Non-Blocking Collectives for MPI-2

— overlap at the highest level —

Torsten Hofler

Department of Computer Science
Indiana University / Technical University of Chemnitz

C&C Research Laboratories
NEC Europe Ltd.

Sankt Augustin, Germany
24th November 2006

Outline

0 Some Considerations about Interconnects
© Why Non blocking Collectives?

© LibNBC

@ And Applications?

G Ongoing Efforts

Some Considerations about Interconnects

Outline

0 Some Considerations about Interconnects

Some Considerations about Interconnects

The LogGP Model

level
Sender Receiver
Og o,
CPU — —e
]]
1 1
]]
1 1
1 1
] L]
Network » 4
LAY LAY
’r ‘l Ay
Ay \}
g+ m'G g+mG

Some Considerations about Interconnects

Interconnect Trends

Technology Change

@ modern interconnects have co-processors (Quadrics,
InfiniBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (see our work)
@ Ethernet protocol offload
@ L+g+m-G>>o0

= we prove our expectations with benchmarks of the user CPU
overhead

Some Considerations about Interconnects

LogGP Model Examples - TCP

Time in microseconds

600

500

400

300

200

100

; T
L MPICH2 - G*S+g)
MPICH2 - o
Yadin G*S+g i x*x%
. TCPo ©o -
o
X
x**(
%X
* **X*
%***X*
x*%**
x***

ok
w{ [} =zl
sz
**X*K DDDDDDDDD[DDDDI:IDDDD B
** DDDDDDDDDDDD[
_*E(\ﬁDDDD]DDDDDD

0

10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Some Considerations about Interconnects

LogGP Model Examples - Myrinet/GM

350) ‘ ‘
Open MPI - G*s+g + |
300 | ~ Open MPI -0
Myrinet/GM - G*s+g ~
%) Myrinet/GM -0 »©
'O ++ +¥
S 250 o R
[&] " +*++
(0] +* Lt
g 200 et
5
E Lt s kN
c 150 i W*x****
(0] P **x***@(
£ 100 Py
= 3 w%*%***
o x%***xyf
50 ++ *%x*’(***
++x%x**x -

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Some Considerations about Interconnects

LogGP Model Examples - InfiniBand/Openl|B

Time in microseconds

90 ‘ ‘ _
Open MPI - G*s+g
80 | Open MPI - 0 ok
OpeniB - G*s+g *
70 + OpenlB-o =
60 +++ L% + 1] «
50 i
40 et
30 FRITT
20 T
10 ooyt ®
O éDDD]DDDDDDDDDDDDDDDDDDDDDDDDDD
0 10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Some Considerations about Interconnects

Literature

[1] T. Hoefler, A. LICHEI, AND W. REHM: Low-Overhead LogGP
Parameter Assessment for Modern Interconnection Networks. Under
submission (ask me for a copy)

[2] T. Hoefler, J. SQUYRES, G. FAGG, G. BosILCA, W. REHM AND
A. LUMSDAINE: A New Approach to MPI Collective Communication
Implementations. In proceedings of the 6th Austrian-Hungarian
Workshop on Distributed and Parallel Systems

Why Non blocking Collectives?

Outline

© Why Non blocking Collectives?

Why Non blocking Collectives?

Modelling the Benefits

LogGP Models - general

tbarr — (20 + L) : [/OQZP-|
tared = 2-(20+L+m-G)- [logoP]+ m-~-[logsP]
tocast = (20+ L+ m-G)- [log2P]

4

CPU and Network LogGP parts

PV — 20. [logoP] tNET = L. [log,P]

barr
tSPY = (4o+m-v)-[logoP] NI, =2-(L+m-G)- [log2P]

torY, =20 [logoP] thEL, = (L+m- G)- [logsP]

Why Non blocking Collectives?

User Overhead Benchmarks

LAM/MP17.1.2

CPU Usage (share)

0.03
0.025
0.02
0.015
0.01
0.005

o
%)
o

=

°©

2

°

(&)
o

£

=
5]

k]

o
c
S

=z
>

=

User Overhead Benchmarks

MPICH2 1.0.3

Data Size

I T T T O T B

O~OOTON—O
[slolslolels]lole]

[olelolo]lololele)]

éige 50

Communicator

Why Non blocking Collectives?

Send/Recyv is there - Why Collectives?

@ Gorlach, ’04: "Send-Receive Considered Harmful”
@ < Dijkstra, '68: "Go To Statement Considered Harmful”

point to point
if (rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops

Why Non blocking Collectives?

Putting Everything Together

@ non blocking collectives?
@ JoD mentions “split collectives”
example:

@ MPI_Bcast_begin(...)
@ MPI_Bcast_end(...)

no nesting with other colls
very limited

not in the MPI-2 standard
votes: 11 yes, 12 no, 2 abstain

Why Non blocking Collectives?

Performance Benefits

overlap

@ leverage hardware parallelism (e.g. InfiniBand™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the influence of OS noise

= we analyze Batrrier, Allreduce and Bcast

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ especially if processors are overloaded

@ worse for big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Why Non blocking Collectives?

Process Skew - MPI Example - Jumpshot

%)
9]
172
%)
Q
Q
o
=
o

Why Non blocking Collectives?

Process Skew - NBC Example - Jumpshot

%)
9]
172
%)
Q
Q
o
=
o

Why Non blocking Collectives?

Literature

[38] T.Hoefler, J. SQUYRES, W. REHM, AND A. LUMSDAINE: A Case
for Non-Blocking Collective Operations. In Frontiers of High
Performance Computing and Networking, pages 155-164, Springer
Berlin / Heidelberg, ISBN: 978-3-540-49860-5 Dec. 2006

[4] T. Hoefler, J. SQUYRES, G. BosiLCcA, G. FAGG, A. LUMSDAINE,
AND W. REHM: Non-Blocking Collective Operations for MPI-2. Open
Systems Lab, Indiana University. presented in Bloomington, IN, USA,
School of Informatics, Aug. 2006

LibNBC

Outline

© LibNBC

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Tbcast (bufl, p, MPI_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait (&req) ;

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_Tbcast (bufl, p, MPI_INT, 0, MPI_COMM_WORLD, &req);
MPI_Wait (&req) ;

Proposal

Hoefler et. al. (2006): "Non-Blocking Collective Operations for
MPI-2”

LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

send to 1 recv from 3 | end | send to 2 recv from 2 | end ‘

LibNBC download: http://www.unixer .de/NBC

LibNBC

LibNBC Benchmarks - Gather with
InfiniBand/MVAPICH on 64 nodes

30000

MP|_Gather
NBC_'gather ----- Remmnn
25000

20000 /

15000 -
10000 /
5000 /’//// ----- gt

Runtime (s)

VN

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

LibNBC Benchmarks - Scatter with
InfiniBand/MVAPICH on 64 nodes

30000

MP I_Scatfer
NBC_Iscatter - Xensne
25000 A

20000 /

15000

Runtime (s)

10000

5000

fennmdemmmmm"

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

LibNBC Benchmarks - Alltoall with
InfiniBand/MVAPICH on 64 nodes

50000 ‘ ‘ ‘
MPI_Alifoall %
45000 | NBC lalltoall - 7 d

40000 2
35000 /
30000 ////

25000 i
20000
15000 [l

10000
5000

Runtime (s)

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

LibNBC Benchmarks - Allreduce with
InfiniBand/MVAPICH on 64 nodes

60000

50000

40000 /
30000 [\/
20000

10000 I

Runtime (s)

B cor e R | s
H=empe””

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

Literature

[5] T.Hoefler AND A. LUMSDAINE: Design, Implementation, and
Usage of LibNBC. Open Systems Lab, Indiana University. presented
in Bloomington, IN, USA, School of Informatics, Aug. 2006

[6] T. Hoefler, A. LUMSDAINE AND W. REHM: Implementation and
Performance Analysis of Non-Blocking Collective Operations for MPI.
Under submission (ask me for a copy)

And Applications?

Outline

@ And Applications?

And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - Linear Solvers

@ iterative linear solvers are used in many scientific kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped

And Applications?

Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MP1_Alltoallv

PO P1 P2 P3
P4 PS5 P6 P7
P8 P9 P10 P11

[0 Process—local data £} 2D Domain
Halo—data

And Applications?

Parallel Speedup (Best Case)

100 | Eth blocking - 100 | IB blocking —+— ,
Eth non-blocking o IB non-blocking -3¢
80 e 80 e -
S - g e
8 60 e e -
g L e ol _
n 40 “_._.“ -z 40
QEE """" - "
20 1 g 20 [
"Fnl) (x‘“/
0

0
8 16 24 32 40 48 56 64 72 80 88 96

8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

Number of CPUs

@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 800x800x800 (1 node ~ 5300s)

And Applications?

Parallel Gain with Non-Blocking Communication

Relative Speedup

0.4

0.3

0.2

0.1

gain = typ/ty

X

0 8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

And Applications?

Linear Solvers - Domain Decomposition

Second Example
Data Parallel Loops - Parallel Compression

automatic transformations (C++ templates), typical loop
structure:

for (i=0; 1 < N/P; 1i++) {
compute (1) ;

}

comm (N/P) ;

And Applications?

Parallel Speedup (Best Case)

90

90

MPl/blocking MPI/blocking P
80 f NBC/pipe - 80 NBC/pipe - - 4
NBCtiile - } NBCttile - - A
70 + NBC/wintile e 70 - NBC/wintile
60 . 60
3 50 3 50 e
$ e, 8 20 o
a 40 a ¢ 8
30 — 30 pre
20 L 20 -
10 b P 10 b
W -
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Processors # Processors

@ Cluster: 64 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand ™
@ System size 6450 MB

Communication Overhead

Communication Overhead

35
30
25
20
15
10

MVAPICH 0.9.4

And Applications?

. MPl/blocking ——

NBC/pipe -

NBCttile -
" NBC/wintile ~--s--- 3
' ’% i T
I
B
", .

e
0 10 20 30 40 50 60 70 80 90 100

Processors

And Applications?

Literature

[7] T. Hoefler P. GOTTSCHLING, W. REHM AND A. LUMSDAINE:
Optimizing a Conjugate Gradient Solver with Non-Blocking Collective
Operations. In 13th European PVM/MPI User’s Group Meeting,
Proceedings, LNCS 4192, presented in Bonn, Germany, pages
374-382, Springer, ISSN: 0302-9743, ISBN: 3-540-39110-X Sep.
2006

[8] T. Hoefler, P. GOTTSCHLING AND A. LUMSDAINE:
Transformations for enabling non-blocking collective communication in
high-performance applications. Under submission (ask me for a copy)

Ongoing Efforts

Outline

e Ongoing Efforts

Ongoing Efforts

Ongoing Work

3D-FFT

@ optimized version of 3D-FFT with full overlap
@ still in development (only cubic cells)
@ very promising

4

LOBPCG Method in ABINIT

@ developed by G. Zerah (CEA)
@ could use NBC for matrix-matrix multiplication

Scientific Education

@ e,g, ABINIT Workshop January
@ talk about programming techniques

Ongoing Efforts

Ongoing Work (continued)

LIbNBC
@ Fortran bindings for LibNBC

@ optimized collectives

Collective Communication
@ optimized collectives for InfiniBand™
@ using special hardware support

\

Network Modelling

@ refined LogGP model parametrization
@ modelling of collective algorithms

Ongoing Efforts
Discussion

THE END

Questions?

Thank you for your attention!

