at mixing MPI and shared memory have
been developed, effectively augmenting MPI with shared-memory capabilities
as the new extensions do. LIBSM [9] and the Unified Parallel System [10] are
two such systems developed to support the ability for applications to use both
MPI and shared memory efficiently. However, neither of these systems actually
made internal changes to the MPI implementation; rather, they provided an
application-level interface that abstracted the capabilities of message passing
and shared memory.

The need for shared memory in MPI was brought up at the Forum by
R. Brightwell, who proposed a malloc/free interface that did not define syn-
chronization semantics. T. Hoefler later proposed to merge this functionality
into the newly revamped one-sided communication interface. Hoefler and J.
Dinan brought forward a concrete proposal, which was further developed by
the MPI Forum Remote Memory Access (RMA) working group. The Forum
eventually voted for inclusion in MPI-3. The interface described in this paper
is the interface in MPI-3.

This paper is a more detailed version of [11].
Using shared memory between processes is not new, of course. Unix System

V defined a way for processes to share memory, and this has been used by
applications (including MPI implementations). One example where the sharing
memory between processes was the key part of the programming interface
was MLP (Multi-Level Parallelism) [12], developed at NASA and used for
production computational fluid dynamics codes. This work showed that direct
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access to shared memory by the application processes provides a significant
performance benefit. However, this model and ones like it never achieved the
ubiquity of MPI and hence are rarely used directly by computational science
applications.

2 Extending MPI with Integrated Shared Memory

MPI’s remote memory access interface defines one-sided communication op-
erations, data consistency, and synchronization models for accessing memory
regions that are exposed through MPI windows. The MPI-2 standard defined
conservative but highly portable semantics that would still guarantee correct
execution on systems without a coherent memory subsystem. In this model,
the programmer reasons about the data consistency and visibility in terms of
separate private (load/store access) and public (RMA access) copies of data
exposed in the window.

The MPI-3 RMA interface extends MPI-2’s separate memory model with
a new unified model, which provides relaxed semantics that can reduce syn-
chronization overheads and allow greater concurrency in interacting with data
exposed in the window. The unified model was added in MPI-3 RMA to enable
more efficient one-sided data access in systems with coherent memory subsys-
tems. In this model, the public and private copies of the window are coherent,
and updates to either “copy” automatically propagate. Explicit synchroniza-
tion operations can be used to ensure completion of individual or groups of
operations.

The unified memory model defines an efficient and portable mechanism for
one-sided data access, including the needed synchronization and consistency
operations. We observe that this infrastructure already provides several impor-
tant pieces of functionality needed to define a portable, interprocess shared-
memory interface. We now discuss the additional functionality, illustrated in
Figure 1, that is needed to extend the RMA model to support load/store ac-
cesses originating from multiple origin processes to data exposed in a window.
In addition, we discuss new functionality that is needed to allow the user to
query system topology in order to identify groups of processes that communi-
cate through shared memory.

2.1 Using the RMA Interface for Shared Memory

In the MPI-2 one-sided communication interface, the user first allocates mem-
ory and then exposes it in a window. This model of window creation is not
compatible with the interprocess shared-memory support provided by most
operating systems, which require the use of special routines to allocate and
map shared memory into a process’s address space. Therefore, MPI-3 defines
a new routine, MPI Win allocate shared, that collectively allocates and maps
shared memory across all processes in the given communicator.



MPI Plus MPI 5

1 2 30 1 2 3

load/store, get, put, acc, cas, ...

MPI_COMM_WORLD

Node 0 (MPI_COMM_TYPE_SHARED) Node 1 (MPI_COMM_TYPE_SHARED)

load/store, get, put, acc, cas, ...

Shared Memory Window Shared Memory Window

CPU 0 CPU 0CPU 1 CPU 1

0

Fig. 1 Interprocess shared-memory extension using MPI RMA; an execution with two nodes
is shown, and a shared memory window is allocated within each node. The circles represent
MPI ranks running on two dual-core dual-socket nodes.

CPU load and store instructions are similar to one-sided get and put op-
erations. In contrast with get/put, however, load/store operations do not pass
through the MPI library; and, as a result, MPI is unaware of which locations
were accessed and whether data was updated. Therefore, the separate memory
model conservatively defines store operations as updating to full window, in
order to prevent data corruption on systems whose memory subsystem is not
coherent. However, an overwhelming majority of parallel computing systems
do provide coherent memory, and on these systems this semantic is unnecessar-
ily restrictive. Therefore, MPI-3 defines a unified memory model where store
operations do not conflict with accesses to other locations in the window. This
model closely matches the shared-memory programming model used on most
systems, and windows allocated by using MPI Win allocate shared are defined
to use the unified memory model.

2.2 Mapping of Interprocess Shared Memory

Each rank in the shared-memory window provides an allocation size, and a
shared memory segment of at least the sum of all sizes is created. Specify-
ing a per rank size rather than a single, global size allows implementations
to optimize data locality in nonuniform memory architectures. By default,
the allocated shared-memory region is required to be contiguous. That is, the
memory region associated with rank N in a given window must be located
directly before the memory region associated with rank N + 1. The info key
alloc shared noncontig allows the user to relax this allocation constraint. When
this key is given, MPI can map the segments belonging to each process into
noncontiguous locations. This approach can enable better performance by al-
lowing MPI to map each segment on a page boundary, potentially eliminating
negative cache and NUMA effects.

Many operating systems make it difficult to ensure that shared mem-
ory is allocated at the same virtual address across multiple processes. The
MPI one-sided interface, which encourages the dynamic creation of shared-
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MPI_COMM_SPLIT_TYPE(OldComm, MPI_COMM_TYPE_SHARED, ..., &NewComm)

0 321 4 5 6 7

0 1 2 3 0 1 32
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Node 1Node 0

OldComm

Fig. 2 MPI Comm split type can be used to create communicators suitable for use by
MPI Win allocate shared from any intracommunicator.

memory regions throughout an application’s life, exacerbates this problem.
MPI Win allocate shared does not guarantee the same virtual address across
ranks, and it returns only the address of the shared-memory region for the lo-
cal rank. MPI Win shared query provides a query mechanism for determining
the base address in the current process and size of another process’s region
in the shared-memory segment. The address of the absolute beginning of the
window can be queried by providing MPI PROC NULL as the rank argument to
this function, regardless of whether rank zero specified a size greater than zero.

2.3 Querying Machine Topology

The MPI Win allocate shared function expects the user to pass a communicator
on which a shared-memory region can be created. Passing a communicator
where this is not possible is erroneous. In order to facilitate the creation of
such a “shared memory capable” communicator, MPI-3 provides a new routine,
MPI Comm split type. This function is an extension of the MPI Comm split
functionality, with the primary difference being that the user passes a type for
splitting the communicator instead of a color. Specifically, the MPI-3 standard
defines the type MPI COMM TYPE SHARED, which splits a communicator
into subcommunicators on which it is possible to create a shared-memory
region, as shown in Figure 2.

The MPI Comm split type functionality also provides an info argument that
allows the user to request architecture-specific information that can be used
to restrict the communicator to span only a NUMA socket or a shared cache
level, for example. While the MPI-3 standard does not define specific info keys,
most implementations are expected to provide NUMA and cache management
capabilities through these info keys.

3 Implementation of Shared-Memory RMA

The shared-memory RMA interface has been implemented in both MPICH and
Open MPI by using similar techniques. In this section we describe the steps
required for the MPI library to allocate a shared window; we also provide
implementation details.
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The root (typically the process with rank 0 in the associated communi-
cator) allocates a shared-memory region that is large enough to contain all
the window segments of all processes sharing the window. Once the shared-
memory region has been created, information identifying the shared-memory
region is broadcast to the member processes, which then attach to it. At
any process, the base pointer of a window segment can be computed by
knowing the size and base pointer of the previous window segment: the base
pointer of the first window segment, segment 0, is the address of where the
shared-memory segment was attached; and the base pointer of segment i is
base ptri = base ptri−1 + seg sizei−1.

Scalability needs to be addressed for two implementation issues: (1) com-
puting the sum of the shared window segments in order to determine the size of
the shared-memory segment and (2) computing the base pointer of a window
segment. For windows with a relatively small number of processes, an array of
the segment size of each process can be stored locally at each process by using
an all-gather operation. From this array, the root process can compute the
size of the shared-memory segment, and each process can compute the base
pointer of any other segment. For windows with a large number of processes,
however, the offsets may be stored in a shared-memory segment, with scalable
collectives (reduce, broadcast, exscan) used to compute sizes and offsets.

When the alloc shared noncontig info key is set to “true,” the implementa-
tion is not constrained to allocate the window segments contiguously; instead,
it can allocate each window segment so that its base pointer is aligned to op-
timize memory access. Individual shared-memory regions may be exposed by
each rank, an approach that can be used to provide optimal alignment and
addressing but requires more state. An alternative implementation is to allo-
cate the window as though it was allocated contiguously, except that the size
of each window segment is rounded up to a page boundary. In this way each
window segment is aligned on a page boundary, and shared state can be used
to minimize resource utilization. Both MPICH and Open MPI use the latter
approach.

Figure 3 shows the three shared-memory allocation strategies discussed
above. In Figure 3(a) we see the contiguous memory allocation method. The
figure shows four processes each of which has the entire memory region at-
tached. The shared-memory region contains four window segments of different

0 1 2 3

(a) Contiguous

0 1 2 3

(b) Noncontig Separate

1 2 30

(c) Noncontig Padded

Fig. 3 Shared-memory window allocation strategies. Dotted lines in (a) and (c) represent
page boundaries. In (b) each window segment is allocated in a separate shared-memory
region and is page aligned.
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sizes. Figures 3(b) and 3(c) show noncontiguous allocations. In Figure 3(b)
each window segment is allocated in a separate shared-memory region. Each
process attaches all the memory regions. In Figure 3(c) a single shared-memory
region is attached by each process. Each window segment is padded out to a
window boundary. The first and third segments do not end on a page bound-
ary; thus, we see that those segments are padded so that the next window
segment starts on a page boundary.

Synchronization operations must provide processor memory barriers to en-
sure consistency semantics but otherwise are straightforward to implement.
Because of the direct memory access available for all target operations, com-
munication calls may be implemented as memory copies performed during the
communication call itself. While an implementation could choose to imple-
ment the accumulate operations by using processor atomics, locks and memory
copies can also provide the required semantics. Both MPICH and Open MPI
use a spinlock per target memory region to implement accumulate operations,
because of the simplicity of implementation and greater portability.

4 Issues with a Library Interface to Shared Memory

Several issues can arise when implementing shared-memory semantics as a
library [13,14]. Like Pthreads, MPI does not specify memory semantics for
load/store accesses to the shared-memory window within an epoch. The user
must be aware of this feature and must guarantee the required consistency
using techniques outside the scope of MPI (e.g., language features or inline
assembly). Note that, like on traditional MPI windows, MPI RMA synchro-
nization operations (e.g., fence, lock, or sync) have clearly specified memory
semantics and can be used to synchronize memory accesses.

The main issue arises from the fact that the compiler is not aware that
programs are executed in a multithreaded context and that serial optimiza-
tions may break anticipated parallel semantics. For example, Boehm et al. [14]
assume the following code to synchronize the access of two processes to a
shared-memory window:

// assuming two processes in shmcomm, each allocating one int, contiguously

MPI_Win_allocate_shared(sizeof(int), info, shmcomm, &mem, &win);
// query address of process 0 in my local memory

MPI_Win_shared_query(win, 0, &sz, &ptr);

int *x = &ptr[0]; // assign variables

int *done = &ptr[1];

if(r == 0) { // process 0

*x = ... // initialize x

*done = 1; // set flag

}

if(r == 1) { // process 1

while(!(*done)) {} // wait for flag

... = *x; // read x

}
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Similar to the example in [14], a good compiler could use a simple points-
to-analysis [15], determine that *done is not changed in the loop body, and
optimize process 1’s loop to tmp=*done; while(!tmp) {} to avoid the memory
references. More examples, such as register promotion and performance issues,
can be found in [13,14].

A possible solution would be to make the compiler aware of the fact that the
thread is executed in a parallel environment or to prohibit certain optimiza-
tions. For example, a compiler would not be allowed to add additional reads or
writes to and from a shared memory segment, and it would also not be allowed
to perform any optimization affecting memory in a shared-memory segment
across any MPI (or generally any) function call. Those two simple rules would
prevent most of the erroneous transformations known today. However, to de-
fine the sets of correct and incorrect compiler transformations, one would need
to define a memory model for accessing MPI shared-memory windows.

In this model, MPI synchronization calls act as optimization barriers that
synchronize memory, and MPI Win sync can be used similar to a memory fence
because of its semantics that close and open an epoch. The reason rests with
the opaque nature of MPI calls (they are often simply linked in as object
files) for today’s existing C/C++ compilers, which have to assume that MPI
functions have arbitrary effects on the global state of the program. However,
standard Fortran compilers, and C/C++ compilers using whole program anal-
ysis and interprocedural optimizations (IPO), may still cause problems when
applying heavy optimizations assuming a serial execution of the code (we sug-
gest that compiler and library writers cooperate to avoid such problems).

The MPI Forum decided to omit this specification because of missing prac-
tical experience (the Java [16] and C++ [17] memory models are rather new)
and the resulting doubts about the impact on performance of such a specifica-
tion. Another limitation of MPI, as a library, is that a fully specified memory
model may require many additional, often expensive, library calls to emulate
strong models such as sequential consistency (cf. volatile in the Java memory
model [16] or atomic in the C++ memory model [17]).

5 Use Cases and Evaluation

Shared-memory windows in MPI programs have multiple effects on future par-
allel programming techniques. Current scientific applications often use OpenMP
to enable sharing of large data structures (e.g., hash tables or lookup tables or
databases) among cores inside a compute node. This approach requires using
two different models of parallelization: MPI and a carefully crafted OpenMP
layer that enables scalability to the large core counts (32–64) in today’s ar-
chitectures. Doing so often requires an “MPI-style” domain decomposition of
the OpenMP parts, effectively leading to a complex two-stage parallelization
of the program. Shared-memory windows allow a structured approach to this
issue in that OpenMP can be used where it is most efficient (e.g., at the loop
level) and shared memory can be shared across different MPI processes with
a single level of domain decomposition.
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A second use-case is to use shared-memory windows for fast intranode
communications. Here, the user employs a two-level parallelization in order to
achieve the highest possible performance using true zero-copy mechanisms (as
opposed to MPI’s mandated single-copy from send buffer to receive buffer).
This has the advantage over a purely threaded approach that memory is explic-
itly shared and heap corruption due to program bugs is less likely (cf. [18]). An
example of this benefit explored with an early prototype of the shared-memory
extensions can be found in [19]. This work demonstrates the incremental ap-
proach of incorporating shared memory into an MPI application in order to
reduce the iteration count of the linear solver portion of an application. The
rest of the application, which performs and scales well, can remain unchanged
and largely unaware of the use of shared memory.

Shared-memory regions can also help better support the use of accelerators
within an MPI application. For example, if an application is running with one
MPI rank per core and all ranks wish to transfer data to a GPU, it can be
challenging to coordinate the transfer of data between the host memory of each
rank and GPU memory. Using shared memory, one rank can be responsible
for transferring data between the host and the device, reducing the amount of
coordination among ranks.

5.1 Finite-Volume Mini-Application

Preconditioned iterative methods for solving linear systems can benefit from
a hybrid MPI plus shared-memory approach. Solver implementations based
on an MPI-everywhere model often suffer from poor scalability for large num-
bers of MPI processes, because the number of iterations per linear solve step
increases significantly as the number of MPI ranks, and thus the number of
subdomains, increases. Extra solver iterations typically consume an increas-
ingly large percentage of overall application runtime as the number of MPI
ranks grows. An approach to addressing this issue is to use shared memory to
reduce the number of subdomains in the solver. Although the rest of the appli-
cation would continue to operate using a single subdomain per core, the solver
library could organize the data into fewer subdomains so that multiple cores
work together on a single larger subdomain. Mathematically, this approach
improves the convergence rate and robustness of the solver.

To illustrate this approach, we use a mini-application from the Mantevo
project [20] called HPCPCG (HPC preconditioned conjugate gradient). This
miniapp is designed to encapsulate some of the performance characteristics
of an unstructured finite-volume application. It partitions a three-dimensional
domain in the z-dimension and stores data in an unstructured fashion. It im-
plements a conjugate-gradient iterative method preconditioned by a symmetric
Gauss-Seidel sweep, implemented as one lower triangular solve and one upper
triangular solve [21] using a previously developed level-set triangular solver
implementation [22,23]. A level set is calculated after expressing the data de-
pendencies as a directed acyclic graph (DAG). The level sets of this DAG
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Fig. 4 Comparison of iteration count for the HPCPCG mini-application using MPI-only
and MPI plus shared memory.

represent sets of row operations in the triangular solve that can be done inde-
pendently by using threads with synchronization barriers occurring after each
level. This approach is most beneficial for solving triangular systems resulting
from incomplete factorizations, where the resulting matrix factors are sparse
enough to yield sufficiently large levels and mitigate the synchronization costs.

The original implementation of HPCPCG was MPI-only. Like most codes
that use domain decomposition, the sweep is restricted to each subdomain as-
signed to each MPI rank. The sweep is done independently in each rank with-
out any communication, which leads to iteration inflation. Using the shared
memory extensions, the preconditioner can operate on fewer, larger domains.
HPCPCG was modified so that one rank per node is responsible for the precon-
ditioning using a larger domain corresponding to the combined domains of all
the ranks on a node. During the preconditioning step, all ranks can operate on
a single domain directly, leading to a reduction in the iteration count over each
rank operating on the domain independently. A multithreaded approach would
lead to the same reduction in iteration count, but using the shared memory
extensions allows for an incremental approach to improving the performance
of the solver without impacting the rest of the application. Applications that
use the solver can continue to use an MPI-everywhere approach, while only
the solver needs minor changes to exploit the shared memory capability.

Figure 4 shows the iteration count for HPCPCG running on a 2 GHz Intel
Xeon Nehalem X7550 with 4 sockets and 8 cores per socket, 512 GB of memory,
running RHEL 6 with a 256x256x1024 grid size using strong scaling. HPCPCG
reports the number of iterations needed for convergence to a specified tolerance
for the MPI-only versus MPI plus shared-memory version. As expected, the
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MPI-only version requires more iterations to converge than does the shared-
memory variant that uses larger subdomains in the preconditioning phase.

5.2 Quantum Monte Carlo Code Example

The quantum Monte Carlo method (QMC) is a highly scalable method for
solving the many-body Schrödinger equation numerically, with a limited set
of approximations relative to density-functional or diagrammatic many-body
methods. QMC provides a general approach, which can be applied to problems
relevant to chemistry, biology, materials science, and physics, particularly for
systems with strong electron correlation. Starting from a reference wavefunc-
tion, QMC iteratively refines the wavefunction using a random walk in the
high-dimensional space defined by the many-electron wavefunction, which is
represented in a basis of one-electron functions.

In the popular QMCPack [24] and QWalk [25] quantum Monte Carlo ap-
plications, the reference wavefunction is captured by using the Einspline li-
brary [26], which uses the cubic B-spline basis. The resulting data, referred
to as the ensemble data, is stored as a four-dimensional table of coefficients,
where the first three dimensions are spatial, and the fourth dimension corre-
sponds to the number of single particle orbitals in the system under simulation.
Thus, the size of this table is proportional to the number of electrons in the
physical system under analysis and the number of grid points in each spatial
dimension.

Initially, it was possible to store one copy of the ensemble data per pro-
cess on a node. But as memory per hardware execution thread is no longer
increasing and scientific objectives have targeted larger systems, this is no
longer possible [27]. Thus, developers of several QMC applications—notably
QMCPack—have invested significant time and effort into hybridizing existing
MPI code with shared-memory libraries, such as OpenMP, in order to share
the coefficients table [28]. While the hybrid MPI+OpenMP model provides
many useful capabilities to enable node-level parallelism, QMC applications
implemented with only MPI are already relatively scalable and load balanced;
thus, the shared-memory capability of this model is the primary feature needed
by such applications.

Algorithm 5(a) shows pseudocode for the computational kernel at the core
of the diffusion Monte Carlo algorithm and includes markup indicating what
must be added to the existing MPI implementation in order to extend it to
the hybrid MPI+OpenMP model. From this code, we see that significant effort
must be invested to convert the computation to a two-level parallel structure
that incorporates two parallel programming systems. A key challenge in the
Hybrid MPI+OpenMP or MPI+threads models is the transition from the MPI
process private-by-default model to the threaded shared-by-default model for
global, heap, common block, and library data. This transition has resulted
in the addition of two critical sections to regulate updates to data that is
shared across walkers. Developers report that significant effort was required to
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create ensemble data()

for generation g = 1 . . . Ng do
#pragma omp parallel for private(w,

p, r
′
i , R

′
, . . .)

for walker w = 1 . . . Nw do
Let R: position vector of N electrons
R = {r1 . . . rN}
for particle p = 1 . . . Np do

#pragma omp critical
{ δ = compute new position() }
r
′
i = ri + δ

R
′

= {r1 . . . r
′
i . . . rN}

ρ = ΨT (R
′
)/ΨT (R)

if accept(r → r
′
) then

#pragma omp critical
{ Update solution }

end if
end for

end for
end for

(a) Hybrid MPI+OpenMP

node = Comm split type(SHR, WORLD)
buf = Win allocate shared(node, . . .)
if Comm rank(node) == 0 then

create ensemble data(buf)
end if
Barrier(node)

for generation g = 1 . . . Ng do
for walker w = 1 . . . Nw do

Let R: position vector of N electrons
R = {r1 . . . rN}
for particle p = 1 . . . Np do

r
′
i = ri + δ

R
′

= {r1 . . . r
′
i . . . rN}

ρ = ΨT (R
′
)/ΨT (R)

if accept(r → r
′
) then

Update solution
end if

end for
end for

end for

(b) MPI+MPI

Fig. 5 Diffusion Monte Carlo kernel pseudocode, courtesy of [29], in the hybrid
MPI+OpenMP and MPI with shared-memory window models.

duplicate unintentionally shared data in thread-private storage and to ensure
safe access to shared data [28].

For comparison, we show the MPI with shared-memory windows pseu-
docode in Algorithm 5(b). Because this code preserves MPI’s private-by-default
data model, we see that the DMC algorithm requires no changes. Instead,
changes are localized to the allocation and creation of the ensemble data struc-
ture. A node communicator is created, followed by a shared-memory window,
and finally one process per node populates the ensemble data table.

5.3 Five-Point Stencil Kernel Evaluation

We now evaluate the performance improvements that can be achieved with
shared-memory windows using an application kernel benchmark. We prefer not
to show the usual ping-pong benchmarks because they would simply show the
MPI overhead versus the performance of the memory subsystem while hiding
important effects caused by the memory allocation strategy. Instead, we use
a simple, two-dimensional Poisson solver, which computes a heat propagation
problem using a five-point stencil. The N×N input grid is decomposed in both
dimensions by using MPI Dims create and MPI Cart create. The code adds
one-element-deep halo zones for the communication. The benchmark utilizes
nonblocking communication of 8 ·N Bytes in each direction to update the halo
zones and MPI Waitall to complete the communication. It then updates all
local grid points before it proceeds to the next iteration.
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The shared-memory implementation utilizes MPI Comm split type to cre-
ate a shared-memory communicator and allocates the entire work array in
shared memory. Optionally, it provides the alloc shared noncontig info ar-
gument to allow the allocation of localized memory. The communication part of
the original code is simply changed to MPI Win fence in order to ensure mem-
ory consistency and direct memory copies from remote to local halo zones. To
simplify the example code, we assume that all communications are in shared
memory only. The following listing shows the relevant parts of the code (vari-
able declarations and array swapping are omitted for brevity).

MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

MPI_Win_allocate_shared(size*sizeof(double), info, shmcomm, &mem, &win);

MPI_Win_shared_query(win, north, &sz, &northptr);

MPI_Win_shared_query(win, south, &sz, &southptr);

MPI_Win_shared_query(win, east, &sz, &eastptr);

MPI_Win_shared_query(win, west, &sz, &westptr);

for(iter=0; iter<niters; ++iter) {

MPI_Win_fence(0, win); // start new access and exposure epoch

if(north != MPI_PROC_NULL) // the north "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,0)] = northptr[ind(i+1,by)];

if(south != MPI_PROC_NULL) // the south "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,by+1)] = southptr[ind(i+1,1)];
if(east != MPI_PROC_NULL) // the east "communication"

for(int i=0; i<by; ++i) a2[ind(bx+1,i+1)] = eastptr[ind(1,i+1)];
if(west != MPI_PROC_NULL) // the west "communication"

for(int i=0; i<by; ++i) a2[ind(0,i+1)] = westptr[ind(bx,i+1)];

update_grid(&a1, &a2); // apply operator and swap arrays

}

We ran the benchmark on a six-core 2.2 GHz AMD Opteron CPU with
two MPI processes and recorded communication and computation times. The
domain was decomposed in the x (contiguous) direction, and both MPI pro-
cesses ran in the same NUMA domain without internode communication. Open
MPI and MPICH perform similarly because of the similar implementations;
we focus on experimentation with the MPICH implementation.

Figure 6(a) shows the communication times of the send/recv version (red
line with dots) and the shared-memory window versions (green line with trian-
gles), as well as the communication time improvement of the shared-memory
window version (blue crosses). In general, we show that the communication
overhead for the shared-memory window version is 30–60% lower than for the
traditional message-passing approach. This is due to the direct memory access
and avoided matching queue and function call costs.

Figure 6(b) shows the computation time of the shared-memory window
version, that is, the time to update the inner grid cells relative to the com-
putation time of the send/recv version. We observe a significant slowdown
(up to 8%) of the computation without the alloc shared noncontig argument.
This is partially due to false sharing and the fact that the memory is local
to rank 0. Indeed, the slowdown of the computation eliminated any benefit
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Fig. 6 Communication and computation performance for the five-point stencil kernel.

of the faster communication and made the parallel code slower. Specifying
alloc shared noncontig eliminates the overhead down to the noise (< 1.7%)
and leads to an improvement of the overall runtime.

6 Conclusions and Outlook

In this work, we described an MPI standard extension to integrate shared-
memory functionality into MPI-3.0 through the remote memory access inter-
face. We motivated this new interface through several use-cases where shared-
memory windows can result in improved performance, scaling, and capabilities.
We discussed the design space for this new functionality and provided imple-
mentations in two major MPI implementations, which will both be available
shortly in the official releases.

To evaluate the application-level impact of shared memory windows, we
conducted a performance study using a heat-propagation 5-point stencil bench-
mark. The benchmark illustrated two important aspects: (1) an average 40%
reduction in data movement time compared with a traditional send/recv for-
mulation and (2) the potentially detrimental slowdown of computation if false
sharing and NUMA effects are ignored. By allowing the MPI implementation
to automatically adjust the shared-memory mapping, we showed that these
negative performance effects can be eliminated.

We plan to further investigate NUMA-aware allocation strategies, direct
mapping of shared memory (e.g., XPMEM), and the effective use of the info
argument to MPI Comm split type to expand this routines topology querying
capabilities. We also plan to apply the shared-memory extensions to incom-
plete factorization codes, as well as to a human heartbeat simulation code.
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