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Some Considerations about Interconnects

The LogGP Model
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Some Considerations about Interconnects

Interconnect Trends

Technology Change

@ modern interconnects have co-processors (Quadrics,
InfiniBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (see our work)
@ Ethernet protocol offload
@ L+g+m-G>>o0

= we prove our expectations with benchmarks of the user CPU
overhead



Some Considerations about Interconnects

LogGP Model Examples - TCP
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Some Considerations about Interconnects

LogGP Model Examples - Myrinet/GM
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Some Considerations about Interconnects

LogGP Model Examples - InfiniBand/Openl|B
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Some Considerations about Interconnects
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Why Non blocking Collectives?

Modelling the Benefits

LogGP Models - general

tbarr — (20 + L) : [/OQZP-|
tared = 2-(20+L+m-G)- [logoP]+ m-~-[logsP]
tocast = (20+ L+ m-G)- [log2P]

4

CPU and Network LogGP parts

PV — 20. [logoP]  tNET = L. [log,P]

barr
tSPY = (4o+m-v)-[logoP] NI, =2-(L+m-G)- [log2P]

torY, =20 [logoP]  thEL, = (L+m- G)- [logsP]




Why Non blocking Collectives?

User Overhead Benchmarks

LAM/MP17.1.2
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Why Non blocking Collectives?

Send/Recyv is there - Why Collectives?

@ Gorlach, ’04: "Send-Receive Considered Harmful”
@ < Dijkstra, '68: "Go To Statement Considered Harmful”

point to point
if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops



Why Non blocking Collectives?

Putting Everything Together

@ non blocking collectives?
@ JoD mentions “split collectives”
example:

@ MPI_Bcast_begin(...)
@ MPI_Bcast_end(...)

no nesting with other colls
very limited

not in the MPI-2 standard
votes: 11 yes, 12 no, 2 abstain



Why Non blocking Collectives?

Performance Benefits

overlap

@ leverage hardware parallelism (e.g. InfiniBand™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the influence of OS noise

= we analyze Batrrier, Allreduce and Bcast
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Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last
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Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”
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Process Skew - MPI Example - Jumpshot
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Process Skew - NBC Example - Jumpshot
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LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Tbcast (bufl, p, MPI_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait (&req) ;



LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Tbcast (bufl, p, MPI_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait (&req) ;

Proposal

Hoefler et. al. (2006): "Non-Blocking Collective Operations for
MPI-2”




LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

send to 1 recv from 3 | end | send to 2 recv from 2 | end ‘

LibNBC download: http://www.unixer .de/NBC



LibNBC

LibNBC Benchmarks - Gather with
InfiniBand/MVAPICH on 64 nodes
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LibNBC Benchmarks - Scatter with
InfiniBand/MVAPICH on 64 nodes
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LibNBC

LibNBC Benchmarks - Alltoall with
InfiniBand/MVAPICH on 64 nodes
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LibNBC

LibNBC Benchmarks - Allreduce with
InfiniBand/MVAPICH on 64 nodes
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And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - Linear Solvers

@ iterative linear solvers are used in many scientific kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped



And Applications?

Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MP1_Alltoallv

PO P1 P2 P3
P4 PS5 P6 P7
P8 P9 P10 P11

[0 Process—local data £} 2D Domain
Halo—data



And Applications?

Parallel Speedup (Best Case)
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@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 800x800x800 (1 node ~ 5300s)



And Applications?

Parallel Gain with Non-Blocking Communication

Relative Speedup
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And Applications?

Linear Solvers - Domain Decomposition

Second Example
Data Parallel Loops - Parallel Compression

automatic transformations (C++ templates), typical loop
structure:

for (i=0; 1 < N/P; 1i++) {
compute (1) ;

}

comm (N/P) ;



And Applications?

Parallel Speedup (Best Case)
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@ Cluster: 64 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 6450 MB



Communication Overhead

Communication Overhead
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And Applications?
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Ongoing Efforts

Ongoing Work

3D-FFT

@ optimized version of 3D-FFT with full overlap
@ still in development (only cubic cells)
@ very promising

4

LOBPCG Method in ABINIT

@ developed by G. Zerah (CEA)
@ could use NBC for matrix-matrix multiplication

Scientific Education

@ e,g, ABINIT Workshop January
@ talk about programming techniques




Ongoing Efforts

Ongoing Work (continued)

LIbNBC
@ Fortran bindings for LibNBC

@ optimized collectives

Collective Communication
@ optimized collectives for InfiniBand™
@ using special hardware support

\

Network Modelling

@ refined LogGP model parametrization
@ modelling of collective algorithms




Ongoing Efforts
Discussion

THE END

Questions?

Thank you for your attention!



